DeePMD-kit’s documentation

DeePMD-kit is a package written in Python/C++, designed to minimize the effort required to build deep learning-based models of interatomic potential energy and force field and to perform molecular dynamics (MD). This brings new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems.

Important

The project DeePMD-kit is licensed under GNU LGPLv3.0. If you use this code in any future publications, please cite the following publications for general purpose:

  • Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. “DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics.” Computer Physics Communications 228 (2018): 178-184.

  • Jinzhe Zeng, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Marián Rynik, Li’ang Huang, Ziyao Li, Shaochen Shi, Yingze Wang, Haotian Ye, Ping Tuo, Jiabin Yang, Ye Ding, Yifan Li, Davide Tisi, Qiyu Zeng, Han Bao, Yu Xia, Jiameng Huang, Koki Muraoka, Yibo Wang, Junhan Chang, Fengbo Yuan, Sigbjørn Løland Bore, Chun Cai, Yinnian Lin, Bo Wang, Jiayan Xu, Jia-Xin Zhu, Chenxing Luo, Yuzhi Zhang, Rhys E. A. Goodall, Wenshuo Liang, Anurag Kumar Singh, Sikai Yao, Jingchao Zhang, Renata Wentzcovitch, Jiequn Han, Jie Liu, Weile Jia, Darrin M. York, Weinan E, Roberto Car, Linfeng Zhang, Han Wang. “DeePMD-kit v2: A software package for Deep Potential models.” J. Chem. Phys., 159, 054801 (2023).

In addition, please follow this page to cite the methods you used.

Getting Started

In this text, we will call the deep neural network that is used to represent the interatomic interactions (Deep Potential) the model. The typical procedure of using DeePMD-kit is

Easy install

There are various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by yourself, jump to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (lmp) will be available to execute. You can try dp -h and lmp -h to see the help. mpirun is also available considering you may want to train models or run LAMMPS in parallel.

Note

Note: The off-line packages and conda packages require the GNU C Library 2.17 or above. The GPU version requires compatible NVIDIA driver to be installed in advance. It is possible to force conda to override detection when installation, but these requirements are still necessary during runtime.

Install off-line packages

Both CPU and GPU version offline packages are available in the Releases page.

Some packages are splited into two files due to size limit of GitHub. One may merge them into one after downloading:

cat deepmd-kit-2.1.1-cuda11.6_gpu-Linux-x86_64.sh.0 deepmd-kit-2.1.1-cuda11.6_gpu-Linux-x86_64.sh.1 > deepmd-kit-2.1.1-cuda11.6_gpu-Linux-x86_64.sh

One may enable the environment using

conda activate /path/to/deepmd-kit

Install with conda

DeePMD-kit is available with conda. Install Anaconda or Miniconda first.

Official channel

One may create an environment that contains the CPU version of DeePMD-kit and LAMMPS:

conda create -n deepmd deepmd-kit=*=*cpu libdeepmd=*=*cpu lammps -c https://conda.deepmodeling.com -c defaults

Or one may want to create a GPU environment containing CUDA Toolkit:

conda create -n deepmd deepmd-kit=*=*gpu libdeepmd=*=*gpu lammps cudatoolkit=11.6 horovod -c https://conda.deepmodeling.com -c defaults

One could change the CUDA Toolkit version from 10.2 or 11.6.

One may specify the DeePMD-kit version such as 2.1.1 using

conda create -n deepmd deepmd-kit=2.1.1=*cpu libdeepmd=2.1.1=*cpu lammps horovod -c https://conda.deepmodeling.com -c defaults

One may enable the environment using

conda activate deepmd
conda-forge channel

DeePMD-kit is also available on the conda-forge channel:

conda create -n deepmd deepmd-kit lammps -c conda-forge

The supported platform includes Linux x86-64, macOS x86-64, and macOS arm64. Read conda-forge FAQ to learn how to install CUDA-enabled packages.

Install with docker

A docker for installing the DeePMD-kit is available here.

To pull the CPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cpu

To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cuda11.6_gpu

To pull the ROCm version:

docker pull deepmodeling/dpmdkit-rocm:dp2.0.3-rocm4.5.2-tf2.6-lmp29Sep2021

Install Python interface with pip

If you have no existing TensorFlow installed, you can use pip to install the pre-built package of the Python interface with CUDA 11 supported:

pip install deepmd-kit[gpu,cu11]

cu11 is required only when CUDA Toolkit and cuDNN were not installed.

Or install the CPU version without CUDA supported:

pip install deepmd-kit[cpu]

The LAMMPS module and the i-Pi driver are only provided on Linux and macOS. To install LAMMPS and/or i-Pi, add lmp and/or ipi to extras:

pip install deepmd-kit[gpu,cu11,lmp,ipi]

MPICH is required for parallel running. (The macOS arm64 package doesn’t support MPI yet.)

It is suggested to install the package into an isolated environment. The supported platform includes Linux x86-64 and aarch64 with GNU C Library 2.28 or above, macOS x86-64 and arm64, and Windows x86-64. A specific version of TensorFlow which is compatible with DeePMD-kit will be also installed.

Warning

If your platform is not supported, or want to build against the installed TensorFlow, or want to enable ROCM support, please build from source.

DeePMD-kit Quick Start Tutorial

Open In Bohrium

DeePMD-kit is a deep learning package for many-body potential energy representation and molecular dynamics.

This tutorial can be directly run on Bohrium Notebook, you can click the Open in Bohrium button above to quickly run this document in Bohrium.

After opening Bohrium Notebook, click the button connect, and choose deepmd-kit:2.2.1-cuda11.6-notebook as image and c4_m8_cpu as computing resources. Wait a minute and you can get started.

Task

Mastering the paradigm cycle of using DeePMD-kit to establish deep potential molecular dynamics models, and following a complete case to learn how to apply it to molecular dynamics tasks.

By the end of this tutorial, you will be able to:

  • Prepare the formataive dataset and running scripts for training with DeePMD-kit;

  • Train, freeze, and test DeePMD-kit models;

  • Use DeePMD-kit in LAMMPS for calculations;

Work through this tutorial. It will take you 20 minutes, max!

Table of contents

  • Get tutorial data via git

  • General Introduction

  • Data preparation

  • Prepare input script

  • Train a model

  • Freeze a model

  • Test a model

  • Run MD with LAMMPS

Get tutorial data via git

! if ! [ -e colombo-academy-tutorials ];then git clone https://gitee.com/deepmodeling/colombo-academy-tutorials.git;fi;
Cloning into 'colombo-academy-tutorials'...
remote: Enumerating objects: 7164, done.
remote: Counting objects: 100% (174/174), done.
remote: Compressing objects: 100% (138/138), done.
remote: Total 7164 (delta 78), reused 71 (delta 32), pack-reused 6990
Receiving objects: 100% (7164/7164), 45.31 MiB | 3.85 MiB/s, done.
Resolving deltas: 100% (3378/3378), done.
Updating files: 100% (185/185), done.

General Introduction

This tutorial will introduce you to the basic usage of the DeePMD-kit, taking a gas phase methane molecule as an example. DeePMD-kit’s documentation is recommended as the complete reference.

The DP model is generated using the DeePMD-kit package (v2.1.5). The training data is converted into the format of DeePMD-kit using a tool named dpdata (v0.2.14).

Details of dpdata can be found in the dpdata documentation.

We’ve prepared initial data for \(CH_4\) for you, and put them in the folder colombo-academy-tutorials/DeePMD-kit/00.data

import os

prefix_path = os.getcwd()

Folder abacus_md is obtained by performing ab-initio molecular dynamics with ABACUS. Detailed instructions on ABACUS can be found in its document.

os.chdir(
    os.path.join(prefix_path, "colombo-academy-tutorials", "DeePMD-kit", "00.data")
)
os.listdir("abacus_md")
['C_ONCV_PBE-1.2.upf',
 'C_gga_6au_100Ry_2s2p1d.orb',
 'H_ONCV_PBE-1.2.upf',
 'H_gga_6au_100Ry_2s1p.orb',
 'INPUT',
 'KPT',
 'OUT.ABACUS',
 'STRU']

Data preparation

The training data utilized by DeePMD-kit comprises essential information such as atom type, simulation box, atom coordinate, atom force, system energy, and virial. A snapshot of a molecular system that includes this data is called a frame. Multiple frames with the same number of atoms and atom types make up a system of data. For instance, a molecular dynamics trajectory can be converted into a system of data, with each time step corresponding to a frame in the system.

To simplify the process of converting data generated by popular simulation software like CP2K, Gaussian, Quantum-Espresso, ABACUS, and LAMMPS into the compressed format of DeePMD-kit, we offer a convenient tool called dpdata.

Next, the data from AIMD is splited randomly as training and validation data.

import dpdata
import numpy as np

# load data of abacus/md format
data = dpdata.LabeledSystem("abacus_md", fmt="abacus/md")
print("# the data contains %d frames" % len(data))

# random choose 40 index for validation_data
index_validation = np.random.choice(201, size=40, replace=False)

# other indexes are training_data
index_training = list(set(range(201)) - set(index_validation))
data_training = data.sub_system(index_training)
data_validation = data.sub_system(index_validation)

# all training data put into directory:"training_data"
data_training.to_deepmd_npy("training_data")

# all validation data put into directory:"validation_data"
data_validation.to_deepmd_npy("validation_data")

print("# the training data contains %d frames" % len(data_training))
print("# the validation data contains %d frames" % len(data_validation))
# the data contains 201 frames
# the training data contains 161 frames
# the validation data contains 40 frames

As you can see, 161 frames are picked as training data, and the other 40 frames are validation dat.

The DeePMD-kit adopts a compressed data format. All training data should first be converted into this format and can then be used by DeePMD-kit. The data format is explained in detail in the DeePMD-kit manual that can be found in the DeePMD-kit Data Introduction.

! tree training_data
training_data
├── set.000
│   ├── box.npy
│   ├── coord.npy
│   ├── energy.npy
│   ├── force.npy
│   └── virial.npy
├── type.raw
└── type_map.raw

1 directory, 7 files

Let’s have a look at type.raw:

! cat training_data/type.raw
0
0
0
0
1

This tells us there are 5 atoms in this example, 4 atoms represented by type “0”, and 1 atom represented by type “1”. Sometimes one needs to map the integer types to atom name. The mapping can be given by the file type_map.raw

! cat training_data/type_map.raw
H
C

This tells us the type “0” is named by “H”, and the type “1” is named by “C”.

More detailed doc about Data conversion can be found here.

Prepare input script

Once the data preparation is done, we can go on with training. Now go to the training directory

os.chdir(
    os.path.join(prefix_path, "colombo-academy-tutorials", "DeePMD-kit", "01.train")
)

DeePMD-kit requires a json format file to specify parameters for training.

In the model section, the parameters of embedding and fitting networks are specified.

"model":{
    "type_map":    ["H", "C"],                 
    "descriptor":{
        "type":            "se_e2_a",          
        "rcut":            6.00,               
        "rcut_smth":       0.50,               
        "sel":             "auto",             
        "neuron":          [25, 50, 100],       
        "resnet_dt":       false,
        "axis_neuron":     16,                  
        "seed":            1,
        "_comment":        "that's all"
        },
    "fitting_net":{
        "neuron":          [240, 240, 240],    
        "resnet_dt":       true,
        "seed":            1,
        "_comment":        "that's all"
    },
    "_comment":    "that's all"'
},

The explanation for some of the parameters is as follows:

Parameter

Expiation

type_map

the name of each type of atom

descriptor > type

the type of descriptor

descriptor > rcut

cut-off radius

descriptor > rcut_smth

where the smoothing starts

descriptor > sel

the maximum number of type i atoms in the cut-off radius

descriptor > neuron

size of the embedding neural network

descriptor > axis_neuron

the size of the submatrix of G (embedding matrix)

fitting_net > neuron

size of the fitting neural network

The se_e2_a descriptor is used to train the DP model. The item neurons set the size of the descriptors and fitting network to [25, 50, 100] and [240, 240, 240], respectively. The components in local environment to smoothly go to zero from 0.5 to 6 Å.

The following are the parameters that specify the learning rate and loss function.

    "learning_rate" :{
        "type":                "exp",
        "decay_steps":         50,
        "start_lr":            0.001,    
        "stop_lr":             3.51e-8,
        "_comment":            "that's all"
    },
    "loss" :{
        "type":                "ener",
        "start_pref_e":        0.02,
        "limit_pref_e":        1,
        "start_pref_f":        1000,
        "limit_pref_f":        1,
        "start_pref_v":        0,
        "limit_pref_v":        0,
        "_comment":            "that's all"
    },

In the loss function, pref_e increases from 0.02 to 1, and pref_f decreases from 1000 to 1 progressively, which means that the force term dominates at the beginning, while energy and virial terms become important at the end. This strategy is very effective and reduces the total training time. pref_v is set to 0 , indicating that no virial data are included in the training process. The starting learning rate, stop learning rate, and decay steps are set to 0.001, 3.51e-8, and 50, respectively. The model is trained for 10000 steps.

The training parameters are given in the following

    "training" : {
        "training_data": {
            "systems":            ["../00.data/training_data"],     
            "batch_size":         "auto",                       
            "_comment":           "that's all"
        },
        "validation_data":{
            "systems":            ["../00.data/validation_data/"],
            "batch_size":         "auto",               
            "numb_btch":          1,
            "_comment":           "that's all"
        },
        "numb_steps":             10000,                           
        "seed":                   10,
        "disp_file":              "lcurve.out",
        "disp_freq":              200,
        "save_freq":              10000,
        },

More detailed docs about Data conversion can be found here.

Train a model

After the training script is prepared, we can start the training with DeePMD-kit by simply running

! dp train input.json
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/python/compat/v2_compat.py:107: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
WARNING:root:To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS, and TF_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
WARNING:root:Environment variable KMP_BLOCKTIME is empty. Use the default value 0
WARNING:root:Environment variable KMP_AFFINITY is empty. Use the default value granularity=fine,verbose,compact,1,0
/opt/deepmd-kit-2.2.1/lib/python3.10/importlib/__init__.py:169: UserWarning: The NumPy module was reloaded (imported a second time). This can in some cases result in small but subtle issues and is discouraged.
  _bootstrap._exec(spec, module)
DEEPMD INFO    Calculate neighbor statistics... (add --skip-neighbor-stat to skip this step)
2023-04-20 23:35:59.335932: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-04-20 23:35:59.335979: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
OMP: Info #155: KMP_AFFINITY: Initial OS proc set respected: 0-7
OMP: Info #216: KMP_AFFINITY: decoding x2APIC ids.
OMP: Info #216: KMP_AFFINITY: cpuid leaf 11 not supported.
OMP: Info #216: KMP_AFFINITY: decoding legacy APIC ids.
OMP: Info #157: KMP_AFFINITY: 8 available OS procs
OMP: Info #158: KMP_AFFINITY: Uniform topology
OMP: Info #287: KMP_AFFINITY: topology layer "LL cache" is equivalent to "socket".
OMP: Info #192: KMP_AFFINITY: 1 socket x 4 cores/socket x 2 threads/core (4 total cores)
OMP: Info #218: KMP_AFFINITY: OS proc to physical thread map:
OMP: Info #172: KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 1 maps to socket 0 core 0 thread 1 
OMP: Info #172: KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 3 maps to socket 0 core 1 thread 1 
OMP: Info #172: KMP_AFFINITY: OS proc 4 maps to socket 0 core 2 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 5 maps to socket 0 core 2 thread 1 
OMP: Info #172: KMP_AFFINITY: OS proc 6 maps to socket 0 core 3 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 7 maps to socket 0 core 3 thread 1 
OMP: Info #254: KMP_AFFINITY: pid 118 tid 140 thread 1 bound to OS proc set 2
OMP: Info #254: KMP_AFFINITY: pid 118 tid 142 thread 2 bound to OS proc set 4
OMP: Info #254: KMP_AFFINITY: pid 118 tid 144 thread 4 bound to OS proc set 1
OMP: Info #254: KMP_AFFINITY: pid 118 tid 143 thread 3 bound to OS proc set 6
OMP: Info #254: KMP_AFFINITY: pid 118 tid 145 thread 5 bound to OS proc set 3
OMP: Info #254: KMP_AFFINITY: pid 118 tid 146 thread 6 bound to OS proc set 5
OMP: Info #254: KMP_AFFINITY: pid 118 tid 147 thread 7 bound to OS proc set 7
OMP: Info #254: KMP_AFFINITY: pid 118 tid 148 thread 8 bound to OS proc set 0
OMP: Info #254: KMP_AFFINITY: pid 118 tid 139 thread 9 bound to OS proc set 2
OMP: Info #254: KMP_AFFINITY: pid 118 tid 149 thread 10 bound to OS proc set 4
OMP: Info #254: KMP_AFFINITY: pid 118 tid 150 thread 11 bound to OS proc set 6
OMP: Info #254: KMP_AFFINITY: pid 118 tid 151 thread 12 bound to OS proc set 1
OMP: Info #254: KMP_AFFINITY: pid 118 tid 152 thread 13 bound to OS proc set 3
OMP: Info #254: KMP_AFFINITY: pid 118 tid 153 thread 14 bound to OS proc set 5
OMP: Info #254: KMP_AFFINITY: pid 118 tid 154 thread 15 bound to OS proc set 7
OMP: Info #254: KMP_AFFINITY: pid 118 tid 155 thread 16 bound to OS proc set 0
DEEPMD INFO    training data with min nbor dist: 1.045920568611028
DEEPMD INFO    training data with max nbor size: [4 1]
DEEPMD INFO     _____               _____   __  __  _____           _     _  _   
DEEPMD INFO    |  __ \             |  __ \ |  \/  ||  __ \         | |   (_)| |  
DEEPMD INFO    | |  | |  ___   ___ | |__) || \  / || |  | | ______ | | __ _ | |_ 
DEEPMD INFO    | |  | | / _ \ / _ \|  ___/ | |\/| || |  | ||______|| |/ /| || __|
DEEPMD INFO    | |__| ||  __/|  __/| |     | |  | || |__| |        |   < | || |_ 
DEEPMD INFO    |_____/  \___| \___||_|     |_|  |_||_____/         |_|\_\|_| \__|
DEEPMD INFO    Please read and cite:
DEEPMD INFO    Wang, Zhang, Han and E, Comput.Phys.Comm. 228, 178-184 (2018)
DEEPMD INFO    installed to:         /home/conda/feedstock_root/build_artifacts/deepmd-kit_1678943793317/work/_skbuild/linux-x86_64-3.10/cmake-install
DEEPMD INFO    source :              v2.2.1
DEEPMD INFO    source brach:         HEAD
DEEPMD INFO    source commit:        3ac8c4c7
DEEPMD INFO    source commit at:     2023-03-16 12:33:24 +0800
DEEPMD INFO    build float prec:     double
DEEPMD INFO    build variant:        cuda
DEEPMD INFO    build with tf inc:    /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/include;/opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/../../../../include
DEEPMD INFO    build with tf lib:    
DEEPMD INFO    ---Summary of the training---------------------------------------
DEEPMD INFO    running on:           bohrium-14076-1013950
DEEPMD INFO    computing device:     cpu:0
DEEPMD INFO    CUDA_VISIBLE_DEVICES: unset
DEEPMD INFO    Count of visible GPU: 0
DEEPMD INFO    num_intra_threads:    0
DEEPMD INFO    num_inter_threads:    0
DEEPMD INFO    -----------------------------------------------------------------
DEEPMD INFO    ---Summary of DataSystem: training     -----------------------------------------------
DEEPMD INFO    found 1 system(s):
DEEPMD INFO                                        system  natoms  bch_sz   n_bch   prob  pbc
DEEPMD INFO                      ../00.data/training_data       5       7      23  1.000    T
DEEPMD INFO    --------------------------------------------------------------------------------------
DEEPMD INFO    ---Summary of DataSystem: validation   -----------------------------------------------
DEEPMD INFO    found 1 system(s):
DEEPMD INFO                                        system  natoms  bch_sz   n_bch   prob  pbc
DEEPMD INFO                    ../00.data/validation_data       5       7       5  1.000    T
DEEPMD INFO    --------------------------------------------------------------------------------------
DEEPMD INFO    training without frame parameter
DEEPMD INFO    data stating... (this step may take long time)
OMP: Info #254: KMP_AFFINITY: pid 118 tid 118 thread 0 bound to OS proc set 0
DEEPMD INFO    built lr
DEEPMD INFO    built network
DEEPMD INFO    built training
WARNING:root:To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS, and TF_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
DEEPMD INFO    initialize model from scratch
DEEPMD INFO    start training at lr 1.00e-03 (== 1.00e-03), decay_step 50, decay_rate 0.950006, final lr will be 3.51e-08
DEEPMD INFO    batch     200 training time 6.10 s, testing time 0.02 s
DEEPMD INFO    batch     400 training time 4.83 s, testing time 0.02 s
DEEPMD INFO    batch     600 training time 4.84 s, testing time 0.02 s
DEEPMD INFO    batch     800 training time 4.85 s, testing time 0.02 s
DEEPMD INFO    batch    1000 training time 4.85 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    1200 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    1400 training time 5.39 s, testing time 0.02 s
DEEPMD INFO    batch    1600 training time 4.84 s, testing time 0.02 s
DEEPMD INFO    batch    1800 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    2000 training time 4.84 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    2200 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    2400 training time 4.90 s, testing time 0.02 s
DEEPMD INFO    batch    2600 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    2800 training time 4.84 s, testing time 0.02 s
DEEPMD INFO    batch    3000 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    3200 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    3400 training time 4.99 s, testing time 0.02 s
DEEPMD INFO    batch    3600 training time 4.88 s, testing time 0.02 s
DEEPMD INFO    batch    3800 training time 4.85 s, testing time 0.02 s
DEEPMD INFO    batch    4000 training time 4.88 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    4200 training time 4.88 s, testing time 0.02 s
DEEPMD INFO    batch    4400 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    4600 training time 4.92 s, testing time 0.02 s
DEEPMD INFO    batch    4800 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    5000 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    5200 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    5400 training time 4.88 s, testing time 0.02 s
DEEPMD INFO    batch    5600 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    5800 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    6000 training time 4.90 s, testing time 0.02 s
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/python/training/saver.py:1066: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/python/training/saver.py:1066: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    6200 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    6400 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    6600 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    6800 training time 4.84 s, testing time 0.02 s
DEEPMD INFO    batch    7000 training time 4.93 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    7200 training time 4.89 s, testing time 0.02 s
DEEPMD INFO    batch    7400 training time 4.88 s, testing time 0.02 s
DEEPMD INFO    batch    7600 training time 4.88 s, testing time 0.02 s
DEEPMD INFO    batch    7800 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    8000 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    8200 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    8400 training time 4.85 s, testing time 0.02 s
DEEPMD INFO    batch    8600 training time 4.86 s, testing time 0.02 s
DEEPMD INFO    batch    8800 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    9000 training time 4.83 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    9200 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch    9400 training time 4.95 s, testing time 0.02 s
DEEPMD INFO    batch    9600 training time 4.89 s, testing time 0.02 s
DEEPMD INFO    batch    9800 training time 4.87 s, testing time 0.02 s
DEEPMD INFO    batch   10000 training time 4.88 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    average training time: 0.0244 s/batch (exclude first 200 batches)
DEEPMD INFO    finished training
DEEPMD INFO    wall time: 256.669 s

On the screen, you will see the information of the data system(s)

DEEPMD INFO    -----------------------------------------------------------------
DEEPMD INFO    ---Summary of DataSystem: training     ----------------------------------
DEEPMD INFO    found 1 system(s):
DEEPMD INFO                                 system  natoms  bch_sz   n_bch   prob  pbc
DEEPMD INFO               ../00.data/training_data       5       7      23  1.000    T
DEEPMD INFO    -------------------------------------------------------------------------
DEEPMD INFO    ---Summary of DataSystem: validation   ----------------------------------
DEEPMD INFO    found 1 system(s):
DEEPMD INFO                                 system  natoms  bch_sz   n_bch   prob  pbc
DEEPMD INFO             ../00.data/validation_data       5       7       5  1.000    T
DEEPMD INFO    -------------------------------------------------------------------------

and the starting and final learning rate of this training

DEEPMD INFO    start training at lr 1.00e-03 (== 1.00e-03), decay_step 50, decay_rate 0.950006, final lr will be 3.51e-08

If everything works fine, you will see, on the screen, information printed every 1000 steps, like

DEEPMD INFO    batch     200 training time 6.04 s, testing time 0.02 s
DEEPMD INFO    batch     400 training time 4.80 s, testing time 0.02 s
DEEPMD INFO    batch     600 training time 4.80 s, testing time 0.02 s
DEEPMD INFO    batch     800 training time 4.78 s, testing time 0.02 s
DEEPMD INFO    batch    1000 training time 4.77 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt
DEEPMD INFO    batch    1200 training time 4.47 s, testing time 0.02 s
DEEPMD INFO    batch    1400 training time 4.49 s, testing time 0.02 s
DEEPMD INFO    batch    1600 training time 4.45 s, testing time 0.02 s
DEEPMD INFO    batch    1800 training time 4.44 s, testing time 0.02 s
DEEPMD INFO    batch    2000 training time 4.46 s, testing time 0.02 s
DEEPMD INFO    saved checkpoint model.ckpt

They present the training and testing time counts. At the end of the 1000th batch, the model is saved in Tensorflow’s checkpoint file model.ckpt. At the same time, the training and testing errors are presented in file lcurve.out.

The file contains 8 columns, form left to right, are the training step, the validation loss, training loss, root mean square (RMS) validation error of energy, RMS training error of energy, RMS validation error of force, RMS training error of force and the learning rate. The RMS error (RMSE) of the energy is normalized by number of atoms in the system.

head -n 2 lcurve.out
#  step      rmse_val    rmse_trn    rmse_e_val  rmse_e_trn    rmse_f_val  rmse_f_trn         lr
      0      2.02e+01    1.51e+01      1.37e-01    1.41e-01      6.40e-01    4.79e-01    1.0e-03

and

$ tail -n 2 lcurve.out
   9800      2.45e-02    4.02e-02      3.20e-04    3.88e-04      2.40e-02    3.94e-02    4.3e-08
  10000      4.60e-02    3.76e-02      8.65e-04    5.35e-04      4.52e-02    3.69e-02    3.5e-08

Volumes 4, 5 and 6, 7 present energy and force training and testing errors, respectively.

! head -n 2 lcurve.out && tail -n 2 lcurve.out
#  step      rmse_val    rmse_trn    rmse_e_val  rmse_e_trn    rmse_f_val  rmse_f_trn         lr
      0      2.06e+01    1.94e+01      1.34e-01    1.35e-01      6.51e-01    6.14e-01    1.0e-03
   9800      5.49e-02    4.00e-02      7.55e-04    7.28e-04      5.37e-02    3.91e-02    4.3e-08
  10000      6.56e-02    6.37e-02      1.13e-03    1.54e-03      6.44e-02    6.25e-02    3.5e-08

The loss function can be visualized to monitor the training process.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

with open("lcurve.out") as f:
    headers = f.readline().split()[1:]
lcurve = pd.DataFrame(np.loadtxt("lcurve.out"), columns=headers)
legends = ["rmse_e_val", "rmse_e_trn", "rmse_f_val", "rmse_f_trn"]
for legend in legends:
    plt.loglog(lcurve["step"], lcurve[legend], label=legend)
plt.legend()
plt.xlabel("Training steps")
plt.ylabel("Loss")
plt.show()
_images/1612474a877c23986e80f67817255cc19698c6638b0dbdba86867c9ae3f3c70b.png

Freeze a model

At the end of the training, the model parameters saved in TensorFlow’s checkpoint file should be frozen as a model file that is usually ended with extension .pb. Simply execute

! dp freeze -o graph.pb
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/python/compat/v2_compat.py:107: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
WARNING:root:To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS, and TF_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
WARNING:root:Environment variable KMP_BLOCKTIME is empty. Use the default value 0
WARNING:root:Environment variable KMP_AFFINITY is empty. Use the default value granularity=fine,verbose,compact,1,0
/opt/deepmd-kit-2.2.1/lib/python3.10/importlib/__init__.py:169: UserWarning: The NumPy module was reloaded (imported a second time). This can in some cases result in small but subtle issues and is discouraged.
  _bootstrap._exec(spec, module)
2023-04-20 23:40:25.666203: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-04-20 23:40:25.666257: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
DEEPMD INFO    The following nodes will be frozen: ['model_type', 'descrpt_attr/rcut', 'descrpt_attr/ntypes', 'model_attr/tmap', 'model_attr/model_type', 'model_attr/model_version', 'train_attr/min_nbor_dist', 'train_attr/training_script', 'o_energy', 'o_force', 'o_virial', 'o_atom_energy', 'o_atom_virial', 'fitting_attr/dfparam', 'fitting_attr/daparam']
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/deepmd/entrypoints/freeze.py:354: convert_variables_to_constants (from tensorflow.python.framework.graph_util_impl) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.compat.v1.graph_util.convert_variables_to_constants`
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/deepmd/entrypoints/freeze.py:354: convert_variables_to_constants (from tensorflow.python.framework.graph_util_impl) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.compat.v1.graph_util.convert_variables_to_constants`
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/python/framework/convert_to_constants.py:925: extract_sub_graph (from tensorflow.python.framework.graph_util_impl) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.compat.v1.graph_util.extract_sub_graph`
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/python/framework/convert_to_constants.py:925: extract_sub_graph (from tensorflow.python.framework.graph_util_impl) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.compat.v1.graph_util.extract_sub_graph`
DEEPMD INFO    1211 ops in the final graph.

and it will output a model file named graph.pb in the current directory.

Test a model

We can check the quality of the trained model by running

! dp test -m graph.pb -s ../00.data/validation_data
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/tensorflow/python/compat/v2_compat.py:107: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
WARNING:root:To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS, and TF_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
WARNING:root:Environment variable KMP_BLOCKTIME is empty. Use the default value 0
WARNING:root:Environment variable KMP_AFFINITY is empty. Use the default value granularity=fine,verbose,compact,1,0
/opt/deepmd-kit-2.2.1/lib/python3.10/importlib/__init__.py:169: UserWarning: The NumPy module was reloaded (imported a second time). This can in some cases result in small but subtle issues and is discouraged.
  _bootstrap._exec(spec, module)
2023-04-20 23:40:30.102300: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-04-20 23:40:30.102346: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/deepmd/utils/batch_size.py:61: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
WARNING:tensorflow:From /opt/deepmd-kit-2.2.1/lib/python3.10/site-packages/deepmd/utils/batch_size.py:61: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
DEEPMD WARNING You can use the environment variable DP_INFER_BATCH_SIZE tocontrol the inference batch size (nframes * natoms). The default value is 1024.
DEEPMD INFO    # ---------------output of dp test--------------- 
DEEPMD INFO    # testing system : ../00.data/validation_data
OMP: Info #155: KMP_AFFINITY: Initial OS proc set respected: 0-7
OMP: Info #216: KMP_AFFINITY: decoding x2APIC ids.
OMP: Info #216: KMP_AFFINITY: cpuid leaf 11 not supported.
OMP: Info #216: KMP_AFFINITY: decoding legacy APIC ids.
OMP: Info #157: KMP_AFFINITY: 8 available OS procs
OMP: Info #158: KMP_AFFINITY: Uniform topology
OMP: Info #287: KMP_AFFINITY: topology layer "LL cache" is equivalent to "socket".
OMP: Info #192: KMP_AFFINITY: 1 socket x 4 cores/socket x 2 threads/core (4 total cores)
OMP: Info #218: KMP_AFFINITY: OS proc to physical thread map:
OMP: Info #172: KMP_AFFINITY: OS proc 0 maps to socket 0 core 0 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 1 maps to socket 0 core 0 thread 1 
OMP: Info #172: KMP_AFFINITY: OS proc 2 maps to socket 0 core 1 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 3 maps to socket 0 core 1 thread 1 
OMP: Info #172: KMP_AFFINITY: OS proc 4 maps to socket 0 core 2 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 5 maps to socket 0 core 2 thread 1 
OMP: Info #172: KMP_AFFINITY: OS proc 6 maps to socket 0 core 3 thread 0 
OMP: Info #172: KMP_AFFINITY: OS proc 7 maps to socket 0 core 3 thread 1 
OMP: Info #254: KMP_AFFINITY: pid 254 tid 265 thread 1 bound to OS proc set 2
OMP: Info #254: KMP_AFFINITY: pid 254 tid 267 thread 2 bound to OS proc set 4
OMP: Info #254: KMP_AFFINITY: pid 254 tid 268 thread 3 bound to OS proc set 6
OMP: Info #254: KMP_AFFINITY: pid 254 tid 269 thread 4 bound to OS proc set 1
OMP: Info #254: KMP_AFFINITY: pid 254 tid 270 thread 5 bound to OS proc set 3
OMP: Info #254: KMP_AFFINITY: pid 254 tid 271 thread 6 bound to OS proc set 5
OMP: Info #254: KMP_AFFINITY: pid 254 tid 272 thread 7 bound to OS proc set 7
OMP: Info #254: KMP_AFFINITY: pid 254 tid 273 thread 8 bound to OS proc set 0
DEEPMD INFO    # number of test data : 40 
DEEPMD INFO    Energy MAE         : 4.400922e-03 eV
DEEPMD INFO    Energy RMSE        : 5.258026e-03 eV
DEEPMD INFO    Energy MAE/Natoms  : 8.801843e-04 eV
DEEPMD INFO    Energy RMSE/Natoms : 1.051605e-03 eV
DEEPMD INFO    Force  MAE         : 4.277741e-02 eV/A
DEEPMD INFO    Force  RMSE        : 5.514855e-02 eV/A
DEEPMD INFO    Virial MAE         : 6.080471e-02 eV
DEEPMD INFO    Virial RMSE        : 7.882116e-02 eV
DEEPMD INFO    Virial MAE/Natoms  : 1.216094e-02 eV
DEEPMD INFO    Virial RMSE/Natoms : 1.576423e-02 eV
DEEPMD INFO    # ----------------------------------------------- 

The correlation between predicted data and original data can also be calculated.

import dpdata

training_systems = dpdata.LabeledSystem("../00.data/training_data", fmt="deepmd/npy")
predict = training_systems.predict("graph.pb")
2023-04-20 23:40:32.104716: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-20 23:40:34.426193: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-04-20 23:40:34.427318: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-04-20 23:40:34.427332: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
WARNING:tensorflow:From /opt/mamba/lib/python3.10/site-packages/tensorflow/python/compat/v2_compat.py:107: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
WARNING:root:To get the best performance, it is recommended to adjust the number of threads by setting the environment variables OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS, and TF_INTER_OP_PARALLELISM_THREADS. See https://deepmd.rtfd.io/parallelism/ for more information.
WARNING:tensorflow:From /opt/mamba/lib/python3.10/site-packages/deepmd/utils/batch_size.py:61: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
2023-04-20 23:40:36.161142: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-20 23:40:36.165078: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-04-20 23:40:36.165119: W tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:265] failed call to cuInit: UNKNOWN ERROR (303)
2023-04-20 23:40:36.165142: I tensorflow/compiler/xla/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (bohrium-14076-1013950): /proc/driver/nvidia/version does not exist
2023-04-20 23:40:36.181810: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:357] MLIR V1 optimization pass is not enabled
WARNING:tensorflow:From /opt/mamba/lib/python3.10/site-packages/deepmd/utils/batch_size.py:61: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.
WARNING:deepmd.utils.batch_size:You can use the environment variable DP_INFER_BATCH_SIZE tocontrol the inference batch size (nframes * natoms). The default value is 1024.
import matplotlib.pyplot as plt
import numpy as np

plt.scatter(training_systems["energies"], predict["energies"])

x_range = np.linspace(plt.xlim()[0], plt.xlim()[1])

plt.plot(x_range, x_range, "r--", linewidth=0.25)
plt.xlabel("Energy of DFT")
plt.ylabel("Energy predicted by deep potential")
plt.plot()
[]
_images/b0cb8e4722830142202409c13c4a02a2b23f5698297ac9ffc9c874a76e9e1c14.png

Run MD with LAMMPS

The model can drive molecular dynamics in LAMMPS.

! cd ../02.lmp && cp ../01.train/graph.pb ./ && ls
conf.lmp  graph.pb  in.lammps

Here conf.lmp gives the initial configuration of a gas phase methane MD simulation, and the file in.lammps is the LAMMPS input script. One may check in.lammps and finds that it is a rather standard LAMMPS input file for a MD simulation, with only two exception lines:

pair_style  deepmd graph.pb
pair_coeff  * *

where the pair style deepmd is invoked and the model file graph.pb is provided, which means the atomic interaction will be computed by the DP model that is stored in the file graph.pb.

In an environment with a compatible version of LAMMPS, the deep potential molecular dynamics can be performed via

lmp -i input.lammps
! cd ../02.lmp && cp ../01.train/graph.pb ./ && lmp -i in.lammps
Warning:
This LAMMPS executable is in a conda environment, but the environment has
not been activated. Libraries may fail to load. To activate this environment
please see https://conda.io/activation.
LAMMPS (23 Jun 2022 - Update 1)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (src/comm.cpp:98)
  using 1 OpenMP thread(s) per MPI task
Loaded 1 plugins from /opt/deepmd-kit-2.2.1/lib/deepmd_lmp
Reading data file ...
  triclinic box = (0 0 0) to (10.114259 10.263124 10.216793) with tilt (0.036749877 0.13833062 -0.056322169)
  1 by 1 by 1 MPI processor grid
  reading atoms ...
  5 atoms
  read_data CPU = 0.004 seconds
DeePMD-kit WARNING: Environmental variable OMP_NUM_THREADS is not set. Tune OMP_NUM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
Summary of lammps deepmd module ...
  >>> Info of deepmd-kit:
  installed to:       /opt/deepmd-kit-2.2.1
  source:             v2.2.1
  source branch:       HEAD
  source commit:      3ac8c4c7
  source commit at:   2023-03-16 12:33:24 +0800
  surpport model ver.:1.1 
  build variant:      cuda
  build with tf inc:  /opt/deepmd-kit-2.2.1/include;/opt/deepmd-kit-2.2.1/include
  build with tf lib:  /opt/deepmd-kit-2.2.1/lib/libtensorflow_cc.so
  set tf intra_op_parallelism_threads: 0
  set tf inter_op_parallelism_threads: 0
  >>> Info of lammps module:
  use deepmd-kit at:  /opt/deepmd-kit-2.2.1DeePMD-kit WARNING: Environmental variable OMP_NUM_THREADS is not set. Tune OMP_NUM_THREADS for the best performance. See https://deepmd.rtfd.io/parallelism/ for more information.
DeePMD-kit: Successfully load libcudart.so
2023-04-20 23:40:39.637091: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  SSE4.1 SSE4.2 AVX AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-04-20 23:40:39.643206: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcuda.so.1'; dlerror: libcuda.so.1: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64
2023-04-20 23:40:39.643234: W tensorflow/stream_executor/cuda/cuda_driver.cc:269] failed call to cuInit: UNKNOWN ERROR (303)
2023-04-20 23:40:39.643257: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (bohrium-14076-1013950): /proc/driver/nvidia/version does not exist
2023-04-20 23:40:39.645305: I tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.
2023-04-20 23:40:39.700559: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:354] MLIR V1 optimization pass is not enabled
  >>> Info of model(s):
  using   1 model(s): graph.pb 
  rcut in model:      6
  ntypes in model:    2

CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE

Your simulation uses code contributions which should be cited:
- USER-DEEPMD package:
The log file lists these citations in BibTeX format.

CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE-CITE

Generated 0 of 1 mixed pair_coeff terms from geometric mixing rule
Neighbor list info ...
  update every 10 steps, delay 0 steps, check no
  max neighbors/atom: 2000, page size: 100000
  master list distance cutoff = 7
  ghost atom cutoff = 7
  binsize = 3.5, bins = 3 3 3
  1 neighbor lists, perpetual/occasional/extra = 1 0 0
  (1) pair deepmd, perpetual
      attributes: full, newton on
      pair build: full/bin/atomonly
      stencil: full/bin/3d
      bin: standard
Setting up Verlet run ...
  Unit style    : metal
  Current step  : 0
  Time step     : 0.001
Per MPI rank memory allocation (min/avg/max) = 3.809 | 3.809 | 3.809 Mbytes
   Step         PotEng         KinEng         TotEng          Temp          Press          Volume    
         0  -219.77011      0.025852029   -219.74426      50            -810.10259      1060.5429    
       100  -219.76784      0.023303362   -219.74454      45.070664     -605.50113      1060.5429    
       200  -219.77863      0.032400378   -219.74622      62.665059     -53.929107      1060.5429    
       300  -219.77403      0.027115352   -219.74692      52.443373      642.24342      1060.5429    
       400  -219.77126      0.023079501   -219.74818      44.637697      861.365        1060.5429    
       500  -219.786        0.034433001   -219.75156      66.596322      256.47994      1060.5429    
       600  -219.78295      0.029039598   -219.75391      56.165027     -527.21506      1060.5429    
       700  -219.777        0.020227709   -219.75677      39.122091     -696.11258      1060.5429    
       800  -219.78394      0.022893217   -219.76105      44.277408     -77.227892      1060.5429    
       900  -219.77998      0.015506508   -219.76447      29.990893      663.84491      1060.5429    
      1000  -219.78328      0.015178419   -219.7681       29.356341      482.8228       1060.5429    
      1100  -219.7903       0.018763273   -219.77154      36.28975      -273.19351      1060.5429    
      1200  -219.78639      0.012922048   -219.77347      24.992328     -577.90459      1060.5429    
      1300  -219.79131      0.015848131   -219.77546      30.65162      -129.85247      1060.5429    
      1400  -219.78829      0.011969602   -219.77632      23.150218      545.58517      1060.5429    
      1500  -219.78735      0.010610097   -219.77674      20.520821      356.36805      1060.5429    
      1600  -219.78834      0.011547453   -219.77679      22.333746     -386.08305      1060.5429    
      1700  -219.78549      0.0095297364  -219.77596      18.431312     -522.29867      1060.5429    
      1800  -219.78787      0.01302987    -219.77484      25.200865      120.83085      1060.5429    
      1900  -219.7845       0.012341623   -219.77216      23.869737      643.66442      1060.5429    
      2000  -219.7857       0.017597987   -219.76811      34.035987      255.57892      1060.5429    
      2100  -219.7853       0.023253088   -219.76205      44.973429     -465.61243      1060.5429    
      2200  -219.77987      0.024650089   -219.75522      47.675348     -708.62743      1060.5429    
      2300  -219.78134      0.030690759   -219.75065      59.358512     -221.82549      1060.5429    
      2400  -219.77737      0.029446857   -219.74792      56.952699      635.02431      1060.5429    
      2500  -219.768        0.022122766   -219.74587      42.787292      826.89652      1060.5429    
      2600  -219.77246      0.02691536    -219.74554      52.056572      168.88834      1060.5429    
      2700  -219.77746      0.031963987   -219.7455       61.821042     -497.33107      1060.5429    
      2800  -219.7733       0.02814671    -219.74515      54.438107     -792.71093      1060.5429    
      2900  -219.77498      0.029131114   -219.74585      56.342026     -685.23164      1060.5429    
      3000  -219.78212      0.034326288   -219.74779      66.38993      -20.441816      1060.5429    
      3100  -219.77222      0.02366469    -219.74856      45.769502      708.42782      1060.5429    
      3200  -219.77252      0.022334468   -219.75019      43.196742      753.3138       1060.5429    
      3300  -219.78538      0.032458098   -219.75292      62.776693      36.172647      1060.5429    
      3400  -219.78047      0.026131264   -219.75434      50.540064     -661.25487      1060.5429    
      3500  -219.77926      0.022926821   -219.75633      44.342401     -623.5037       1060.5429    
      3600  -219.78369      0.024854728   -219.75884      48.071137      74.821258      1060.5429    
      3700  -219.7768       0.016731114   -219.76006      32.359382      709.57785      1060.5429    
      3800  -219.77927      0.017595175   -219.76168      34.03055       543.56168      1060.5429    
      3900  -219.7864       0.023003584   -219.7634       44.490867     -230.55364      1060.5429    
      4000  -219.78098      0.017102387   -219.76388      33.077456     -677.85161      1060.5429    
      4100  -219.78581      0.020907229   -219.7649       40.436341     -343.9622       1060.5429    
      4200  -219.78717      0.021708329   -219.76546      41.985736      491.95578      1060.5429    
      4300  -219.78328      0.018229256   -219.76505      35.256916      680.5279       1060.5429    
      4400  -219.79007      0.024931071   -219.76514      48.21879      -26.785455      1060.5429    
      4500  -219.78331      0.019795452   -219.76352      38.286071     -624.98799      1060.5429    
      4600  -219.78094      0.0196038     -219.76134      37.915399     -584.8297       1060.5429    
      4700  -219.78608      0.027516802   -219.75857      53.219812      74.218844      1060.5429    
      4800  -219.77656      0.023488867   -219.75307      45.429446      827.4406       1060.5429    
      4900  -219.78039      0.032832529   -219.74755      63.500874      634.64896      1060.5429    
      5000  -219.78237      0.040761952   -219.7416       78.837046     -224.81626      1060.5429    
Loop time of 12.1251 on 1 procs for 5000 steps with 5 atoms

Performance: 35.629 ns/day, 0.674 hours/ns, 412.369 timesteps/s
242.0% CPU use with 1 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:
Section |  min time  |  avg time  |  max time  |%varavg| %total
---------------------------------------------------------------
Pair    | 12.072     | 12.072     | 12.072     |   0.0 | 99.56
Neigh   | 0.0066181  | 0.0066181  | 0.0066181  |   0.0 |  0.05
Comm    | 0.012792   | 0.012792   | 0.012792   |   0.0 |  0.11
Output  | 0.0044695  | 0.0044695  | 0.0044695  |   0.0 |  0.04
Modify  | 0.022737   | 0.022737   | 0.022737   |   0.0 |  0.19
Other   |            | 0.006263   |            |       |  0.05

Nlocal:              5 ave           5 max           5 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost:            130 ave         130 max         130 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs:              0 ave           0 max           0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
FullNghs:           20 ave          20 max          20 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 20
Ave neighs/atom = 4
Neighbor list builds = 500
Dangerous builds not checked
Total wall time: 0:00:13

Open In Bohrium

Installation

Easy install

There are various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by yourself, jump to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (lmp) will be available to execute. You can try dp -h and lmp -h to see the help. mpirun is also available considering you may want to train models or run LAMMPS in parallel.

Note

Note: The off-line packages and conda packages require the GNU C Library 2.17 or above. The GPU version requires compatible NVIDIA driver to be installed in advance. It is possible to force conda to override detection when installation, but these requirements are still necessary during runtime.

Install off-line packages

Both CPU and GPU version offline packages are available in the Releases page.

Some packages are splited into two files due to size limit of GitHub. One may merge them into one after downloading:

cat deepmd-kit-2.1.1-cuda11.6_gpu-Linux-x86_64.sh.0 deepmd-kit-2.1.1-cuda11.6_gpu-Linux-x86_64.sh.1 > deepmd-kit-2.1.1-cuda11.6_gpu-Linux-x86_64.sh

One may enable the environment using

conda activate /path/to/deepmd-kit

Install with conda

DeePMD-kit is available with conda. Install Anaconda or Miniconda first.

Official channel

One may create an environment that contains the CPU version of DeePMD-kit and LAMMPS:

conda create -n deepmd deepmd-kit=*=*cpu libdeepmd=*=*cpu lammps -c https://conda.deepmodeling.com -c defaults

Or one may want to create a GPU environment containing CUDA Toolkit:

conda create -n deepmd deepmd-kit=*=*gpu libdeepmd=*=*gpu lammps cudatoolkit=11.6 horovod -c https://conda.deepmodeling.com -c defaults

One could change the CUDA Toolkit version from 10.2 or 11.6.

One may specify the DeePMD-kit version such as 2.1.1 using

conda create -n deepmd deepmd-kit=2.1.1=*cpu libdeepmd=2.1.1=*cpu lammps horovod -c https://conda.deepmodeling.com -c defaults

One may enable the environment using

conda activate deepmd
conda-forge channel

DeePMD-kit is also available on the conda-forge channel:

conda create -n deepmd deepmd-kit lammps -c conda-forge

The supported platform includes Linux x86-64, macOS x86-64, and macOS arm64. Read conda-forge FAQ to learn how to install CUDA-enabled packages.

Install with docker

A docker for installing the DeePMD-kit is available here.

To pull the CPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cpu

To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cuda11.6_gpu

To pull the ROCm version:

docker pull deepmodeling/dpmdkit-rocm:dp2.0.3-rocm4.5.2-tf2.6-lmp29Sep2021

Install Python interface with pip

If you have no existing TensorFlow installed, you can use pip to install the pre-built package of the Python interface with CUDA 11 supported:

pip install deepmd-kit[gpu,cu11]

cu11 is required only when CUDA Toolkit and cuDNN were not installed.

Or install the CPU version without CUDA supported:

pip install deepmd-kit[cpu]

The LAMMPS module and the i-Pi driver are only provided on Linux and macOS. To install LAMMPS and/or i-Pi, add lmp and/or ipi to extras:

pip install deepmd-kit[gpu,cu11,lmp,ipi]

MPICH is required for parallel running. (The macOS arm64 package doesn’t support MPI yet.)

It is suggested to install the package into an isolated environment. The supported platform includes Linux x86-64 and aarch64 with GNU C Library 2.28 or above, macOS x86-64 and arm64, and Windows x86-64. A specific version of TensorFlow which is compatible with DeePMD-kit will be also installed.

Warning

If your platform is not supported, or want to build against the installed TensorFlow, or want to enable ROCM support, please build from source.

Install from source code

Please follow our GitHub webpage to download the latest released version and development version.

Or get the DeePMD-kit source code by git clone

cd /some/workspace
git clone --recursive https://github.com/deepmodeling/deepmd-kit.git deepmd-kit

The --recursive option clones all submodules needed by DeePMD-kit.

For convenience, you may want to record the location of the source to a variable, saying deepmd_source_dir by

cd deepmd-kit
deepmd_source_dir=`pwd`

Install the python interface

Install Tensorflow’s python interface

First, check the python version on your machine

python --version

We follow the virtual environment approach to install TensorFlow’s Python interface. The full instruction can be found on the official TensorFlow website. TensorFlow 1.8 or later is supported. Now we assume that the Python interface will be installed to the virtual environment directory $tensorflow_venv

virtualenv -p python3 $tensorflow_venv
source $tensorflow_venv/bin/activate
pip install --upgrade pip
pip install --upgrade tensorflow

It is important that every time a new shell is started and one wants to use DeePMD-kit, the virtual environment should be activated by

source $tensorflow_venv/bin/activate

if one wants to skip out of the virtual environment, he/she can do

deactivate

If one has multiple python interpreters named something like python3.x, it can be specified by, for example

virtualenv -p python3.8 $tensorflow_venv

If one does not need the GPU support of DeePMD-kit and is concerned about package size, the CPU-only version of TensorFlow should be installed by

pip install --upgrade tensorflow-cpu

To verify the installation, run

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

One should remember to activate the virtual environment every time he/she uses DeePMD-kit.

One can also build the TensorFlow Python interface from source for custom hardware optimization, such as CUDA, ROCM, or OneDNN support.

Install the DeePMD-kit’s python interface

Check the compiler version on your machine

gcc --version

The compiler GCC 4.8 or later is supported in the DeePMD-kit. Note that TensorFlow may have specific requirements for the compiler version to support the C++ standard version and _GLIBCXX_USE_CXX11_ABI used by TensorFlow. It is recommended to use the same compiler version as TensorFlow, which can be printed by python -c "import tensorflow;print(tensorflow.version.COMPILER_VERSION)".

Execute

cd $deepmd_source_dir
pip install .

One may set the following environment variables before executing pip:

Environment variables

Allowed value

Default value

Usage

DP_VARIANT

cpu, cuda, rocm

cpu

Build CPU variant or GPU variant with CUDA or ROCM support.

CUDAToolkit_ROOT

Path

Detected automatically

The path to the CUDA toolkit directory. CUDA 7.0 or later is supported. NVCC is required.

ROCM_ROOT

Path

Detected automatically

The path to the ROCM toolkit directory.

TENSORFLOW_ROOT

Path

Detected automatically

The path to TensorFlow Python library. By default the installer only finds TensorFlow under user site-package directory (site.getusersitepackages()) or system site-package directory (sysconfig.get_path("purelib")) due to limitation of PEP-517. If not found, the latest TensorFlow (or the environment variable TENSORFLOW_VERSION if given) from PyPI will be built against.

DP_ENABLE_NATIVE_OPTIMIZATION

0, 1

0

Enable compilation optimization for the native machine’s CPU type. Do not enable it if generated code will run on different CPUs.

To test the installation, one should first jump out of the source directory

cd /some/other/workspace

then execute

dp -h

It will print the help information like

usage: dp [-h] {train,freeze,test} ...

DeePMD-kit: A deep learning package for many-body potential energy
representation and molecular dynamics

optional arguments:
  -h, --help           show this help message and exit

Valid subcommands:
  {train,freeze,test}
    train              train a model
    freeze             freeze the model
    test               test the model
Install horovod and mpi4py

Horovod and mpi4py are used for parallel training. For better performance on GPU, please follow the tuning steps in Horovod on GPU.

# With GPU, prefer NCCL as a communicator.
HOROVOD_WITHOUT_GLOO=1 HOROVOD_WITH_TENSORFLOW=1 HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_NCCL_HOME=/path/to/nccl pip install horovod mpi4py

If your work in a CPU environment, please prepare runtime as below:

# By default, MPI is used as communicator.
HOROVOD_WITHOUT_GLOO=1 HOROVOD_WITH_TENSORFLOW=1 pip install horovod mpi4py

To ensure Horovod has been built with proper framework support enabled, one can invoke the horovodrun --check-build command, e.g.,

$ horovodrun --check-build

Horovod v0.22.1:

Available Frameworks:
    [X] TensorFlow
    [X] PyTorch
    [ ] MXNet

Available Controllers:
    [X] MPI
    [X] Gloo

Available Tensor Operations:
    [X] NCCL
    [ ] DDL
    [ ] CCL
    [X] MPI
    [X] Gloo

Since version 2.0.1, Horovod and mpi4py with MPICH support are shipped with the installer.

If you don’t install Horovod, DeePMD-kit will fall back to serial mode.

Install the C++ interface

If one does not need to use DeePMD-kit with Lammps or I-Pi, then the python interface installed in the previous section does everything and he/she can safely skip this section.

Install Tensorflow’s C++ interface (optional)

Since TensorFlow 2.12, TensorFlow C++ library (libtensorflow_cc) is packaged inside the Python library. Thus, you can skip building TensorFlow C++ library manually. If that does not work for you, you can still build it manually.

The C++ interface of DeePMD-kit was tested with compiler GCC >= 4.8. It is noticed that the I-Pi support is only compiled with GCC >= 4.8. Note that TensorFlow may have specific requirements for the compiler version.

First, the C++ interface of Tensorflow should be installed. It is noted that the version of Tensorflow should be consistent with the python interface. You may follow the instruction or run the script $deepmd_source_dir/source/install/build_tf.py to install the corresponding C++ interface.

Install DeePMD-kit’s C++ interface

Now go to the source code directory of DeePMD-kit and make a building place.

cd $deepmd_source_dir/source
mkdir build
cd build

I assume you have activated the TensorFlow Python environment and want to install DeePMD-kit into path $deepmd_root, then execute CMake

cmake -DUSE_TF_PYTHON_LIBS=TRUE -DCMAKE_INSTALL_PREFIX=$deepmd_root ..

If you specify -DUSE_TF_PYTHON_LIBS=FALSE, you need to give the location where TensorFlow’s C++ interface is installed to -DTENSORFLOW_ROOT=${tensorflow_root}.

One may add the following arguments to cmake:

CMake Aurgements

Allowed value

Default value

Usage

-DTENSORFLOW_ROOT=<value>

Path

-

The Path to TensorFlow’s C++ interface.

-DCMAKE_INSTALL_PREFIX=<value>

Path

-

The Path where DeePMD-kit will be installed.

-DUSE_CUDA_TOOLKIT=<value>

TRUE or FALSE

FALSE

If TRUE, Build GPU support with CUDA toolkit.

-DCUDAToolkit_ROOT=<value>

Path

Detected automatically

The path to the CUDA toolkit directory. CUDA 7.0 or later is supported. NVCC is required.

-DUSE_ROCM_TOOLKIT=<value>

TRUE or FALSE

FALSE

If TRUE, Build GPU support with ROCM toolkit.

-DCMAKE_HIP_COMPILER_ROCM_ROOT=<value>

Path

Detected automatically

The path to the ROCM toolkit directory.

-DLAMMPS_SOURCE_ROOT=<value>

Path

-

Only neccessary for LAMMPS plugin mode. The path to the LAMMPS source code. LAMMPS 8Apr2021 or later is supported. If not assigned, the plugin mode will not be enabled.

-DUSE_TF_PYTHON_LIBS=<value>

TRUE or FALSE

FALSE

If TRUE, Build C++ interface with TensorFlow’s Python libraries(TensorFlow’s Python Interface is required). And there’s no need for building TensorFlow’s C++ interface.

-DENABLE_NATIVE_OPTIMIZATION

TRUE or FALSE

FALSE

Enable compilation optimization for the native machine’s CPU type. Do not enable it if generated code will run on different CPUs.

If the CMake has been executed successfully, then run the following make commands to build the package:

make -j4
make install

Option -j4 means using 4 processes in parallel. You may want to use a different number according to your hardware.

If everything works fine, you will have the executable and libraries installed in $deepmd_root/bin and $deepmd_root/lib

$ ls $deepmd_root/bin
$ ls $deepmd_root/lib

Install from pre-compiled C library

DeePMD-kit provides pre-compiled C library package (libdeepmd_c.tar.gz) in each release. It can be used to build the LAMMPS plugin and GROMACS patch, as well as many third-party software packages, without building TensorFlow and DeePMD-kit on one’s own.

The library is built in Linux (GLIBC 2.17) with CUDA 11.8. It’s noted that this package does not contain CUDA Toolkit and cuDNN, so one needs to download them from the NVIDIA website.

Use Pre-compiled C Library to build the LAMMPS plugin and GROMACS patch

When one installs DeePMD-kit’s C++ interface, one can use the CMake argument DEEPMD_C_ROOT to the path libdeepmd_c.

cd $deepmd_source_dir/source
mkdir build
cd build
cmake -DDEEPMD_C_ROOT=/path/to/libdeepmd_c -DCMAKE_INSTALL_PREFIX=$deepmd_root ..
make -j8
make install

Then one can follow the manual Install LAMMPS and/or Install GROMACS.

Install LAMMPS

There are two ways to install LAMMPS: the built-in mode and the plugin mode. The built-in mode builds LAMMPS along with the DeePMD-kit and DeePMD-kit will be loaded automatically when running LAMMPS. The plugin mode builds LAMMPS and a plugin separately, so one needs to use plugin load command to load the DeePMD-kit’s LAMMPS plugin library.

Install LAMMPS’s DeePMD-kit module (built-in mode)

Before following this section, DeePMD-kit C++ interface should have be installed.

DeePMD-kit provides a module for running MD simulations with LAMMPS. Now make the DeePMD-kit module for LAMMPS.

cd $deepmd_source_dir/source/build
make lammps

DeePMD-kit will generate a module called USER-DEEPMD in the build directory, which supports either double or single float precision interface. Now download the LAMMPS code, and uncompress it.

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_2Aug2023.tar.gz
tar xf stable_2Aug2023.tar.gz

The source code of LAMMPS is stored in the directory lammps-stable_2Aug2023. Now go into the LAMMPS code and copy the DeePMD-kit module like this

cd lammps-stable_2Aug2023/src/
cp -r $deepmd_source_dir/source/build/USER-DEEPMD .
make yes-kspace
make yes-extra-fix
make yes-user-deepmd

You can enable any other package you want. Now build LAMMPS

make mpi -j4

If everything works fine, you will end up with an executable lmp_mpi.

./lmp_mpi -h

The DeePMD-kit module can be removed from the LAMMPS source code by

make no-user-deepmd

Install LAMMPS (plugin mode)

Starting from 8Apr2021, LAMMPS also provides a plugin mode, allowing one to build LAMMPS and a plugin separately.

Now download the LAMMPS code (8Apr2021 or later), and uncompress it:

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_2Aug2023.tar.gz
tar xf stable_2Aug2023.tar.gz

The source code of LAMMPS is stored in the directory lammps-stable_2Aug2023. The directory of the source code should be specified as the CMAKE argument LAMMPS_SOURCE_ROOT during installation of the DeePMD-kit C++ interface. Now go into the LAMMPS directory and create a directory called build

mkdir -p lammps-stable_2Aug2023/build/
cd lammps-stable_2Aug2023/build/

Now build LAMMPS. Note that PLUGIN and KSPACE packages must be enabled, and BUILD_SHARED_LIBS must be set to yes. You can install any other package you want.

cmake -D PKG_PLUGIN=ON -D PKG_KSPACE=ON -D LAMMPS_INSTALL_RPATH=ON -D BUILD_SHARED_LIBS=yes -D CMAKE_INSTALL_PREFIX=${deepmd_root} -D CMAKE_INSTALL_LIBDIR=lib -D CMAKE_INSTALL_FULL_LIBDIR=${deepmd_root}/lib ../cmake
make -j4
make install

If everything works fine, you will end up with an executable ${deepmd_root}/bin/lmp.

${deepmd_root}/bin/lmp -h

Note

If ${tensorflow_root}, ${deepmd_root}, or the path to TensorFlow Python package if applicable is different from the prefix of LAMMPS, you need to append the library path to RUNPATH of liblammps.so. For example, use patchelf >= 0.13

patchelf --add-rpath "${tensorflow_root}/lib" liblammps.so

Install i-PI

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions of atoms, while the DeePMD-kit provides a client named dp_ipi that computes the interactions (including energy, forces and virials). The server and client communicate via the Unix domain socket or the Internet socket. Full documentation for i-PI can be found here. The source code and a complete installation guide for i-PI can be found here. To use i-PI with already existing drivers, install and update using Pip:

pip install -U i-PI

Test with Pytest:

pip install pytest
pytest --pyargs ipi.tests

Install GROMACS with DeepMD

Before following this section, DeePMD-kit C++ interface should have be installed.

Patch source code of GROMACS

Download the source code of a supported GROMACS version (2020.2) from https://manual.gromacs.org/2020.2/download.html. Run the following command:

export PATH=$PATH:$deepmd_kit_root/bin
dp_gmx_patch -d $gromacs_root -v $version -p

where deepmd_kit_root is the directory where the latest version of DeePMD-kit is installed, and gromacs_root refers to the source code directory of GROMACS. And version represents the version of GROMACS, where only 2020.2 is supported now. If attempting to patch another version of GROMACS you will still need to set version to 2020.2 as this is the only supported version, we cannot guarantee that patching other versions of GROMACS will work.

Compile GROMACS with deepmd-kit

The C++ interface of Deepmd-kit 2.x and TensorFlow 2.x are required. And be aware that only DeePMD-kit with high precision is supported now since we cannot ensure single precision is enough for a GROMACS simulation. Here is a sample compile script:

#!/bin/bash
export CC=/usr/bin/gcc
export CXX=/usr/bin/g++
export CMAKE_PREFIX_PATH="/path/to/fftw-3.3.9" # fftw libraries
mkdir build
cd build

cmake3 .. -DCMAKE_CXX_STANDARD=14 \ # not required, but c++14 seems to be more compatible with higher version of tensorflow
          -DGMX_MPI=ON \
          -DGMX_GPU=CUDA \ # Gromacs on ROCm has not been fully developed yet
          -DCUDAToolkit_ROOT=/path/to/cuda \
          -DCMAKE_INSTALL_PREFIX=/path/to/gromacs-2020.2-deepmd
make -j
make install

Building conda packages

One may want to keep both convenience and personalization of the DeePMD-kit. To achieve this goal, one can consider building conda packages. We provide building scripts in deepmd-kit-recipes organization. These building tools are driven by conda-build and conda-smithy.

For example, if one wants to turn on MPIIO package in LAMMPS, go to lammps-feedstock repository and modify recipe/build.sh. -D PKG_MPIIO=OFF should be changed to -D PKG_MPIIO=ON. Then go to the main directory and execute

./build-locally.py

This requires that Docker has been installed. After the building, the packages will be generated in build_artifacts/linux-64 and build_artifacts/noarch, and then one can install then executing

conda create -n deepmd lammps -c file:///path/to/build_artifacts -c https://conda.deepmodeling.com -c nvidia

One may also upload packages to one’s Anaconda channel, so they can be installed on other machines:

anaconda upload /path/to/build_artifacts/linux-64/*.tar.bz2 /path/to/build_artifacts/noarch/*.tar.bz2

Install Node.js interface

DeePMD-kit has an inference interface for Node.js, the most common programming language in the world, via a wrapper of the header-only C++ interface created by SWIG.

Install from npm

npm i deepmd-kit
# Or if you want to install globally
npm i -g deepmd-kit

Build from source

Before building DeePMD-kit, install Node.js, SWIG (v4.1.0 for Node.js v12-v18 support), and node-gyp globally.

When using CMake to build DeePMD-kit from source, set argument BUILD_NODEJS_IF=ON and NODEJS_INCLUDE_DIRS=/path/to/nodejs/include (the path to the include directory of Node.js):

cmake -D BUILD_NODEJS_IF=ON \
      -D NODEJS_INCLUDE_DIRS=/path/to/nodejs/include \
      .. # and other arguments
make
make install

After installing DeePMD-kit, two files, bind.gyp and deepmdJAVASCRIPT_wrap.cxx will be generated in $deepmd_source_dir/source/nodejs.

Go to this directory, and install the Node.js package globally:

cd $deepmd_source_dir/source/nodejs
npm i
npm link

The deepmd-kit package should be globally available in Node.js environments:

const deepmd = require("deepmd-kit");

Data

In this section, we will introduce how to convert the DFT-labeled data into the data format used by DeePMD-kit.

The DeePMD-kit organizes data in systems. Each system is composed of a number of frames. One may roughly view a frame as a snapshot of an MD trajectory, but it does not necessarily come from an MD simulation. A frame records the coordinates and types of atoms, cell vectors if the periodic boundary condition is assumed, energy, atomic forces and virials. It is noted that the frames in one system share the same number of atoms with the same type.

System

DeePMD-kit takes a system as the data structure. A snapshot of a system is called a frame. A system may contain multiple frames with the same atom types and numbers, i.e. the same formula (like H2O). To contains data with different formulas, one usually needs to divide data into multiple systems, which may sometimes result in sparse-frame systems. See a new system format to further combine different systems with the same atom numbers, when training with descriptor se_atten.

A system should contain system properties, input frame properties, and labeled frame properties. The system property contains the following property:

ID

Property

Raw file

Required/Optional

Shape

Description

type

Atom type indexes

type.raw

Required

Natoms

Integers that start with 0. If both the training parameter type_map is set and type_map.raw is provided, the system atom type should be mapped to type_map.raw in type.raw and will be mapped to the model atom type when training; otherwise, the system atom type will be always mapped to the model atom type (whether type_map is set or not)

type_map

Atom type names

type_map.raw

Optional

Ntypes

Atom names that map to atom type, which is unnecessary to be contained in the periodic table. Only works when the training parameter type_map is set

nopbc

Non-periodic system

nopbc

Optional

1

If True, this system is non-periodic; otherwise it’s periodic

The input frame properties contain the following property, the first axis of which is the number of frames:

ID

Property

Raw file

Unit

Required/Optional

Shape

Description

coord

Atomic coordinates

coord.raw

Å

Required

Nframes * Natoms * 3

box

Boxes

box.raw

Å

Required if periodic

Nframes * 3 * 3

in the order XX XY XZ YX YY YZ ZX ZY ZZ

fparam

Extra frame parameters

fparam.raw

Any

Optional

Nframes * Any

aparam

Extra atomic parameters

aparam.raw

Any

Optional

Nframes * aparam * Any

numb_copy

Each frame is copied by the numb_copy (int) times

prob.raw

1

Optional

Nframes

Integer; Default is 1 for all frames

The labeled frame properties are listed as follows, all of which will be used for training if and only if the loss function contains such property:

ID

Property

Raw file

Unit

Shape

Description

energy

Frame energies

energy.raw

eV

Nframes

force

Atomic forces

force.raw

eV/Å

Nframes * Natoms * 3

virial

Frame virial

virial.raw

eV

Nframes * 9

in the order XX XY XZ YX YY YZ ZX ZY ZZ

atom_ener

Atomic energies

atom_ener.raw

eV

Nframes * Natoms

atom_pref

Weights of atomic forces

atom_pref.raw

1

Nframes * Natoms

dipole

Frame dipole

dipole.raw

Any

Nframes * 3

atomic_dipole

Atomic dipole

atomic_dipole.raw

Any

Nframes * Natoms * 3

polarizability

Frame polarizability

polarizability.raw

Any

Nframes * 9

in the order XX XY XZ YX YY YZ ZX ZY ZZ

atomic_polarizability

Atomic polarizability

atomic_polarizability.raw

Any

Nframes * Natoms * 9

in the order XX XY XZ YX YY YZ ZX ZY ZZ

drdq

Partial derivative of atomic coordinates with respect to generalized coordinates

drdq.raw

1

Nframes * Natoms * 3 * Ngen_coords

In general, we always use the following convention of units:

Property

Unit

Time

ps

Length

Å

Energy

eV

Force

eV/Å

Virial

eV

Pressure

Bar

Formats of a system

Two binary formats, NumPy and HDF5, are supported for training. The raw format is not directly supported, but a tool is provided to convert data from the raw format to the NumPy format.

NumPy format

In a system with the Numpy format, the system properties are stored as text files ending with .raw, such as type.raw and type_map.raw, under the system directory. If one needs to train a non-periodic system, an empty nopbc file should be put under the system directory. Both input and labeled frame properties are saved as the NumPy binary data (NPY) files ending with .npy in each of the set.* directories. Take an example, a system may contain the following files:

type.raw
type_map.raw
nopbc
set.000/coord.npy
set.000/energy.npy
set.000/force.npy
set.001/coord.npy
set.001/energy.npy
set.001/force.npy

We assume that the atom types do not change in all frames. It is provided by type.raw, which has one line with the types of atoms written one by one. The atom types should be integers. For example the type.raw of a system that has 2 atoms with 0 and 1:

$ cat type.raw
0 1

Sometimes one needs to map the integer types to atom names. The mapping can be given by the file type_map.raw. For example

$ cat type_map.raw
O H

The type 0 is named by "O" and the type 1 is named by "H".

For training models with descriptor se_atten, a new system format is supported to put together the frame-sparse systems with the same atom number.

HDF5 format

A system with the HDF5 format has the same structure as the Numpy format, but in an HDF5 file, a system is organized as an HDF5 group. The file name of a Numpy file is the key in an HDF5 file, and the data is the value of the key. One needs to use # in a DP path to divide the path to the HDF5 file and the HDF5 path:

/path/to/data.hdf5#/H2O

Here, /path/to/data.hdf5 is the file path and /H2O is the HDF5 path. All HDF5 paths should start with /. There should be some data in the H2O group, such as /H2O/type.raw and /H2O/set.000/force.npy.

An HDF5 file with a large number of systems has better performance than multiple NumPy files in a large cluster.

Raw format and data conversion

A raw file is a plain text file with each information item written in one file and one frame written on one line. It’s not directly supported, but we provide a tool to convert them.

In the raw format, the property of one frame is provided per line, ending with .raw. Take an example, the default files that provide box, coordinate, force, energy and virial are box.raw, coord.raw, force.raw, energy.raw and virial.raw, respectively. Here is an example of force.raw:

$ cat force.raw
-0.724  2.039 -0.951  0.841 -0.464  0.363
 6.737  1.554 -5.587 -2.803  0.062  2.222
-1.968 -0.163  1.020 -0.225 -0.789  0.343

This force.raw contains 3 frames with each frame having the forces of 2 atoms, thus it has 3 lines and 6 columns. Each line provides all the 3 force components of 2 atoms in 1 frame. The first three numbers are the 3 force components of the first atom, while the second three numbers are the 3 force components of the second atom. Other files are organized similarly. The number of lines of all raw files should be identical.

One can use the script $deepmd_source_dir/data/raw/raw_to_set.sh to convert the prepared raw files to the NumPy format. For example, if we have a raw file that contains 6000 frames,

$ ls
box.raw  coord.raw  energy.raw  force.raw  type.raw  virial.raw
$ $deepmd_source_dir/data/raw/raw_to_set.sh 2000
nframe is 6000
nline per set is 2000
will make 3 sets
making set 0 ...
making set 1 ...
making set 2 ...
$ ls
box.raw  coord.raw  energy.raw  force.raw  set.000  set.001  set.002  type.raw  virial.raw

It generates three sets set.000, set.001 and set.002, with each set containing 2000 frames in the Numpy format.

Prepare data with dpdata

One can use a convenient tool dpdata to convert data directly from the output of first principle packages to the DeePMD-kit format.

To install one can execute

pip install dpdata

An example of converting data VASP data in OUTCAR format to DeePMD-kit data can be found at

$deepmd_source_dir/examples/data_conv

Switch to that directory, then one can convert data by using the following python script

import dpdata

dsys = dpdata.LabeledSystem("OUTCAR")
dsys.to("deepmd/npy", "deepmd_data", set_size=dsys.get_nframes())

get_nframes() method gets the number of frames in the OUTCAR, and the argument set_size enforces that the set size is equal to the number of frames in the system, viz. only one set is created in the system.

The data in DeePMD-kit format is stored in the folder deepmd_data.

A list of all supported data format and more nice features of dpdata can be found on the official website.

Model

Overall

A model has two parts, a descriptor that maps atomic configuration to a set of symmetry invariant features, and a fitting net that takes descriptor as input and predicts the atomic contribution to the target physical property. It’s defined in the model section of the input.json, for example,

    "model": {
        "type_map":	["O", "H"],
        "descriptor" :{
            "...": "..."
        },
        "fitting_net" : {
            "...": "..."
        }
    }

The two subsections, descriptor and fitting_net, define the descriptor and the fitting net, respectively.

The type_map is optional, which provides the element names (but not necessarily same as the actual name of the element) of the corresponding atom types. A water model, as in this example, has two kinds of atoms. The atom types are internally recorded as integers, e.g., 0 for oxygen and 1 for hydrogen here. A mapping from the atom type to their names is provided by type_map.

DeePMD-kit implements the following descriptors:

  1. se_e2_a: DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes the distance between atoms as input.

  2. se_e2_r: DeepPot-SE constructed from radial information of atomic configurations. The embedding takes the distance between atoms as input.

  3. se_e3: DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes angles between two neighboring atoms as input.

  4. se_a_mask: DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The input frames in one system can have a varied number of atoms. Input particles are padded with virtual particles of the same length.

  5. loc_frame: Defines a local frame at each atom and compute the descriptor as local coordinates under this frame.

  6. hybrid: Concate a list of descriptors to form a new descriptor.

The fitting of the following physical properties is supported

  1. ener: Fit the energy of the system. The force (derivative with atom positions) and the virial (derivative with the box tensor) can also be trained.

  2. dipole: The dipole moment.

  3. polar: The polarizability.

Descriptor "se_e2_a"

The notation of se_e2_a is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from all information (both angular and radial) of atomic configurations. The e2 stands for the embedding with two-atoms information. This descriptor was described in detail in the DeepPot-SE paper.

Note that it is sometimes called a “two-atom embedding descriptor” which means the input of the embedding net is atomic distances. The descriptor does encode multi-body information (both angular and radial information of neighboring atoms).

In this example, we will train a DeepPot-SE model for a water system. A complete training input script of this example can be found in the directory.

$deepmd_source_dir/examples/water/se_e2_a/input.json

With the training input script, data are also provided in the example directory. One may train the model with the DeePMD-kit from the directory.

The construction of the descriptor is given by section descriptor. An example of the descriptor is provided as follows

	"descriptor" :{
	    "type":		"se_e2_a",
	    "rcut_smth":	0.50,
	    "rcut":		6.00,
	    "sel":		[46, 92],
	    "neuron":		[25, 50, 100],
	    "type_one_side":	true,
	    "axis_neuron":	16,
	    "resnet_dt":	false,
	    "seed":		1
	}
  • The type of the descriptor is set to "se_e2_a".

  • rcut is the cut-off radius for neighbor searching, and the rcut_smth gives where the smoothing starts.

  • sel gives the maximum possible number of neighbors in the cut-off radius. It is a list, the length of which is the same as the number of atom types in the system, and sel[i] denotes the maximum possible number of neighbors with type i.

  • The neuron specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built between them.

  • If the option type_one_side is set to true, the embedding network parameters vary by types of neighbor atoms only, so there will be \(N_\text{types}\) sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be \(N_\text{types}^2\) sets of embedding network parameters.

  • The axis_neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the DeepPot-SE paper

  • If the option resnet_dt is set to true, then a timestep is used in the ResNet.

  • seed gives the random seed that is used to generate random numbers when initializing the model parameters.

Descriptor "se_e2_r"

The notation of se_e2_r is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from the radial information of atomic configurations. The e2 stands for the embedding with two-atom information.

A complete training input script of this example can be found in the directory

$deepmd_source_dir/examples/water/se_e2_r/input.json

The training input script is very similar to that of se_e2_a. The only difference lies in the descriptor section

	"descriptor": {
	    "type":		"se_e2_r",
	    "sel":		[46, 92],
	    "rcut_smth":	0.50,
	    "rcut":		6.00,
	    "neuron":		[5, 10, 20],
	    "resnet_dt":	false,
	    "seed":		1,
	    "_comment": " that's all"
	},

The type of the descriptor is set by the key type.

Descriptor "se_e3"

The notation of se_e3 is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from all information (both angular and radial) of atomic configurations. The embedding takes angles between two neighboring atoms as input (denoted by e3).

A complete training input script of this example can be found in the directory

$deepmd_source_dir/examples/water/se_e3/input.json

The training input script is very similar to that of se_e2_a. The only difference lies in the descriptor <model/descriptor> section

	"descriptor": {
	    "type":		"se_e3",
	    "sel":		[40, 80],
	    "rcut_smth":	0.50,
	    "rcut":		6.00,
	    "neuron":		[2, 4, 8],
	    "resnet_dt":	false,
	    "seed":		1,
	    "_comment":		" that's all"
	},

The type of the descriptor is set by the key type.

Descriptor "se_atten"

DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation

ALT

Here we propose DPA-1, a Deep Potential model with a novel attention mechanism, which is highly effective for representing the conformation and chemical spaces of atomic systems and learning the PES.

See this paper for more information. DPA-1 is implemented as a new descriptor "se_atten" for model training, which can be used after simply editing the input.json.

Installation

Follow the standard installation of Python interface in the DeePMD-kit. After that, you can smoothly use the DPA-1 model with the following instructions.

Introduction to new features of DPA-1

Next, we will list the detailed settings in input.json and the data format, especially for large systems with dozens of elements. An example of DPA-1 input can be found here.

Descriptor "se_atten"

The notation of se_atten is short for the smooth edition of Deep Potential with an attention mechanism. This descriptor was described in detail in the DPA-1 paper and the images above.

In this example, we will train a DPA-1 model for a water system. A complete training input script of this example can be found in the directory:

$deepmd_source_dir/examples/water/se_atten/input.json

With the training input script, data are also provided in the example directory. One may train the model with the DeePMD-kit from the directory.

An example of the DPA-1 descriptor is provided as follows

	"descriptor" :{
          "type":		"se_atten",
          "rcut_smth":	0.50,
          "rcut":		6.00,
          "sel":		120,
          "neuron":		[25, 50, 100],
          "axis_neuron":	16,
          "resnet_dt":	false,
          "attn":	128,
          "attn_layer":	2,
          "attn_mask":	false,
          "attn_dotr":	true,
          "seed":	1
	}
  • The type of the descriptor is set to "se_atten", which will use DPA-1 structures.

  • rcut is the cut-off radius for neighbor searching, and the rcut_smth gives where the smoothing starts.

  • sel gives the maximum possible number of neighbors in the cut-off radius. It is an int. Note that this number highly affects the efficiency of training, which we usually use less than 200. (We use 120 for training 56 elements in OC2M dataset)

  • The neuron specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built between them.

  • The axis_neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the DeepPot-SE paper

  • If the option resnet_dt is set to true, then a timestep is used in the ResNet.

  • seed gives the random seed that is used to generate random numbers when initializing the model parameters.

  • attn sets the length of a hidden vector during scale-dot attention computation.

  • attn_layer sets the number of layers in attention mechanism.

  • attn_mask determines whether to mask the diagonal in the attention weights and False is recommended.

  • attn_dotr determines whether to dot the relative coordinates on the attention weights as a gated scheme, True is recommended.

Fitting "ener"

DPA-1 only supports "ener" fitting type, and you can refer here for detailed information.

Type embedding

DPA-1 only supports models with type embeddings. And the default setting is as follows:

"type_embedding":{
            "neuron":           [8],
            "resnet_dt":        false,
            "seed":             1
        }

You can add these settings in input.json if you want to change the default ones, see here for detailed information.

Type map

For training large systems, especially those with dozens of elements, the type determines the element index of training data:

"type_map": [
   "Mg",
   "Al",
   "Cu"
  ]

which should include all the elements in the dataset you want to train on.

Data format

DPA-1 supports the standard data format, which is detailed in data-conv.md and system.md. Note that in this format, only those frames with the same fingerprint (i.e. the number of atoms of different elements) can be put together as a unified system. This may lead to sparse frame numbers in those rare systems.

An ideal way is to put systems with the same total number of atoms together, which is the way we trained DPA-1 on OC2M. This system format, which is called mixed_type, is proper to put frame-sparse systems together and is slightly different from the standard one. Take an example, a mixed_type may contain the following files:

type.raw
type_map.raw
set.*/box.npy
set.*/coord.npy
set.*/energy.npy
set.*/force.npy
set.*/real_atom_types.npy

This system contains Nframes frames with the same atom number Natoms, the total number of element types contained in all frames is Ntypes. Most files are the same as those in standard formats, here we only list the distinct ones:

ID

Property

File

Required/Optional

Shape

Description

/

Atom type indexes (place holder)

type.raw

Required

Natoms

All zeros to fake the type input

type_map

Atom type names

type_map.raw

Required

Ntypes

Atom names that map to atom type contained in all the frames, which is unnecessart to be contained in the periodic table

type

Atom type indexes of each frame

real_atom_types.npy

Required

Nframes * Natoms

Integers that describe atom types in each frame, corresponding to indexes in type_map. -1 means virtual atoms.

With these edited files, one can put together frames with the same Natoms, instead of the same formula (like H2O). Note that this mixed_type format only supports se_atten descriptor.

To put frames with different Natoms into the same system, one can pad systems by adding virtual atoms whose type is -1. Virtual atoms do not contribute to any fitting property, so the atomic property of virtual atoms (e.g. forces) should be given zero.

The API to generate or transfer to mixed_type format is available on dpdata for a more convenient experience.

Training example

Here we upload the AlMgCu example shown in the paper, you can download it here: Baidu disk; Google disk.

Descriptor "hybrid"

This descriptor hybridizes multiple descriptors to form a new descriptor. For example, we have a list of descriptors denoted by \(\mathcal D_1\), \(\mathcal D_2\), …, \(\mathcal D_N\), the hybrid descriptor this the concatenation of the list, i.e. \(\mathcal D = (\mathcal D_1, \mathcal D_2, \cdots, \mathcal D_N)\).

To use the descriptor in DeePMD-kit, one firstly set the type to hybrid, then provide the definitions of the descriptors by the items in the list,

        "descriptor" :{
            "type": "hybrid",
            "list" : [
                {
		    "type" : "se_e2_a",
		    ...
                },
                {
		    "type" : "se_e2_r",
		    ...
                }
            ]
        },

A complete training input script of this example can be found in the directory

$deepmd_source_dir/examples/water/hybrid/input.json

Determine sel

All descriptors require to set sel, which means the expected maximum number of type-i neighbors of an atom. DeePMD-kit will allocate memory according to sel.

sel should not be too large or too small. If sel is too large, the computing will become much slower and cost more memory. If sel is not enough, the energy will be not conserved, making the accuracy of the model worse.

To determine a proper sel, one can calculate the neighbor stat of the training data before training:

dp neighbor-stat -s data -r 6.0 -t O H

where data is the directory of data, 6.0 is the cutoff radius, and O and H is the type map. The program will give the max_nbor_size. For example, max_nbor_size of the water example is [38, 72], meaning an atom may have 38 O neighbors and 72 H neighbors in the training data.

The sel should be set to a higher value than that of the training data, considering there may be some extreme geometries during MD simulations. As a result, we set sel to [46, 92] in the water example.

Fit energy

In this section, we will take $deepmd_source_dir/examples/water/se_e2_a/input.json as an example of the input file.

The fitting network

The construction of the fitting net is given by section fitting_net

	"fitting_net" : {
	    "neuron":		[240, 240, 240],
	    "resnet_dt":	true,
	    "seed":		1
	},
  • neuron specifies the size of the fitting net. If two neighboring layers are of the same size, then a ResNet architecture is built between them.

  • If the option resnet_dt is set to true, then a timestep is used in the ResNet.

  • seed gives the random seed that is used to generate random numbers when initializing the model parameters.

Loss

The loss function \(L\) for training energy is given by

\[L = p_e L_e + p_f L_f + p_v L_v\]

where \(L_e\), \(L_f\), and \(L_v\) denote the loss in energy, forces and virials, respectively. \(p_e\), \(p_f\), and \(p_v\) give the prefactors of the energy, force and virial losses. The prefectors may not be a constant, rather it changes linearly with the learning rate. Taking the force prefactor for example, at training step \(t\), it is given by

\[p_f(t) = p_f^0 \frac{ \alpha(t) }{ \alpha(0) } + p_f^\infty ( 1 - \frac{ \alpha(t) }{ \alpha(0) })\]

where \(\alpha(t)\) denotes the learning rate at step \(t\). \(p_f^0\) and \(p_f^\infty\) specifies the \(p_f\) at the start of the training and the limit of \(t \to \infty\) (set by start_pref_f and limit_pref_f, respectively), i.e.

pref_f(t) = start_pref_f * ( lr(t) / start_lr ) + limit_pref_f * ( 1 - lr(t) / start_lr )

The loss section in the input.json is

    "loss" : {
	"start_pref_e":	0.02,
	"limit_pref_e":	1,
	"start_pref_f":	1000,
	"limit_pref_f":	1,
	"start_pref_v":	0,
	"limit_pref_v":	0
    }

The options start_pref_e, limit_pref_e, start_pref_f, limit_pref_f, start_pref_v and limit_pref_v determine the start and limit prefactors of energy, force and virial, respectively.

If one does not want to train with virial, then he/she may set the virial prefactors start_pref_v and limit_pref_v to 0.

Fit spin energy

In this section, we will take $deepmd_source_dir/examples/NiO/se_e2_a/input.json as an example of the input file.

Spin

The construction of the fitting net is give by section spin

    "spin" : {
        "use_spin":         [true, false],
        "virtual_len":      [0.4],
        "spin_norm":        [1.2737],
    },
  • use_spin determines whether to turn on the magnetism of the atoms.The index of this option matches option type_map <model/type_map>.

  • virtual_len specifies the distance between virtual atom and the belonging real atom.

  • spin_norm gives the magnitude of the magnetic moment for each magnatic atom.

Spin Loss

The spin loss function \(L\) for training energy is given by

\[L = p_e L_e + p_{fr} L_{fr} + p_{fm} L_{fm} + p_v L_v\]

where \(L_e\), \(L_{fr}\), \(L_{fm}\) and \(L_v\) denote the loss in energy, atomic force, magnatic force and virial, respectively. \(p_e\), \(p_{fr}\), \(p_{fm}\) and \(p_v\) give the prefactors of the energy, atomic force, magnatic force and virial losses.

The prefectors may not be a constant, rather it changes linearly with the learning rate. Taking the atomic force prefactor for example, at training step \(t\), it is given by

\[p_{fr}(t) = p_{fr}^0 \frac{ \alpha(t) }{ \alpha(0) } + p_{fr}^\infty ( 1 - \frac{ \alpha(t) }{ \alpha(0) })\]

where \(\alpha(t)\) denotes the learning rate at step \(t\). \(p_{fr}^0\) and \(p_{fr}^\infty\) specifies the \(p_f\) at the start of the training and at the limit of \(t \to \infty\) (set by start_pref_fr and limit_pref_f, respectively), i.e.

pref_fr(t) = start_pref_fr * ( lr(t) / start_lr ) + limit_pref_fr * ( 1 - lr(t) / start_lr )

The loss section in the input.json is

    "loss" :{
	"type":		        "ener_spin",
	"start_pref_e":	    0.02,
	"limit_pref_e":	    1,
	"start_pref_fr":	1000,
    "limit_pref_fr":	1.0,
	"start_pref_fm":	10000,
	"limit_pref_fm":	10.0,
	"start_pref_v":	    0,
	"limit_pref_v":	    0,
    },

The options start_pref_e, limit_pref_e, start_pref_fr, limit_pref_fm, start_pref_v and limit_pref_v determine the start and limit prefactors of energy, atomic force, magnatic force and virial, respectively.

If one does not want to train with virial, then he/she may set the virial prefactors start_pref_v and limit_pref_v to 0.

Fit tensor like Dipole and Polarizability

Unlike energy, which is a scalar, one may want to fit some high dimensional physical quantity, like dipole (vector) and polarizability (matrix, shorted as polar). Deep Potential has provided different APIs to do this. In this example, we will show you how to train a model to fit a water system. A complete training input script of the examples can be found in

$deepmd_source_dir/examples/water_tensor/dipole/dipole_input.json
$deepmd_source_dir/examples/water_tensor/polar/polar_input.json

The training and validation data are also provided our examples. But note that the data provided along with the examples are of limited amount, and should not be used to train a production model.

Similar to the input.json used in ener mode, training JSON is also divided into model, learning_rate, loss and training. Most keywords remain the same as ener mode, and their meaning can be found here. To fit a tensor, one needs to modify model/fitting_net and loss.

The fitting Network

The fitting_net section tells DP which fitting net to use.

The JSON of dipole type should be provided like

	"fitting_net" : {
		"type": "dipole",
		"sel_type": [0],
		"neuron": [100,100,100],
		"resnet_dt": true,
		"seed": 1,
	},

The JSON of polar type should be provided like

	"fitting_net" : {
	   	"type": "polar",
		"sel_type": [0],
		"neuron": [100,100,100],
		"resnet_dt": true,
		"seed": 1,
	},
  • type specifies which type of fitting net should be used. It should be either dipole or polar. Note that global_polar mode in version 1.x is already deprecated and is merged into polar. To specify whether a system is global or atomic, please see here.

  • sel_type is a list specifying which type of atoms have the quantity you want to fit. For example, in the water system, sel_type is [0] since 0 represents atom O. If left unset, all types of atoms will be fitted.

  • The rest arguments have the same meaning as they do in ener mode.

Loss

DP supports a combinational training of the global system (only a global tensor label, i.e. dipole or polar, is provided in a frame) and atomic system (labels for each atom included in sel_type are provided). In a global system, each frame has just one tensor label. For example, when fitting polar, each frame will just provide a 1 x 9 vector which gives the elements of the polarizability tensor of that frame in order XX, XY, XZ, YX, YY, YZ, XZ, ZY, ZZ. By contrast, in an atomic system, each atom in sel_type has a tensor label. For example, when fitting a dipole, each frame will provide a #sel_atom x 3 matrices, where #sel_atom is the number of atoms whose type are in sel_type.

The loss section tells DP the weight of these two kinds of loss, i.e.

loss = pref * global_loss + pref_atomic * atomic_loss

The loss section should be provided like

	"loss" : {
		"type":		"tensor",
		"pref":		1.0,
		"pref_atomic":	1.0
	},
  • type should be written as tensor as a distinction from ener mode.

  • pref and pref_atomic respectively specify the weight of global loss and atomic loss. It can not be left unset. If set to 0, the corresponding label will NOT be included in the training process.

Training Data Preparation

In tensor mode, the identification of the label’s type (global or atomic) is derived from the file name. The global label should be named dipole.npy/raw or polarizability.npy/raw, while the atomic label should be named atomic_dipole.npy/raw or atomic_polarizability.npy/raw. If wrongly named, DP will report an error

ValueError: cannot reshape array of size xxx into shape (xx,xx). This error may occur when your label mismatch it's name, i.e. you might store global tensor in `atomic_tensor.npy` or atomic tensor in `tensor.npy`.

In this case, please check the file name of the label.

Train the Model

The training command is the same as ener mode, i.e.

dp train input.json

The detailed loss can be found in lcurve.out:

#  step    rmse_val   rmse_trn  rmse_lc_val rmse_lc_trn rmse_gl_val rmse_gl_trn  lr
     0     8.34e+00   8.26e+00   8.34e+00   8.26e+00    0.00e+00    0.00e+00   1.0e-02
   100     3.51e-02   8.55e-02   0.00e+00   8.55e-02    4.38e-03    0.00e+00   5.0e-03
   200     4.77e-02   5.61e-02   0.00e+00   5.61e-02    5.96e-03    0.00e+00   2.5e-03
   300     5.68e-02   1.47e-02   0.00e+00   0.00e+00    7.10e-03    1.84e-03   1.3e-03
   400     3.73e-02   3.48e-02   1.99e-02   0.00e+00    2.18e-03    4.35e-03   6.3e-04
   500     2.77e-02   5.82e-02   1.08e-02   5.82e-02    2.11e-03    0.00e+00   3.2e-04
   600     2.81e-02   5.43e-02   2.01e-02   0.00e+00    1.01e-03    6.79e-03   1.6e-04
   700     2.97e-02   3.28e-02   2.03e-02   0.00e+00    1.17e-03    4.10e-03   7.9e-05
   800     2.25e-02   6.19e-02   9.05e-03   0.00e+00    1.68e-03    7.74e-03   4.0e-05
   900     3.18e-02   5.54e-02   9.93e-03   5.54e-02    2.74e-03    0.00e+00   2.0e-05
  1000     2.63e-02   5.02e-02   1.02e-02   5.02e-02    2.01e-03    0.00e+00   1.0e-05
  1100     3.27e-02   5.89e-02   2.13e-02   5.89e-02    1.43e-03    0.00e+00   5.0e-06
  1200     2.85e-02   2.42e-02   2.85e-02   0.00e+00    0.00e+00    3.02e-03   2.5e-06
  1300     3.47e-02   5.71e-02   1.07e-02   5.71e-02    3.00e-03    0.00e+00   1.3e-06
  1400     3.13e-02   5.76e-02   3.13e-02   5.76e-02    0.00e+00    0.00e+00   6.3e-07
  1500     3.34e-02   1.11e-02   2.09e-02   0.00e+00    1.57e-03    1.39e-03   3.2e-07
  1600     3.11e-02   5.64e-02   3.11e-02   5.64e-02    0.00e+00    0.00e+00   1.6e-07
  1700     2.97e-02   5.05e-02   2.97e-02   5.05e-02    0.00e+00    0.00e+00   7.9e-08
  1800     2.64e-02   7.70e-02   1.09e-02   0.00e+00    1.94e-03    9.62e-03   4.0e-08
  1900     3.28e-02   2.56e-02   3.28e-02   0.00e+00    0.00e+00    3.20e-03   2.0e-08
  2000     2.59e-02   5.71e-02   1.03e-02   5.71e-02    1.94e-03    0.00e+00   1.0e-08

One may notice that in each step, some of the local loss and global loss will be 0.0. This is because our training data and validation data consist of the global system and atomic system, i.e.

	--training_data
		>atomic_system
		>global_system
	--validation_data
		>atomic_system
		>global_system

During training, at each step when the lcurve.out is printed, the system used for evaluating the training (validation) error may be either with only global or only atomic labels, thus the corresponding atomic or global errors are missing and are printed as zeros.

Fit electronic density of states (DOS)

Here we present an API to DeepDOS model, which can be used to fit electronic density of state (DOS) (which is a vector).

See the PRB paper for details.

In this example, we will show you how to train a model to fit a silicon system. A complete training input script of the examples can be found in

$deepmd_source_dir/examples/dos/input.json

The training and validation data are also provided our examples. But note that the data provided along with the examples are of limited amount, and should not be used to train a production model.

Similar to the input.json used in ener mode, training JSON is also divided into model, learning_rate, loss and training. Most keywords remain the same as ener mode, and their meaning can be found here. To fit the dos, one needs to modify model/fitting_net and loss.

The fitting Network

The fitting_net section tells DP which fitting net to use.

The JSON of dos type should be provided like

	"fitting_net" : {
		"type": "dos",
		"numb_dos": 250,
		"sel_type": [0],
		"neuron": [120,120,120],
		"resnet_dt": true,
		"fparam": 0,
		"seed": 1,
	},
  • type specifies which type of fitting net should be used. It should be dos.

  • numb_dos specifies the length of output vector (density of states), which the same as the NEDOS set in VASP software, this argument defines the output length of the neural network. We note that the length of dos provided in training set should be the same.

  • The rest arguments have the same meaning as they do in ener mode.

Loss

DeepDOS supports trainings of the global system (a global dos label is provided in a frame) or atomic system (atomic labels atom_dos is provided for each atom in a frame). In a global system, each frame has just one dos label. For example, when fitting dos, each frame will just provide a 1 x numb_dos vector which gives the total electronic density of states. By contrast, in an atomic system, each atom in has a atom_dos label. For example, when fitting the site-projected electronic density of states, each frame will provide a natom x numb_dos matrices,

The loss section tells DP the weight of these two kinds of loss, i.e.

loss = pref * global_loss + pref_atomic * atomic_loss

The loss section should be provided like

	"loss" : {
		"type": "dos",
		"start_pref_dos": 0.0,
		"limit_pref_dos": 0.0,
		"start_pref_cdf": 0.0,
		"limit_pref_cdf": 0.0,
		"start_pref_ados": 1.0,
		"limit_pref_ados": 1.0,
		"start_pref_acdf": 0.0,
		"limit_pref_acdf": 0.0
	},
  • type should be written as dos as a distinction from ener mode.

  • pref_dos and pref_ados, respectively specify the weight of global and atomic loss. If set to 0, the corresponding label will not be included in the training process.

  • We also provides a combination training of vector and its cumulative distribution function cdf, which can be defined as

\[D(\epsilon) = \int_{e_{min}}^{\epsilon} g(\epsilon')d\epsilon'\]

Training Data Preparation

The global label should be named dos.npy/raw, while the atomic label should be named atomic_dos.npy/raw. If wrongly named, DP will report an error.

To prepare the data, we recommend shifting the DOS data by the Fermi level.

Train the Model

The training command is the same as ener mode, i.e.

dp train input.json

The detailed loss can be found in lcurve.out:

#  step      rmse_trn   rmse_ados_trn   rmse_ados_lr
      0      1.11e+00      1.11e+00    1.0e-03
    100      5.00e-02      5.00e-02    1.0e-03
    200      4.70e-02      4.70e-02    1.0e-03
    300      6.45e-02      6.45e-02    1.0e-03
    400      3.39e-02      3.39e-02    1.0e-03
    500      4.60e-02      4.60e-02    1.0e-03
    600      3.98e-02      3.98e-02    1.0e-03
    700      9.50e-02      9.50e-02    1.0e-03
    800      5.49e-02      5.49e-02    1.0e-03
    900      5.57e-02      5.57e-02    1.0e-03
   1000      3.73e-02      3.73e-02    1.0e-03
   1100      4.33e-02      4.33e-02    1.0e-03
   1200      3.27e-02      3.27e-02    1.0e-03
   1300      3.68e-02      3.68e-02    1.0e-03
   1400      3.09e-02      3.09e-02    1.0e-03
   1500      3.42e-02      3.42e-02    1.0e-03
   1600      5.62e-02      5.62e-02    1.0e-03
   1700      6.12e-02      6.12e-02    1.0e-03
   1800      4.10e-02      4.10e-02    1.0e-03
   1900      5.30e-02      5.30e-02    1.0e-03
   2000      3.85e-02      3.85e-02    1.0e-03

Test the Model

In this earlier version, we can use dp test to infer the electronic density of state for given frames.

$DP freeze -o frozen_model.pb

$DP test -m frozen_model.pb -s ../data/111/$k -d ${output_prefix} -a -n 100

if dp test -d ${output_prefix} -a is specified, the predicted DOS and atomic DOS for each frame is output in the working directory

${output_prefix}.ados.out.0   ${output_prefix}.ados.out.1  ${output_prefix}.ados.out.2  ${output_prefix}.ados.out.3
${output_prefix}.dos.out.0   ${output_prefix}.dos.out.1  ${output_prefix}.dos.out.2  ${output_prefix}.dos.out.3

for *.dos.out.*, it contains matrix with shape of (2, numb_dos), for *.ados.out.*, it contains matrix with shape of (2, natom x numb_dos),

# frame - 0: data_dos pred_dos
0.000000000000000000e+00 1.963193264917645342e-03
0.000000000000000000e+00 1.178440836781313727e-03
0.000000000000000000e+00 1.441258071790407769e-04
0.000000000000000000e+00 1.787297933314058174e-03
0.000000000000000000e+00 1.901603280243024940e-03
0.000000000000000000e+00 2.279848925571981155e-03
0.000000000000000000e+00 2.149355854688561607e-03
0.000000000000000000e+00 1.829848459515726056e-03
0.000000000000000000e+00 1.905156512419792225e-03

Type embedding approach

We generate specific a type embedding vector for each atom type so that we can share one descriptor embedding net and one fitting net in total, which decline training complexity largely.

The training input script is similar to that of se_e2_a, but different by adding the type_embedding section.

Type embedding net

The model defines how the model is constructed, adding a section of type embedding net:

    "model": {
	"type_map":	["O", "H"],
	"type_embedding":{
			...
	},
	"descriptor" :{
            ...
	},
	"fitting_net" : {
            ...
	}
    }

The model will automatically apply the type embedding approach and generate type embedding vectors. If the type embedding vector is detected, the descriptor and fitting net would take it as a part of the input.

The construction of type embedding net is given by type_embedding. An example of type_embedding is provided as follows

	"type_embedding":{
	    "neuron":		[2, 4, 8],
	    "resnet_dt":	false,
	    "seed":		1
	}
  • The neuron specifies the size of the type embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. It takes a one-hot vector as input and output dimension equals to the last dimension of the neuron list. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built between them.

  • If the option resnet_dt is set to true, then a timestep is used in the ResNet.

  • seed gives the random seed that is used to generate random numbers when initializing the model parameters.

A complete training input script of this example can be found in the directory.

$deepmd_source_dir/examples/water/se_e2_a_tebd/input.json

See here for further explanation of type embedding.

Note

You can’t apply the compression method while using the atom type embedding.

Descriptor "se_a_mask"

Descriptor se_a_mask is a concise implementation of the descriptor se_e2_a, but functions slightly differently. se_a_mask is specially designed for DP/MM simulations where the number of atoms in DP regions is dynamically changed in simulations.

Therefore, the descriptor se_a_mask is not supported for training with PBC systems for simplicity. Besides, to make the output shape of the descriptor matrix consistent, the input coordinates are padded with virtual particle coordinates to the maximum number of atoms (specified with sel in the descriptor setting) in the system. The real/virtual sign of the atoms is specified with the aparam.npy ( [ nframes * natoms ] ) file in the input systems set directory. The aparam.npy can also be seen as the mask of the atoms in the system, which is also the origin of the name se_a_mask.

In this example, we will train a DP Mask model for zinc protein interactions. The input systems are the collection of zinc and its coordinates residues. A sample input system that contains 2 frames is included in the directory.

$deepmd_source_dir/examples/zinc_protein/data_dp_mask

A complete training input script of this example can be found in the directory.

$deepmd_source_dir/examples/zinc_protein/zinc_se_a_mask.json

The construction of the descriptor is given by section descriptor. An example of the descriptor is provided as follows

	"descriptor" :{
	    "type":	"se_a_mask",
	    "sel":		[36, 16, 24, 64, 6, 1],
	    "neuron":		[25, 50, 100],
		"axis_neuron": 16,
	    "type_one_side":	false,
	    "resnet_dt":	false,
	    "seed":		1
	}
  • The type of the descriptor is set to "se_a_mask".

  • sel gives the maximum number of atoms in input coordinates. It is a list, the length of which is the same as the number of atom types in the system, and sel[i] denotes the maximum number of atoms with type i.

  • The neuron specifies the size of the embedding net. From left to right the members denote the sizes of each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built between them.

  • The axis_neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as explained in the DeepPot-SE paper

  • If the option type_one_side is set to true, the embedding network parameters vary by types of neighbor atoms only, so there will be \(N_\text{types}\) sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be \(N_\text{types}^2\) sets of embedding network parameters.

  • If the option resnet_dt is set to true, then a timestep is used in the ResNet.

  • seed gives the random seed that is used to generate random numbers when initializing the model parameters.

To make the aparam.npy used for descriptor se_a_mask, two variables in fitting_net section are needed.

	"fitting_net" :{
	    "neuron": [240, 240, 240],
      	"resnet_dt": true,
      	"seed": 1,
      	"numb_aparam": 1,
      	"use_aparam_as_mask": true
	}
  • neuron, resnet_dt and seed are the same as the fitting_net section for fitting energy.

  • numb_aparam gives the dimesion of the aparam.npy file. In this example, it is set to 1 and stores the real/virtual sign of the atoms. For real/virtual atoms, the corresponding sign in aparam.npy is set to 1/0.

  • use_aparam_as_mask is set to true to use the aparam.npy as the mask of the atoms in the descriptor se_a_mask.

Finally, to make a reasonable fitting task with se_a_mask descriptor for DP/MM simulations, the loss function with se_a_mask is designed to include the atomic forces difference in specific atoms of the input particles only. More details about the selection of the specific atoms can be found in paper [DP/MM](left to be filled). Thus, atom_pref.npy ( [ nframes * natoms ] ) is required as the indicator of the specific atoms in the input particles. And the loss section in the training input script should be set as follows.

"loss": {
    "type": "ener",
    "start_pref_e": 0.0,
    "limit_pref_e": 0.0,
    "start_pref_f": 0.0,
    "limit_pref_f": 0.0,
    "start_pref_pf": 1.0,
    "limit_pref_pf": 1.0,
    "_comment": " that's all"
  }

Deep potential long-range (DPLR)

Notice: The interfaces of DPLR are not stable and subject to change

The method of DPLR is described in this paper. One is recommended to read the paper before using the DPLR.

In the following, we take the DPLR model for example to introduce the training and LAMMPS simulation with the DPLR model. The DPLR model is trained in two steps.

Train a deep Wannier model for Wannier centroids

We use the deep Wannier model (DW) to represent the relative position of the Wannier centroid (WC) with the atom with which it is associated. One may consult the introduction of the dipole model for a detailed introduction. An example input wc.json and a small dataset data for tutorial purposes can be found in

$deepmd_source_dir/examples/water/dplr/train/

It is noted that the tutorial dataset is not enough for training a productive model. Two settings make the training input script different from an energy training input:

	"fitting_net": {
	    "type":		"dipole",
	    "dipole_type":	[0],
	    "neuron":		[128, 128, 128],
	    "seed":		1
	},

The type of fitting is set to dipole. The dipole is associated with type 0 atoms (oxygens), by the setting "dipole_type": [0]. What we trained is the displacement of the WC from the corresponding oxygen atom. It shares the same training input as the atomic dipole because both are 3-dimensional vectors defined on atoms. The loss section is provided as follows

    "loss": {
	"type":		"tensor",
	"pref":		0.0,
	"pref_atomic":	1.0
    },

so that the atomic dipole is trained as labels. Note that the NumPy compressed file atomic_dipole.npy should be provided in each dataset.

The training and freezing can be started from the example directory by

dp train dw.json && dp freeze -o dw.pb

Train the DPLR model

The training of the DPLR model is very similar to the standard short-range DP models. An example input script can be found in the example directory. The following section is introduced to compute the long-range energy contribution of the DPLR model, and modify the short-range DP model by this part.

        "modifier": {
            "type":             "dipole_charge",
            "model_name":       "dw.pb",
            "model_charge_map": [-8],
            "sys_charge_map":   [6, 1],
            "ewald_h":          1.00,
            "ewald_beta":       0.40
        },

The model_name specifies which DW model is used to predict the position of WCs. model_charge_map gives the amount of charge assigned to WCs. sys_charge_map provides the nuclear charge of oxygen (type 0) and hydrogen (type 1) atoms. ewald_beta (unit \(\text{Å}^{-1}\)) gives the spread parameter controls the spread of Gaussian charges, and ewald_h (unit Å) assigns the grid size of Fourier transformation. The DPLR model can be trained and frozen by (from the example directory)

dp train ener.json && dp freeze -o ener.pb

Molecular dynamics simulation with DPLR

In MD simulations, the long-range part of the DPLR is calculated by the LAMMPS kspace support. Then the long-range interaction is back-propagated to atoms by DeePMD-kit. This setup is commonly used in classical molecular dynamics simulations as the “virtual site”. Unfortunately, LAMMPS does not natively support virtual sites, so we have to hack the LAMMPS code, which makes the input configuration and script a little wired.

An example of an input configuration file and script can be found in

$deepmd_source_dir/examples/water/dplr/lmp/

We use atom_style full for DPLR simulations. the coordinates of the WCs are explicitly written in the configuration file. Moreover, a virtual bond is established between the oxygens and the WCs to indicate they are associated together. The configuration file containing 128 H2O molecules is thus written as


512 atoms
3 atom types
128 bonds
1 bond types

0 16.421037674 xlo xhi
0 16.421037674 ylo yhi
0 16.421037674 zlo zhi
0 0 0 xy xz yz

Masses

1 16
2 2
3 16

Atoms

       1        1 1  6 8.4960699081e+00 7.5073699951e+00 9.6371297836e+00
       2        2 1  6 4.0597701073e+00 6.8156299591e+00 1.2051420212e+01
...

     385        1 3 -8 8.4960699081e+00 7.5073699951e+00 9.6371297836e+00
     386        2 3 -8 4.0597701073e+00 6.8156299591e+00 1.2051420212e+01
...

Bonds

1 1 1 385
2 1 2 386
...

The oxygens and hydrogens are assigned with atom types 1 and 2 (corresponding to training atom types 0 and 1), respectively. The WCs are assigned with atom type 3. We want to simulate heavy water so the mass of hydrogens is set to 2.

An example input script is provided in

$deepmd_source_dir/examples/water/dplr/lmp/in.lammps

Here are some explanations

# groups of real and virtual atoms
group           real_atom type 1 2
group           virtual_atom type 3

# bond between real and its corresponding virtual site should be given
# to setup a map between real and virtual atoms. However, no real
# bonded interaction is applied, thus bond_sytle "zero" is used.
pair_style      deepmd ener.pb
pair_coeff      * *
bond_style      zero
bond_coeff      *
special_bonds   lj/coul 1 1 1 angle no

Type 1 and 2 (O and H) are real_atoms, while type 3 (WCs) are virtual_atoms. The model file ener.pb stores both the DW and DPLR models, so the position of WCs and the energy can be inferred from it. A virtual bond type is specified by bond_style zero. The special_bonds command switches off the exclusion of intramolecular interactions.

# kspace_style "pppm/dplr" should be used. in addition the
# gewald(1/distance) should be set the same as that used in
# training. Currently only ik differentiation is supported.
kspace_style	pppm/dplr 1e-5
kspace_modify	gewald ${BETA} diff ik mesh ${KMESH} ${KMESH} ${KMESH}

The long-range part is calculated by the kspace support of LAMMPS. The kspace_style pppm/dplr is required. The spread parameter set by variable BETA should be set the same as that used in training. The KMESH should be set dense enough so the long-range calculation is converged.

fix dplr command

Syntax

fix ID group-ID style_name keyword value ...
  • ID, group-ID are documented in :doc:fix <fix> command

  • style_name = dplr

  • three or more keyword/value pairs may be appended

keyword = *model* or *type_associate* or *bond_type* or *efield*
  *model* value = name
    name = name of DPLR model file (e.g. frozen_model.pb) (not DW model)
  *type_associate* values = NR1 NW1 NR2 NW2 ...
    NRi = type of real atom in i-th (real atom, Wannier centroid) pair
    NWi = type of Wannier in i-th (real atom, Wannier centroid) pair
  *bond_type* values = NB1 NB2 ...
    NBi = bond type of i-th (real atom, Wannier centroid) pair
  *efield* (optional) values = Ex Ey Ez
    Ex/Ey/Ez = electric field along x/y/z direction

Examples

# "fix dplr" set the position of the virtual atom, and spread the
# electrostatic interaction asserting on the virtual atom to the real
# atoms. "type_associate" associates the real atom type its
# corresponding virtual atom type. "bond_type" gives the type of the
# bond between the real and virtual atoms.
fix		0 all dplr model ener.pb type_associate 1 3 bond_type 1
fix_modify	0 virial yes

The fix command dplr calculates the position of WCs by the DW model and back-propagates the long-range interaction on virtual atoms to real toms. At this time, the training parameter type_map will be mapped to LAMMPS atom types.

To use a time-dependent electric field, LAMMPS’s variable feature can be utilized:

variable EFIELD_Z equal 2*sin(2*PI*time/0.006)
fix 0 all dplr model ener.pb type_associate 1 3 bond_type 1 efield 0 0 v_EFIELD_Z
fix_modify 0 energy yes virial yes

The efield feature of fix dplr behaves similarly to LAMMPS’s fix efield. Note that the atomic energy or potential in fix efield is not yet supported in fix dplr. For a detailed description on how a time-dependent variable can be defined, refer to LAMMPS’s document of variable.

# compute the temperature of real atoms, excluding virtual atom contribution
compute		real_temp real_atom temp
compute		real_press all pressure real_temp
fix		1 real_atom nvt temp ${TEMP} ${TEMP} ${TAU_T}
fix_modify	1 temp real_temp

The temperature of the system should be computed from the real atoms. The kinetic contribution in the pressure tensor is also computed from the real atoms. The thermostat is applied to only real atoms. The computed temperature and pressure of real atoms can be accessed by, e.g.

fix             thermo_print all print ${THERMO_FREQ} "$(step) $(pe) $(ke) $(etotal) $(enthalpy) $(c_real_temp) $(c_real_press) $(vol) $(c_real_press[1]) $(c_real_press[2]) $(c_real_press[3])" append thermo.out screen no title "# step pe ke etotal enthalpy temp press vol pxx pyy pzz"

The LAMMPS simulation can be started from the example directory by

lmp -i in.lammps

If LAMMPS complains that no model file ener.pb exists, it can be copied from the training example directory.

The MD simulation lasts for only 20 steps. If one runs a longer simulation, it will blow up, because the model is trained with a very limited dataset for very short training steps, thus is of poor quality.

Another restriction that should be noted is that the energies printed at the zero steps are not correct. This is because at the zero steps the position of the WC has not been updated with the DW model. The energies printed in later steps are correct.

Deep Potential - Range Correction (DPRc)

Deep Potential - Range Correction (DPRc) is designed to combine with QM/MM method, and corrects energies from a low-level QM/MM method to a high-level QM/MM method:

\[ E=E_\text{QM}(\mathbf R; \mathbf P) + E_\text{QM/MM}(\mathbf R; \mathbf P) + E_\text{MM}(\mathbf R) + E_\text{DPRc}(\mathbf R) \]

See the JCTC paper for details.

Training data

Instead the normal ab initio data, one needs to provide the correction from a low-level QM/MM method to a high-level QM/MM method:

\[ E = E_\text{high-level QM/MM} - E_\text{low-level QM/MM} \]

Two levels of data use the same MM method, so \(E_\text{MM}\) is eliminated.

Training the DPRc model

In a DPRc model, QM atoms and MM atoms have different atom types. Assuming we have 4 QM atom types (C, H, O, P) and 2 MM atom types (HW, OW):

"type_map": ["C", "H", "HW", "O", "OW", "P"]

As described in the paper, the DPRc model only corrects \(E_\text{QM}\) and \(E_\text{QM/MM}\) within the cutoff, so we use a hybrid descriptor to describe them separatedly:

"descriptor" :{
    "type":             "hybrid",
    "list" : [
        {
            "type":     "se_e2_a",
            "sel":              [6, 11, 0, 6, 0, 1],
            "rcut_smth":        1.00,
            "rcut":             9.00,
            "neuron":           [12, 25, 50],
            "exclude_types":    [[2, 2], [2, 4], [4, 4], [0, 2], [0, 4], [1, 2], [1, 4], [3, 2], [3, 4], [5, 2], [5, 4]],
            "axis_neuron":      12,
            "set_davg_zero":    true,
            "_comment": " QM/QM interaction"
        },
        {
            "type":     "se_e2_a",
            "sel":              [6, 11, 100, 6, 50, 1],
            "rcut_smth":        0.50,
            "rcut":             6.00,
            "neuron":           [12, 25, 50],
            "exclude_types":    [[0, 0], [0, 1], [0, 3], [0, 5], [1, 1], [1, 3], [1, 5], [3, 3], [3, 5], [5, 5], [2, 2], [2, 4], [4, 4]],
            "axis_neuron":      12,
            "set_davg_zero":    true,
            "_comment": " QM/MM interaction"
        }
    ]
}

exclude_types can be generated by the following Python script:

from itertools import combinations_with_replacement, product
qm = (0, 1, 3, 5)
mm = (2, 4)
print("QM/QM:", list(map(list, list(combinations_with_replacement(mm, 2)) + list(product(qm, mm)))))
print("QM/MM:", list(map(list, list(combinations_with_replacement(qm, 2)) + list(combinations_with_replacement(mm, 2)))))

Also, DPRc assumes MM atom energies (atom_ener) are zero:

"fitting_net": {
   "neuron": [240, 240, 240],
   "resnet_dt": true,
   "atom_ener": [null, null, 0.0, null, 0.0, null]
}

Note that atom_ener only works when descriptor/set_davg_zero is true.

Run MD simulations

The DPRc model has the best practices with the AMBER QM/MM module. An example is given by GitLab RutgersLBSR/AmberDPRc. In theory, DPRc is able to be used with any QM/MM package, as long as the DeePMD-kit package accepts QM atoms and MM atoms within the cutoff range and returns energies and forces.

Pairwise DPRc

If one wants to correct from a low-level method into a full DFT level, and the system is too large to do full DFT calculation, one may try the experimental pairwise DPRc model. In a pairwise DPRc model, the total energy is divided into QM internal energy and the sum of QM/MM energy for each MM residue \(l\):

\[ E = E_\text{QM} + \sum_{l} E_{\text{QM/MM},l} \]

In this way, the interaction between the QM region and each MM fragmentation can be computed and trained separately. Thus, the pairwise DPRc model is divided into two sub-DPRc models. qm_model is for the QM internal interaction and qmmm_model is for the QM/MM interaction. The configuration for these two models is similar to the non-pairwise DPRc model. It is noted that the se_atten descriptor should be used, as it is the only descriptor to support the mixed type.

{
  "model": {
    "type": "pairwise_dprc",
    "type_map": [
      "C",
      "P",
      "O",
      "H",
      "OW",
      "HW"
    ],
    "type_embedding": {
      "neuron": [
        8
      ],
      "precision": "float32"
    },
    "qm_model": {
      "descriptor": {
        "type": "se_atten",
        "stripped_type_embedding": true,
        "sel": 24,
        "rcut_smth": 0.50,
        "rcut": 9.00,
        "attn_layer": 0,
        "neuron": [
          25,
          50,
          100
        ],
        "resnet_dt": false,
        "axis_neuron": 12,
        "precision": "float32",
        "seed": 1
      },
      "fitting_net": {
        "type": "ener",
        "neuron": [
          240,
          240,
          240
        ],
        "resnet_dt": true,
        "precision": "float32",
        "atom_ener": [
          null,
          null,
          null,
          null,
          0.0,
          0.0
        ],
        "seed": 1
      }
    },
    "qmmm_model": {
      "descriptor": {
        "type": "se_atten",
        "stripped_type_embedding": true,
        "sel": 27,
        "rcut_smth": 0.50,
        "rcut": 6.00,
        "attn_layer": 0,
        "neuron": [
          25,
          50,
          100
        ],
        "resnet_dt": false,
        "axis_neuron": 12,
        "set_davg_zero": true,
        "exclude_types": [
          [
            0,
            0
          ],
          [
            0,
            1
          ],
          [
            0,
            2
          ],
          [
            0,
            3
          ],
          [
            1,
            1
          ],
          [
            1,
            2
          ],
          [
            1,
            3
          ],
          [
            2,
            2
          ],
          [
            2,
            3
          ],
          [
            3,
            3
          ],
          [
            4,
            4
          ],
          [
            4,
            5
          ],
          [
            5,
            5
          ]
        ],
        "precision": "float32",
        "seed": 1
      },
      "fitting_net": {
        "type": "ener",
        "neuron": [
          240,
          240,
          240
        ],
        "resnet_dt": true,
        "seed": 1,
        "precision": "float32",
        "atom_ener": [
          0.0,
          0.0,
          0.0,
          0.0,
          0.0,
          0.0
        ]
      }
    }
  }
}

The pairwise model needs information for MM residues. The model uses aparam with the shape of nframes x natoms to get the residue index. The QM residue should always use 0 as the index. For example, 0 0 0 1 1 1 2 2 2 means these 9 atoms are grouped into one QM residue and two MM residues.

Training

Train a model

Several examples of training can be found in the examples directory:

$ cd $deepmd_source_dir/examples/water/se_e2_a/

After switching to that directory, the training can be invoked by

$ dp train input.json

where input.json is the name of the input script.

By default, the verbosity level of the DeePMD-kit is INFO, one may see a lot of important information on the code and environment showing on the screen. Among them two pieces of information regarding data systems are worth special notice.

DEEPMD INFO    ---Summary of DataSystem: training     -----------------------------------------------
DEEPMD INFO    found 3 system(s):
DEEPMD INFO                                        system  natoms  bch_sz   n_bch   prob  pbc
DEEPMD INFO                         ../data_water/data_0/     192       1      80  0.250    T
DEEPMD INFO                         ../data_water/data_1/     192       1     160  0.500    T
DEEPMD INFO                         ../data_water/data_2/     192       1      80  0.250    T
DEEPMD INFO    --------------------------------------------------------------------------------------
DEEPMD INFO    ---Summary of DataSystem: validation   -----------------------------------------------
DEEPMD INFO    found 1 system(s):
DEEPMD INFO                                        system  natoms  bch_sz   n_bch   prob  pbc
DEEPMD INFO                          ../data_water/data_3     192       1      80  1.000    T
DEEPMD INFO    --------------------------------------------------------------------------------------

The DeePMD-kit prints detailed information on the training and validation data sets. The data sets are defined by training_data and validation_data defined in the training section of the input script. The training data set is composed of three data systems, while the validation data set is composed by one data system. The number of atoms, batch size, the number of batches in the system and the probability of using the system are all shown on the screen. The last column presents if the periodic boundary condition is assumed for the system.

During the training, the error of the model is tested every disp_freq training steps with the batch used to train the model and with numb_btch batches from the validating data. The training error and validation error are printed correspondingly in the file disp_file (default is lcurve.out). The batch size can be set in the input script by the key batch_size in the corresponding sections for the training and validation data set. An example of the output

#  step      rmse_val    rmse_trn    rmse_e_val  rmse_e_trn    rmse_f_val  rmse_f_trn         lr
      0      3.33e+01    3.41e+01      1.03e+01    1.03e+01      8.39e-01    8.72e-01    1.0e-03
    100      2.57e+01    2.56e+01      1.87e+00    1.88e+00      8.03e-01    8.02e-01    1.0e-03
    200      2.45e+01    2.56e+01      2.26e-01    2.21e-01      7.73e-01    8.10e-01    1.0e-03
    300      1.62e+01    1.66e+01      5.01e-02    4.46e-02      5.11e-01    5.26e-01    1.0e-03
    400      1.36e+01    1.32e+01      1.07e-02    2.07e-03      4.29e-01    4.19e-01    1.0e-03
    500      1.07e+01    1.05e+01      2.45e-03    4.11e-03      3.38e-01    3.31e-01    1.0e-03

The file contains 8 columns, from left to right, which are the training step, the validation loss, training loss, root mean square (RMS) validation error of energy, RMS training error of energy, RMS validation error of force, RMS training error of force and the learning rate. The RMS error (RMSE) of the energy is normalized by the number of atoms in the system. One can visualize this file with a simple Python script:

import numpy as np
import matplotlib.pyplot as plt

data = np.genfromtxt("lcurve.out", names=True)
for name in data.dtype.names[1:-1]:
    plt.plot(data['step'], data[name], label=name)
plt.legend()
plt.xlabel('Step')
plt.ylabel('Loss')
plt.xscale('symlog')
plt.yscale('log')
plt.grid()
plt.show()

Checkpoints will be written to files with the prefix save_ckpt every save_freq training steps.

Warning

It is warned that the example water data (in folder examples/water/data) is of very limited amount, is provided only for testing purposes, and should not be used to train a production model.

Advanced options

In this section, we will take $deepmd_source_dir/examples/water/se_e2_a/input.json as an example of the input file.

Learning rate

The learning_rate section in input.json is given as follows

    "learning_rate" :{
	"type":		"exp",
	"start_lr":	0.001,
	"stop_lr":	3.51e-8,
	"decay_steps":	5000,
	"_comment":	"that's all"
    }
  • start_lr gives the learning rate at the beginning of the training.

  • stop_lr gives the learning rate at the end of the training. It should be small enough to ensure that the network parameters satisfactorily converge.

  • During the training, the learning rate decays exponentially from start_lr to stop_lr following the formula:

\[ \alpha(t) = \alpha_0 \lambda ^ { t / \tau } \]

where \(t\) is the training step, \(\alpha\) is the learning rate, \(\alpha_0\) is the starting learning rate (set by start_lr), \(\lambda\) is the decay rate, and \(\tau\) is the decay steps, i.e.

```
lr(t) = start_lr * decay_rate ^ ( t / decay_steps )
```

Training parameters

Other training parameters are given in the training section.

    "training": {
 	"training_data": {
	    "systems":		["../data_water/data_0/", "../data_water/data_1/", "../data_water/data_2/"],
	    "batch_size":	"auto"
	},
	"validation_data":{
	    "systems":		["../data_water/data_3"],
	    "batch_size":	1,
	    "numb_btch":	3
	},
	"mixed_precision": {
	    "output_prec":      "float32",
	    "compute_prec":     "float16"
	},

	"numb_steps":	1000000,
	"seed":		1,
	"disp_file":	"lcurve.out",
	"disp_freq":	100,
	"save_freq":	1000
    }

The sections training_data and validation_data give the training dataset and validation dataset, respectively. Taking the training dataset for example, the keys are explained below:

  • systems provide paths of the training data systems. DeePMD-kit allows you to provide multiple systems with different numbers of atoms. This key can be a list or a str.

    • list: systems gives the training data systems.

    • str: systems should be a valid path. DeePMD-kit will recursively search all data systems in this path.

  • At each training step, DeePMD-kit randomly picks batch_size frame(s) from one of the systems. The probability of using a system is by default in proportion to the number of batches in the system. More options are available for automatically determining the probability of using systems. One can set the key auto_prob to

    • "prob_uniform" all systems are used with the same probability.

    • "prob_sys_size" the probability of using a system is proportional to its size (number of frames).

    • "prob_sys_size; sidx_0:eidx_0:w_0; sidx_1:eidx_1:w_1;..." the list of systems is divided into blocks. Block i has systems ranging from sidx_i to eidx_i. The probability of using a system from block i is proportional to w_i. Within one block, the probability of using a system is proportional to its size.

  • An example of using "auto_prob" is given below. The probability of using systems[2] is 0.4, and the sum of the probabilities of using systems[0] and systems[1] is 0.6. If the number of frames in systems[1] is twice of system[0], then the probability of using system[1] is 0.4 and that of system[0] is 0.2.

 	"training_data": {
	    "systems":		["../data_water/data_0/", "../data_water/data_1/", "../data_water/data_2/"],
	    "auto_prob":	"prob_sys_size; 0:2:0.6; 2:3:0.4",
	    "batch_size":	"auto"
	}
  • The probability of using systems can also be specified explicitly with key sys_probs which is a list having the length of the number of systems. For example

 	"training_data": {
	    "systems":		["../data_water/data_0/", "../data_water/data_1/", "../data_water/data_2/"],
	    "sys_probs":	[0.5, 0.3, 0.2],
	    "batch_size":	"auto:32"
	}
  • The key batch_size specifies the number of frames used to train or validate the model in a training step. It can be set to

    • list: the length of which is the same as the systems. The batch size of each system is given by the elements of the list.

    • int: all systems use the same batch size.

    • "auto": the same as "auto:32", see "auto:N"

    • "auto:N": automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than N.

  • The key numb_batch in validate_data gives the number of batches of model validation. Note that the batches may not be from the same system

The section mixed_precision specifies the mixed precision settings, which will enable the mixed precision training workflow for DeePMD-kit. The keys are explained below:

  • output_prec precision used in the output tensors, only float32 is supported currently.

  • compute_prec precision used in the computing tensors, only float16 is supported currently. Note there are several limitations about mixed precision training:

  • Only se_e2_a type descriptor is supported by the mixed precision training workflow.

  • The precision of the embedding net and the fitting net are forced to be set to float32.

Other keys in the training section are explained below:

  • numb_steps The number of training steps.

  • seed The random seed for getting frames from the training data set.

  • disp_file The file for printing learning curve.

  • disp_freq The frequency of printing learning curve. Set in the unit of training steps

  • save_freq The frequency of saving checkpoint.

Options and environment variables

Several command line options can be passed to dp train, which can be checked with

$ dp train --help

An explanation will be provided

positional arguments:
  INPUT                 the input json database

optional arguments:
  -h, --help            show this help message and exit

  --init-model INIT_MODEL
                        Initialize a model by the provided checkpoint

  --restart RESTART     Restart the training from the provided checkpoint

  --init-frz-model INIT_FRZ_MODEL
                        Initialize the training from the frozen model.
  --skip-neighbor-stat  Skip calculating neighbor statistics. Sel checking, automatic sel, and model compression will be disabled. (default: False)

--init-model model.ckpt, initializes the model training with an existing model that is stored in the checkpoint model.ckpt, the network architectures should match.

--restart model.ckpt, continues the training from the checkpoint model.ckpt.

--init-frz-model frozen_model.pb, initializes the training with an existing model that is stored in frozen_model.pb.

--skip-neighbor-stat will skip calculating neighbor statistics if one is concerned about performance. Some features will be disabled.

To maximize the performance, one should follow FAQ: How to control the parallelism of a job to control the number of threads.

One can set other environmental variables:

Environment variables

Allowed value

Default value

Usage

DP_INTERFACE_PREC

high, low

high

Control high (double) or low (float) precision of training.

DP_AUTO_PARALLELIZATION

0, 1

0

Enable auto parallelization for CPU operators.

DP_JIT

0, 1

0

Enable JIT. Note that this option may either improve or decrease the performance. Requires TensorFlow supports JIT.

Adjust sel of a frozen model

One can use --init-frz-model features to adjust (increase or decrease) sel of a existing model. Firstly, one needs to adjust sel in input.json. For example, adjust from [46, 92] to [23, 46].

"model": {
	"descriptor": {
		"sel": [23, 46]
	}
}

To obtain the new model at once, numb_steps should be set to zero:

"training": {
	"numb_steps": 0
}

Then, one can initialize the training from the frozen model and freeze the new model at once:

dp train input.json --init-frz-model frozen_model.pb
dp freeze -o frozen_model_adjusted_sel.pb

Two models should give the same result when the input satisfies both constraints.

Note: At this time, this feature is only supported by se_e2_a descriptor with set_davg_true enabled, or hybrid composed of the above descriptors.

Training Parameters

Note

One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All training parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file for furthur training.

model:
type: dict
argument path: model
type_map:
type: list, optional
argument path: model/type_map

A list of strings. Give the name to each type of atoms. It is noted that the number of atom type of training system must be less than 128 in a GPU environment. If not given, type.raw in each system should use the same type indexes, and type_map.raw will take no effect.

data_stat_nbatch:
type: int, optional, default: 10
argument path: model/data_stat_nbatch

The model determines the normalization from the statistics of the data. This key specifies the number of frames in each system used for statistics.

data_stat_protect:
type: float, optional, default: 0.01
argument path: model/data_stat_protect

Protect parameter for atomic energy regression.

data_bias_nsample:
type: int, optional, default: 10
argument path: model/data_bias_nsample

The number of training samples in a system to compute and change the energy bias.

use_srtab:
type: str, optional
argument path: model/use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha:
type: float, optional
argument path: model/smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when use_srtab is provided.

sw_rmin:
type: float, optional
argument path: model/sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

sw_rmax:
type: float, optional
argument path: model/sw_rmax

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

srtab_add_bias:
type: bool, optional, default: True
argument path: model/srtab_add_bias

Whether add energy bias from the statistics of the data to short-range tabulated atomic energy. It only takes effect when use_srtab is provided.

type_embedding:
type: dict, optional
argument path: model/type_embedding

The type embedding.

neuron:
type: list, optional, default: [8]
argument path: model/type_embedding/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model/type_embedding/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model/type_embedding/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model/type_embedding/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

trainable:
type: bool, optional, default: True
argument path: model/type_embedding/trainable

If the parameters in the embedding net are trainable

seed:
type: NoneType | int, optional, default: None
argument path: model/type_embedding/seed

Random seed for parameter initialization

modifier:
type: dict, optional
argument path: model/modifier

The modifier of model output.

Depending on the value of type, different sub args are accepted.

type:
type: str (flag key)
argument path: model/modifier/type
possible choices: dipole_charge

The type of modifier. See explanation below.

-dipole_charge: Use WFCC to model the electronic structure of the system. Correct the long-range interaction

When type is set to dipole_charge:

model_name:
type: str
argument path: model/modifier[dipole_charge]/model_name

The name of the frozen dipole model file.

model_charge_map:
type: list
argument path: model/modifier[dipole_charge]/model_charge_map

The charge of the WFCC. The list length should be the same as the `sel_type <model/fitting_net[dipole]/sel_type_>`_.

sys_charge_map:
type: list
argument path: model/modifier[dipole_charge]/sys_charge_map

The charge of real atoms. The list length should be the same as the type_map

ewald_beta:
type: float, optional, default: 0.4
argument path: model/modifier[dipole_charge]/ewald_beta

The splitting parameter of Ewald sum. Unit is A^-1

ewald_h:
type: float, optional, default: 1.0
argument path: model/modifier[dipole_charge]/ewald_h

The grid spacing of the FFT grid. Unit is A

compress:
type: dict, optional
argument path: model/compress

Model compression configurations

spin:
type: dict, optional
argument path: model/spin

The settings for systems with spin.

use_spin:
type: list
argument path: model/spin/use_spin

Whether to use atomic spin model for each atom type

spin_norm:
type: list
argument path: model/spin/spin_norm

The magnitude of atomic spin for each atom type with spin

virtual_len:
type: list
argument path: model/spin/virtual_len

The distance between virtual atom representing spin and its corresponding real atom for each atom type with spin

Depending on the value of type, different sub args are accepted.

type:
type: str (flag key), default: standard
argument path: model/type
possible choices: standard, multi, pairwise_dprc

When type is set to standard:

Stardard model, which contains a descriptor and a fitting.

descriptor:
type: dict
argument path: model[standard]/descriptor

The descriptor of atomic environment.

Depending on the value of type, different sub args are accepted.

type:
type: str (flag key)
argument path: model[standard]/descriptor/type

The type of the descritpor. See explanation below.

  • loc_frame: Defines a local frame at each atom, and the compute the descriptor as local coordinates under this frame.

  • se_e2_a: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor.

  • se_e2_r: Used by the smooth edition of Deep Potential. Only the distance between atoms is used to construct the descriptor.

  • se_e3: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Three-body embedding will be used by this descriptor.

  • se_a_tpe: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Type embedding will be used by this descriptor.

  • se_atten: Used by the smooth edition of Deep Potential. The full relative coordinates are used to construct the descriptor. Attention mechanism will be used by this descriptor.

  • se_a_mask: Used by the smooth edition of Deep Potential. It can accept a variable number of atoms in a frame (Non-PBC system). aparam are required as an indicator matrix for the real/virtual sign of input atoms.

  • hybrid: Concatenate of a list of descriptors as a new descriptor.

When type is set to loc_frame:

sel_a:
type: list
argument path: model[standard]/descriptor[loc_frame]/sel_a

A list of integers. The length of the list should be the same as the number of atom types in the system. sel_a[i] gives the selected number of type-i neighbors. The full relative coordinates of the neighbors are used by the descriptor.

sel_r:
type: list
argument path: model[standard]/descriptor[loc_frame]/sel_r

A list of integers. The length of the list should be the same as the number of atom types in the system. sel_r[i] gives the selected number of type-i neighbors. Only relative distance of the neighbors are used by the descriptor. sel_a[i] + sel_r[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius.

rcut:
type: float, optional, default: 6.0
argument path: model[standard]/descriptor[loc_frame]/rcut

The cut-off radius. The default value is 6.0

axis_rule:
type: list
argument path: model[standard]/descriptor[loc_frame]/axis_rule

A list of integers. The length should be 6 times of the number of types.

  • axis_rule[i*6+0]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.

  • axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom.

  • axis_rule[i*6+2]: index of the axis atom defining the first axis. Note that the neighbors with the same class and type are sorted according to their relative distance.

  • axis_rule[i*6+3]: class of the atom defining the second axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance.

  • axis_rule[i*6+4]: type of the atom defining the second axis of type-i atom.

  • axis_rule[i*6+5]: index of the axis atom defining the second axis. Note that the neighbors with the same class and type are sorted according to their relative distance.

When type is set to se_e2_a (or its alias se_a):

sel:
type: str | list, optional, default: auto
argument path: model[standard]/descriptor[se_e2_a]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

  • List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

  • str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model[standard]/descriptor[se_e2_a]/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model[standard]/descriptor[se_e2_a]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model[standard]/descriptor[se_e2_a]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model[standard]/descriptor[se_e2_a]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/descriptor[se_e2_a]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e2_a]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e2_a]/type_one_side

If true, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_text{types}^2$ sets of embedding network parameters.

precision:
type: str, optional, default: default
argument path: model[standard]/descriptor[se_e2_a]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

trainable:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_e2_a]/trainable

If the parameters in the embedding net is trainable

seed:
type: NoneType | int, optional
argument path: model[standard]/descriptor[se_e2_a]/seed

Random seed for parameter initialization

exclude_types:
type: list, optional, default: []
argument path: model[standard]/descriptor[se_e2_a]/exclude_types

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e2_a]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used

When type is set to se_e3 (or its aliases se_at, se_a_3be, se_t):

sel:
type: str | list, optional, default: auto
argument path: model[standard]/descriptor[se_e3]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

  • List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

  • str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model[standard]/descriptor[se_e3]/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model[standard]/descriptor[se_e3]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model[standard]/descriptor[se_e3]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/descriptor[se_e3]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e3]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model[standard]/descriptor[se_e3]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

trainable:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_e3]/trainable

If the parameters in the embedding net are trainable

seed:
type: NoneType | int, optional
argument path: model[standard]/descriptor[se_e3]/seed

Random seed for parameter initialization

set_davg_zero:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e3]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used

When type is set to se_a_tpe (or its alias se_a_ebd):

sel:
type: str | list, optional, default: auto
argument path: model[standard]/descriptor[se_a_tpe]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

  • List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

  • str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model[standard]/descriptor[se_a_tpe]/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model[standard]/descriptor[se_a_tpe]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model[standard]/descriptor[se_a_tpe]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model[standard]/descriptor[se_a_tpe]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/descriptor[se_a_tpe]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_a_tpe]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_a_tpe]/type_one_side

If true, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_text{types}^2$ sets of embedding network parameters.

precision:
type: str, optional, default: default
argument path: model[standard]/descriptor[se_a_tpe]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

trainable:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_a_tpe]/trainable

If the parameters in the embedding net is trainable

seed:
type: NoneType | int, optional
argument path: model[standard]/descriptor[se_a_tpe]/seed

Random seed for parameter initialization

exclude_types:
type: list, optional, default: []
argument path: model[standard]/descriptor[se_a_tpe]/exclude_types

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_a_tpe]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used

type_nchanl:
type: int, optional, default: 4
argument path: model[standard]/descriptor[se_a_tpe]/type_nchanl

number of channels for type embedding

type_nlayer:
type: int, optional, default: 2
argument path: model[standard]/descriptor[se_a_tpe]/type_nlayer

number of hidden layers of type embedding net

numb_aparam:
type: int, optional, default: 0
argument path: model[standard]/descriptor[se_a_tpe]/numb_aparam

dimension of atomic parameter. if set to a value > 0, the atomic parameters are embedded.

When type is set to se_e2_r (or its alias se_r):

sel:
type: str | list, optional, default: auto
argument path: model[standard]/descriptor[se_e2_r]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

  • List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

  • str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model[standard]/descriptor[se_e2_r]/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model[standard]/descriptor[se_e2_r]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model[standard]/descriptor[se_e2_r]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/descriptor[se_e2_r]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e2_r]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e2_r]/type_one_side

If true, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_text{types}^2$ sets of embedding network parameters.

precision:
type: str, optional, default: default
argument path: model[standard]/descriptor[se_e2_r]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

trainable:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_e2_r]/trainable

If the parameters in the embedding net are trainable

seed:
type: NoneType | int, optional
argument path: model[standard]/descriptor[se_e2_r]/seed

Random seed for parameter initialization

exclude_types:
type: list, optional, default: []
argument path: model[standard]/descriptor[se_e2_r]/exclude_types

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_e2_r]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting is used

When type is set to hybrid:

list:
type: list
argument path: model[standard]/descriptor[hybrid]/list

A list of descriptor definitions

When type is set to se_atten:

stripped_type_embedding:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_atten]/stripped_type_embedding

Whether to strip the type embedding into a separated embedding network. Setting it to False will fall back to the previous version of se_atten which is non-compressible.

sel:
type: str | int | list, optional, default: auto
argument path: model[standard]/descriptor[se_atten]/sel

This parameter set the number of selected neighbors. Note that this parameter is a little different from that in other descriptors. Instead of separating each type of atoms, only the summation matters. And this number is highly related with the efficiency, thus one should not make it too large. Usually 200 or less is enough, far away from the GPU limitation 4096. It can be:

  • int. The maximum number of neighbor atoms to be considered. We recommend it to be less than 200.

  • List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. Only the summation of sel[i] matters, and it is recommended to be less than 200. - str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model[standard]/descriptor[se_atten]/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model[standard]/descriptor[se_atten]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model[standard]/descriptor[se_atten]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model[standard]/descriptor[se_atten]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/descriptor[se_atten]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_atten]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_atten]/type_one_side

If true, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_text{types}^2$ sets of embedding network parameters.

precision:
type: str, optional, default: default
argument path: model[standard]/descriptor[se_atten]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

trainable:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_atten]/trainable

If the parameters in the embedding net is trainable

seed:
type: NoneType | int, optional
argument path: model[standard]/descriptor[se_atten]/seed

Random seed for parameter initialization

exclude_types:
type: list, optional, default: []
argument path: model[standard]/descriptor[se_atten]/exclude_types

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_atten]/set_davg_zero

Set the normalization average to zero. This option should be set when se_atten descriptor or atom_ener in the energy fitting is used

attn:
type: int, optional, default: 128
argument path: model[standard]/descriptor[se_atten]/attn

The length of hidden vectors in attention layers

attn_layer:
type: int, optional, default: 2
argument path: model[standard]/descriptor[se_atten]/attn_layer

The number of attention layers. Note that model compression of se_atten is only enabled when attn_layer==0 and stripped_type_embedding is True

attn_dotr:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_atten]/attn_dotr

Whether to do dot product with the normalized relative coordinates

attn_mask:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_atten]/attn_mask

Whether to do mask on the diagonal in the attention matrix

When type is set to se_a_mask:

sel:
type: str | list, optional, default: auto
argument path: model[standard]/descriptor[se_a_mask]/sel

This parameter sets the number of selected neighbors for each type of atom. It can be:

  • List[int]. The length of the list should be the same as the number of atom types in the system. sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel value must be less than 4096 in a GPU environment.

  • str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will automatically determine the sel. In detail it counts the maximal number of neighbors with in the cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model[standard]/descriptor[se_a_mask]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model[standard]/descriptor[se_a_mask]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/descriptor[se_a_mask]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_a_mask]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model[standard]/descriptor[se_a_mask]/type_one_side

If true, the embedding network parameters vary by types of neighbor atoms only, so there will be $N_text{types}$ sets of embedding network parameters. Otherwise, the embedding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be $N_text{types}^2$ sets of embedding network parameters.

exclude_types:
type: list, optional, default: []
argument path: model[standard]/descriptor[se_a_mask]/exclude_types

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

precision:
type: str, optional, default: default
argument path: model[standard]/descriptor[se_a_mask]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

trainable:
type: bool, optional, default: True
argument path: model[standard]/descriptor[se_a_mask]/trainable

If the parameters in the embedding net is trainable

seed:
type: NoneType | int, optional
argument path: model[standard]/descriptor[se_a_mask]/seed

Random seed for parameter initialization

fitting_net:
type: dict
argument path: model[standard]/fitting_net

The fitting of physical properties.

Depending on the value of type, different sub args are accepted.

type:
type: str (flag key), default: ener
argument path: model[standard]/fitting_net/type
possible choices: ener, dos, polar, dipole

The type of the fitting. See explanation below.

  • ener: Fit an energy model (potential energy surface).

  • dos : Fit a density of states model. The total density of states / site-projected density of states labels should be provided by dos.npy or atom_dos.npy in each data system. The file has number of frames lines and number of energy grid columns (times number of atoms in atom_dos.npy). See loss parameter.

  • dipole: Fit an atomic dipole model. Global dipole labels or atomic dipole labels for all the selected atoms (see sel_type) should be provided by dipole.npy in each data system. The file either has number of frames lines and 3 times of number of selected atoms columns, or has number of frames lines and 3 columns. See loss parameter.

  • polar: Fit an atomic polarizability model. Global polarizazbility labels or atomic polarizability labels for all the selected atoms (see sel_type) should be provided by polarizability.npy in each data system. The file eith has number of frames lines and 9 times of number of selected atoms columns, or has number of frames lines and 9 columns. See loss parameter.

When type is set to ener:

numb_fparam:
type: int, optional, default: 0
argument path: model[standard]/fitting_net[ener]/numb_fparam

The dimension of the frame parameter. If set to >0, file fparam.npy should be included to provided the input fparams.

numb_aparam:
type: int, optional, default: 0
argument path: model[standard]/fitting_net[ener]/numb_aparam

The dimension of the atomic parameter. If set to >0, file aparam.npy should be included to provided the input aparams.

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model[standard]/fitting_net[ener]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/fitting_net[ener]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

precision:
type: str, optional, default: default
argument path: model[standard]/fitting_net[ener]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

resnet_dt:
type: bool, optional, default: True
argument path: model[standard]/fitting_net[ener]/resnet_dt

Whether to use a “Timestep” in the skip connection

trainable:
type: bool | list, optional, default: True
argument path: model[standard]/fitting_net[ener]/trainable

Whether the parameters in the fitting net are trainable. This option can be

  • bool: True if all parameters of the fitting net are trainable, False otherwise.

  • list of bool: Specifies if each layer is trainable. Since the fitting net is composed by hidden layers followed by a output layer, the length of tihs list should be equal to len(neuron)+1.

rcond:
type: float | NoneType, optional, default: None
argument path: model[standard]/fitting_net[ener]/rcond

The condition number used to determine the inital energy shift for each type of atoms. See rcond in numpy.linalg.lstsq() for more details.

seed:
type: NoneType | int, optional
argument path: model[standard]/fitting_net[ener]/seed

Random seed for parameter initialization of the fitting net

atom_ener:
type: list, optional, default: []
argument path: model[standard]/fitting_net[ener]/atom_ener

Specify the atomic energy in vacuum for each type

layer_name:
type: list, optional
argument path: model[standard]/fitting_net[ener]/layer_name

The name of the each layer. The length of this list should be equal to n_neuron + 1. If two layers, either in the same fitting or different fittings, have the same name, they will share the same neural network parameters. The shape of these layers should be the same. If null is given for a layer, parameters will not be shared.

use_aparam_as_mask:
type: bool, optional, default: False
argument path: model[standard]/fitting_net[ener]/use_aparam_as_mask

Whether to use the aparam as a mask in input.If True, the aparam will not be used in fitting net for embedding.When descrpt is se_a_mask, the aparam will be used as a mask to indicate the input atom is real/virtual. And use_aparam_as_mask should be set to True.

When type is set to dos:

numb_fparam:
type: int, optional, default: 0
argument path: model[standard]/fitting_net[dos]/numb_fparam

The dimension of the frame parameter. If set to >0, file fparam.npy should be included to provided the input fparams.

numb_aparam:
type: int, optional, default: 0
argument path: model[standard]/fitting_net[dos]/numb_aparam

The dimension of the atomic parameter. If set to >0, file aparam.npy should be included to provided the input aparams.

neuron:
type: list, optional, default: [120, 120, 120]
argument path: model[standard]/fitting_net[dos]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/fitting_net[dos]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

precision:
type: str, optional, default: float64
argument path: model[standard]/fitting_net[dos]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

resnet_dt:
type: bool, optional, default: True
argument path: model[standard]/fitting_net[dos]/resnet_dt

Whether to use a “Timestep” in the skip connection

trainable:
type: bool | list, optional, default: True
argument path: model[standard]/fitting_net[dos]/trainable

Whether the parameters in the fitting net are trainable. This option can be

  • bool: True if all parameters of the fitting net are trainable, False otherwise.

  • list of bool: Specifies if each layer is trainable. Since the fitting net is composed by hidden layers followed by a output layer, the length of tihs list should be equal to len(neuron)+1.

rcond:
type: float | NoneType, optional, default: None
argument path: model[standard]/fitting_net[dos]/rcond

The condition number used to determine the inital energy shift for each type of atoms. See rcond in numpy.linalg.lstsq() for more details.

seed:
type: NoneType | int, optional
argument path: model[standard]/fitting_net[dos]/seed

Random seed for parameter initialization of the fitting net

numb_dos:
type: int, optional, default: 300
argument path: model[standard]/fitting_net[dos]/numb_dos

The number of gridpoints on which the DOS is evaluated (NEDOS in VASP)

When type is set to polar:

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model[standard]/fitting_net[polar]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/fitting_net[polar]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: True
argument path: model[standard]/fitting_net[polar]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model[standard]/fitting_net[polar]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

fit_diag:
type: bool, optional, default: True
argument path: model[standard]/fitting_net[polar]/fit_diag

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.

scale:
type: float | list, optional, default: 1.0
argument path: model[standard]/fitting_net[polar]/scale

The output of the fitting net (polarizability matrix) will be scaled by scale

shift_diag:
type: bool, optional, default: True
argument path: model[standard]/fitting_net[polar]/shift_diag

Whether to shift the diagonal of polar, which is beneficial to training. Default is true.

sel_type:
type: int | NoneType | list, optional, alias: pol_type
argument path: model[standard]/fitting_net[polar]/sel_type

The atom types for which the atomic polarizability will be provided. If not set, all types will be selected.

seed:
type: NoneType | int, optional
argument path: model[standard]/fitting_net[polar]/seed

Random seed for parameter initialization of the fitting net

When type is set to dipole:

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model[standard]/fitting_net[dipole]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same size, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model[standard]/fitting_net[dipole]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”. Note that “gelu” denotes the custom operator version, and “gelu_tf” denotes the TF standard version. If you set “None” or “none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: True
argument path: model[standard]/fitting_net[dipole]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model[standard]/fitting_net[dipole]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the interface precision.

sel_type:
type: int | NoneType | list, optional, alias: dipole_type
argument path: model[standard]/fitting_net[dipole]/sel_type

The atom types for which the atomic dipole will be provided. If not set, all types will be selected.

seed:
type: NoneType | int, optional
argument path: model[standard]/fitting_net[dipole]/seed

Random seed for parameter initialization of the fitting net

When type is set to multi:

Multiple-task model.

descriptor:
type: dict
argument path: model[multi]/descriptor

The descriptor of atomic environment. See model[standard]/descriptor for details.

fitting_net_dict:
type: dict
argument path: model[multi]/fitting_net_dict

The dictionary of multiple fitting nets in multi-task mode. Each fitting_net_dict[fitting_key] is the single definition of fitting of physical properties with user-defined name fitting_key.

When type is set to pairwise_dprc:

qm_model:
type: dict
argument path: model[pairwise_dprc]/qm_model
qmmm_model:
type: dict
argument path: model[pairwise_dprc]/qmmm_model
learning_rate:
type: dict, optional
argument path: learning_rate

The definitio of learning rate

scale_by_worker:
type: str, optional, default: linear
argument path: learning_rate/scale_by_worker

When parallel training or batch size scaled, how to alter learning rate. Valid values are linear`(default), `sqrt or none.

Depending on the value of type, different sub args are accepted.

type:
type: str (flag key), default: exp
argument path: learning_rate/type
possible choices: exp

The type of the learning rate.

When type is set to exp:

start_lr:
type: float, optional, default: 0.001
argument path: learning_rate[exp]/start_lr

The learning rate at the start of the training.

stop_lr:
type: float, optional, default: 1e-08
argument path: learning_rate[exp]/stop_lr

The desired learning rate at the end of the training.

decay_steps:
type: int, optional, default: 5000
argument path: learning_rate[exp]/decay_steps

The learning rate is decaying every this number of training steps.

learning_rate_dict:
type: dict, optional
argument path: learning_rate_dict

The dictionary of definitions of learning rates in multi-task mode. Each learning_rate_dict[fitting_key], with user-defined name fitting_key in model/fitting_net_dict, is the single definition of learning rate.

loss:
type: dict, optional
argument path: loss

The definition of loss function. The loss type should be set to tensor, ener or left unset.

Depending on the value of type, different sub args are accepted.

type:
type: str (flag key), default: ener
argument path: loss/type
possible choices: ener, ener_spin, dos, tensor

The type of the loss. When the fitting type is ener, the loss type should be set to ener or left unset. When the fitting type is dipole or polar, the loss type should be set to tensor.

When type is set to ener:

start_pref_e:
type: float | int, optional, default: 0.02
argument path: loss[ener]/start_pref_e

The prefactor of energy loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the energy label should be provided by file energy.npy in each data system. If both start_pref_e and limit_pref_e are set to 0, then the energy will be ignored.

limit_pref_e:
type: float | int, optional, default: 1.0
argument path: loss[ener]/limit_pref_e

The prefactor of energy loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_f:
type: float | int, optional, default: 1000
argument path: loss[ener]/start_pref_f

The prefactor of force loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the force label should be provided by file force.npy in each data system. If both start_pref_f and limit_pref_f are set to 0, then the force will be ignored.

limit_pref_f:
type: float | int, optional, default: 1.0
argument path: loss[ener]/limit_pref_f

The prefactor of force loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_v:
type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_v

The prefactor of virial loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the virial label should be provided by file virial.npy in each data system. If both start_pref_v and limit_pref_v are set to 0, then the virial will be ignored.

limit_pref_v:
type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_v

The prefactor of virial loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_ae:
type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_ae

The prefactor of atomic energy loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the atom_ener label should be provided by file atom_ener.npy in each data system. If both start_pref_ae and limit_pref_ae are set to 0, then the atomic energy will be ignored.

limit_pref_ae:
type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_ae

The prefactor of atomic energy loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_pf

The prefactor of atomic prefactor force loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the atom_pref label should be provided by file atom_pref.npy in each data system. If both start_pref_pf and limit_pref_pf are set to 0, then the atomic prefactor force will be ignored.

limit_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_pf

The prefactor of atomic prefactor force loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

relative_f:
type: float | NoneType, optional
argument path: loss[ener]/relative_f

If provided, relative force error will be used in the loss. The difference of force will be normalized by the magnitude of the force in the label with a shift given by relative_f, i.e. DF_i / ( || F || + relative_f ) with DF denoting the difference between prediction and label and || F || denoting the L2 norm of the label.

enable_atom_ener_coeff:
type: bool, optional, default: False
argument path: loss[ener]/enable_atom_ener_coeff

If true, the energy will be computed as sum_i c_i E_i. c_i should be provided by file atom_ener_coeff.npy in each data system, otherwise it’s 1.

start_pref_gf:
type: float, optional, default: 0.0
argument path: loss[ener]/start_pref_gf

The prefactor of generalized force loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the drdq label should be provided by file drdq.npy in each data system. If both start_pref_gf and limit_pref_gf are set to 0, then the generalized force will be ignored.

limit_pref_gf:
type: float, optional, default: 0.0
argument path: loss[ener]/limit_pref_gf

The prefactor of generalized force loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

numb_generalized_coord:
type: int, optional, default: 0
argument path: loss[ener]/numb_generalized_coord

The dimension of generalized coordinates. Required when generalized force loss is used.

When type is set to ener_spin:

start_pref_e:
type: float | int, optional, default: 0.02
argument path: loss[ener_spin]/start_pref_e

The prefactor of energy loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the energy label should be provided by file energy.npy in each data system. If both start_pref_energy and limit_pref_energy are set to 0, then the energy will be ignored.

limit_pref_e:
type: float | int, optional, default: 1.0
argument path: loss[ener_spin]/limit_pref_e

The prefactor of energy loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_fr:
type: float | int, optional, default: 1000
argument path: loss[ener_spin]/start_pref_fr

The prefactor of force_real_atom loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the force_real_atom label should be provided by file force_real_atom.npy in each data system. If both start_pref_force_real_atom and limit_pref_force_real_atom are set to 0, then the force_real_atom will be ignored.

limit_pref_fr:
type: float | int, optional, default: 1.0
argument path: loss[ener_spin]/limit_pref_fr

The prefactor of force_real_atom loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_fm:
type: float | int, optional, default: 10000
argument path: loss[ener_spin]/start_pref_fm

The prefactor of force_magnetic loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the force_magnetic label should be provided by file force_magnetic.npy in each data system. If both start_pref_force_magnetic and limit_pref_force_magnetic are set to 0, then the force_magnetic will be ignored.

limit_pref_fm:
type: float | int, optional, default: 10.0
argument path: loss[ener_spin]/limit_pref_fm

The prefactor of force_magnetic loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_v:
type: float | int, optional, default: 0.0
argument path: loss[ener_spin]/start_pref_v

The prefactor of virial loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the virial label should be provided by file virial.npy in each data system. If both start_pref_virial and limit_pref_virial are set to 0, then the virial will be ignored.

limit_pref_v:
type: float | int, optional, default: 0.0
argument path: loss[ener_spin]/limit_pref_v

The prefactor of virial loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_ae:
type: float | int, optional, default: 0.0
argument path: loss[ener_spin]/start_pref_ae

The prefactor of atom_ener loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the atom_ener label should be provided by file atom_ener.npy in each data system. If both start_pref_atom_ener and limit_pref_atom_ener are set to 0, then the atom_ener will be ignored.

limit_pref_ae:
type: float | int, optional, default: 0.0
argument path: loss[ener_spin]/limit_pref_ae

The prefactor of atom_ener loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener_spin]/start_pref_pf

The prefactor of atom_pref loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the atom_pref label should be provided by file atom_pref.npy in each data system. If both start_pref_atom_pref and limit_pref_atom_pref are set to 0, then the atom_pref will be ignored.

limit_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener_spin]/limit_pref_pf

The prefactor of atom_pref loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

relative_f:
type: float | NoneType, optional
argument path: loss[ener_spin]/relative_f

If provided, relative force error will be used in the loss. The difference of force will be normalized by the magnitude of the force in the label with a shift given by relative_f, i.e. DF_i / ( || F || + relative_f ) with DF denoting the difference between prediction and label and || F || denoting the L2 norm of the label.

enable_atom_ener_coeff:
type: bool, optional, default: False
argument path: loss[ener_spin]/enable_atom_ener_coeff

If true, the energy will be computed as sum_i c_i E_i. c_i should be provided by file atom_ener_coeff.npy in each data system, otherwise it’s 1.

When type is set to dos:

start_pref_dos:
type: float | int, optional, default: 0.0
argument path: loss[dos]/start_pref_dos

The prefactor of Density of State (DOS) loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the Density of State (DOS) label should be provided by file Density of State (DOS).npy in each data system. If both start_pref_Density of State (DOS) and limit_pref_Density of State (DOS) are set to 0, then the Density of State (DOS) will be ignored.

limit_pref_dos:
type: float | int, optional, default: 0.0
argument path: loss[dos]/limit_pref_dos

The prefactor of Density of State (DOS) loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_cdf:
type: float | int, optional, default: 0.0
argument path: loss[dos]/start_pref_cdf

The prefactor of Cumulative Distribution Function (cumulative intergral of DOS) loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the Cumulative Distribution Function (cumulative intergral of DOS) label should be provided by file Cumulative Distribution Function (cumulative intergral of DOS).npy in each data system. If both start_pref_Cumulative Distribution Function (cumulative intergral of DOS) and limit_pref_Cumulative Distribution Function (cumulative intergral of DOS) are set to 0, then the Cumulative Distribution Function (cumulative intergral of DOS) will be ignored.

limit_pref_cdf:
type: float | int, optional, default: 0.0
argument path: loss[dos]/limit_pref_cdf

The prefactor of Cumulative Distribution Function (cumulative intergral of DOS) loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_ados:
type: float | int, optional, default: 1.0
argument path: loss[dos]/start_pref_ados

The prefactor of atomic DOS (site-projected DOS) loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the atomic DOS (site-projected DOS) label should be provided by file atomic DOS (site-projected DOS).npy in each data system. If both start_pref_atomic DOS (site-projected DOS) and limit_pref_atomic DOS (site-projected DOS) are set to 0, then the atomic DOS (site-projected DOS) will be ignored.

limit_pref_ados:
type: float | int, optional, default: 1.0
argument path: loss[dos]/limit_pref_ados

The prefactor of atomic DOS (site-projected DOS) loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

start_pref_acdf:
type: float | int, optional, default: 0.0
argument path: loss[dos]/start_pref_acdf

The prefactor of Cumulative integral of atomic DOS loss at the start of the training. Should be larger than or equal to 0. If set to none-zero value, the Cumulative integral of atomic DOS label should be provided by file Cumulative integral of atomic DOS.npy in each data system. If both start_pref_Cumulative integral of atomic DOS and limit_pref_Cumulative integral of atomic DOS are set to 0, then the Cumulative integral of atomic DOS will be ignored.

limit_pref_acdf:
type: float | int, optional, default: 0.0
argument path: loss[dos]/limit_pref_acdf

The prefactor of Cumulative integral of atomic DOS loss at the limit of the training, Should be larger than or equal to 0. i.e. the training step goes to infinity.

When type is set to tensor:

pref:
type: float | int
argument path: loss[tensor]/pref

The prefactor of the weight of global loss. It should be larger than or equal to 0. If controls the weight of loss corresponding to global label, i.e. ‘polarizability.npy` or dipole.npy, whose shape should be #frames x [9 or 3]. If it’s larger than 0.0, this npy should be included.

pref_atomic:
type: float | int
argument path: loss[tensor]/pref_atomic

The prefactor of the weight of atomic loss. It should be larger than or equal to 0. If controls the weight of loss corresponding to atomic label, i.e. atomic_polarizability.npy or atomic_dipole.npy, whose shape should be #frames x ([9 or 3] x #selected atoms). If it’s larger than 0.0, this npy should be included. Both pref and pref_atomic should be provided, and either can be set to 0.0.

loss_dict:
type: dict, optional
argument path: loss_dict

The dictionary of definitions of multiple loss functions in multi-task mode. Each loss_dict[fitting_key], with user-defined name fitting_key in model/fitting_net_dict, is the single definition of loss function, whose type should be set to tensor, ener or left unset.

training:
type: dict
argument path: training

The training options.

training_data:
type: dict, optional
argument path: training/training_data

Configurations of training data.

systems:
type: str | list
argument path: training/training_data/systems

The data systems for training. This key can be provided with a list that specifies the systems, or be provided with a string by which the prefix of all systems are given and the list of the systems is automatically generated.

set_prefix:
type: str, optional, default: set
argument path: training/training_data/set_prefix

The prefix of the sets in the systems.

batch_size:
type: int | str | list, optional, default: auto
argument path: training/training_data/batch_size

This key can be

  • list: the length of which is the same as the systems. The batch size of each system is given by the elements of the list.

  • int: all systems use the same batch size.

  • string “auto”: automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than 32.

  • string “auto:N”: automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than N.

  • string “mixed:N”: the batch data will be sampled from all systems and merged into a mixed system with the batch size N. Only support the se_atten descriptor.

If MPI is used, the value should be considered as the batch size per task.

auto_prob:
type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/training_data/auto_prob

Determine the probability of systems automatically. The method is assigned by this key and can be

  • “prob_uniform” : the probability all the systems are equal, namely 1.0/self.get_nsystems()

  • “prob_sys_size” : the probability of a system is proportional to the number of batches in the system

  • “prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;…” : the list of systems is devided into blocks. A block is specified by stt_idx:end_idx:weight, where stt_idx is the starting index of the system, end_idx is then ending (not including) index of the system, the probabilities of the systems in this block sums up to weight, and the relatively probabilities within this block is proportional to the number of batches in the system.

sys_probs:
type: NoneType | list, optional, default: None, alias: sys_weights
argument path: training/training_data/sys_probs

A list of float if specified. Should be of the same length as systems, specifying the probability of each system.

validation_data:
type: dict | NoneType, optional, default: None
argument path: training/validation_data

Configurations of validation data. Similar to that of training data, except that a numb_btch argument may be configured

systems:
type: str | list
argument path: training/validation_data/systems

The data systems for validation. This key can be provided with a list that specifies the systems, or be provided with a string by which the prefix of all systems are given and the list of the systems is automatically generated.

set_prefix:
type: str, optional, default: set
argument path: training/validation_data/set_prefix

The prefix of the sets in the systems.

batch_size:
type: int | str | list, optional, default: auto
argument path: training/validation_data/batch_size

This key can be

  • list: the length of which is the same as the systems. The batch size of each system is given by the elements of the list.

  • int: all systems use the same batch size.

  • string “auto”: automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than 32.

  • string “auto:N”: automatically determines the batch size so that the batch_size times the number of atoms in the system is no less than N.

auto_prob:
type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/validation_data/auto_prob

Determine the probability of systems automatically. The method is assigned by this key and can be

  • “prob_uniform” : the probability all the systems are equal, namely 1.0/self.get_nsystems()

  • “prob_sys_size” : the probability of a system is proportional to the number of batches in the system

  • “prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;…” : the list of systems is devided into blocks. A block is specified by stt_idx:end_idx:weight, where stt_idx is the starting index of the system, end_idx is then ending (not including) index of the system, the probabilities of the systems in this block sums up to weight, and the relatively probabilities within this block is proportional to the number of batches in the system.

sys_probs:
type: NoneType | list, optional, default: None, alias: sys_weights
argument path: training/validation_data/sys_probs

A list of float if specified. Should be of the same length as systems, specifying the probability of each system.

numb_btch:
type: int, optional, default: 1, alias: numb_batch
argument path: training/validation_data/numb_btch

An integer that specifies the number of batches to be sampled for each validation period.

mixed_precision:
type: dict, optional
argument path: training/mixed_precision

Configurations of mixed precision.

output_prec:
type: str, optional, default: float32
argument path: training/mixed_precision/output_prec

The precision for mixed precision params. ” “The trainable variables precision during the mixed precision training process, ” “supported options are float32 only currently.

compute_prec:
type: str
argument path: training/mixed_precision/compute_prec

The precision for mixed precision compute. ” “The compute precision during the mixed precision training process, “” “supported options are float16 and bfloat16 currently.

numb_steps:
type: int, alias: stop_batch
argument path: training/numb_steps

Number of training batch. Each training uses one batch of data.

seed:
type: NoneType | int, optional
argument path: training/seed

The random seed for getting frames from the training data set.

disp_file:
type: str, optional, default: lcurve.out
argument path: training/disp_file

The file for printing learning curve.

disp_freq:
type: int, optional, default: 1000
argument path: training/disp_freq

The frequency of printing learning curve.

save_freq:
type: int, optional, default: 1000
argument path: training/save_freq

The frequency of saving check point.

save_ckpt:
type: str, optional, default: model.ckpt
argument path: training/save_ckpt

The file name of saving check point.

disp_training:
type: bool, optional, default: True
argument path: training/disp_training

Displaying verbose information during training.

time_training:
type: bool, optional, default: True
argument path: training/time_training

Timing durining training.

profiling:
type: bool, optional, default: False
argument path: training/profiling

Profiling during training.

profiling_file:
type: str, optional, default: timeline.json
argument path: training/profiling_file

Output file for profiling.

enable_profiler:
type: bool, optional, default: False
argument path: training/enable_profiler

Enable TensorFlow Profiler (available in TensorFlow 2.3) to analyze performance. The log will be saved to tensorboard_log_dir.

tensorboard:
type: bool, optional, default: False
argument path: training/tensorboard

Enable tensorboard

tensorboard_log_dir:
type: str, optional, default: log
argument path: training/tensorboard_log_dir

The log directory of tensorboard outputs

tensorboard_freq:
type: int, optional, default: 1
argument path: training/tensorboard_freq

The frequency of writing tensorboard events.

data_dict:
type: dict, optional
argument path: training/data_dict

The dictionary of multi DataSystems in multi-task mode. Each data_dict[fitting_key], with user-defined name fitting_key in model/fitting_net_dict, contains training data and optional validation data definitions.

fitting_weight:
type: dict, optional
argument path: training/fitting_weight

Each fitting_weight[fitting_key], with user-defined name fitting_key in model/fitting_net_dict, is the training weight of fitting net fitting_key. Fitting nets with higher weights will be selected with higher probabilities to be trained in one step. Weights will be normalized and minus ones will be ignored. If not set, each fitting net will be equally selected when training.

nvnmd:
type: dict, optional
argument path: nvnmd

The nvnmd options.

version:
type: int
argument path: nvnmd/version

configuration the nvnmd version (0 | 1), 0 for 4 types, 1 for 32 types

net_size:
type: int
argument path: nvnmd/net_size

configuration the number of nodes of fitting_net, just can be set as 128

map_file:
type: str
argument path: nvnmd/map_file

A file containing the mapping tables to replace the calculation of embedding nets

config_file:
type: str
argument path: nvnmd/config_file

A file containing the parameters about how to implement the model in certain hardware

weight_file:
type: str
argument path: nvnmd/weight_file

a *.npy file containing the weights of the model

enable:
type: bool
argument path: nvnmd/enable

enable the nvnmd training

restore_descriptor:
type: bool
argument path: nvnmd/restore_descriptor

enable to restore the parameter of embedding_net from weight.npy

restore_fitting_net:
type: bool
argument path: nvnmd/restore_fitting_net

enable to restore the parameter of fitting_net from weight.npy

quantize_descriptor:
type: bool
argument path: nvnmd/quantize_descriptor

enable the quantizatioin of descriptor

quantize_fitting_net:
type: bool
argument path: nvnmd/quantize_fitting_net

enable the quantizatioin of fitting_net

Parallel training

Currently, parallel training is enabled in a synchronized way with help of Horovod. Depending on the number of training processes (according to MPI context) and the number of GPU cards available, DeePMD-kit will decide whether to launch the training in parallel (distributed) mode or in serial mode. Therefore, no additional options are specified in your JSON/YAML input file.

Tuning learning rate

Horovod works in the data-parallel mode, resulting in a larger global batch size. For example, the real batch size is 8 when batch_size is set to 2 in the input file and you launch 4 workers. Thus, learning_rate is automatically scaled by the number of workers for better convergence. Technical details of such heuristic rule are discussed at Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.

The number of decay steps required to achieve the same accuracy can decrease by the number of cards (e.g., 1/2 of steps in the above case), but needs to be scaled manually in the input file.

In some cases, it won’t work well when scaling the learning rate by worker count in a linear way. Then you can try sqrt or none by setting argument scale_by_worker like below.

    "learning_rate" :{
        "scale_by_worker": "none",
        "type": "exp"
    }

Scaling test

Testing examples/water/se_e2_a on an 8-GPU host, linear acceleration can be observed with the increasing number of cards.

Num of GPU cards

Seconds every 100 samples

Samples per second

Speed up

1

1.4515

68.89

1.00

2

1.5962

62.65*2

1.82

4

1.7635

56.71*4

3.29

8

1.7267

57.91*8

6.72

How to use

Training workers can be launched with horovodrun. The following command launches 4 processes on the same host:

CUDA_VISIBLE_DEVICES=4,5,6,7 horovodrun -np 4 \
    dp train --mpi-log=workers input.json

Need to mention, the environment variable CUDA_VISIBLE_DEVICES must be set to control parallelism on the occupied host where one process is bound to one GPU card.

To maximize the performance, one should follow FAQ: How to control the parallelism of a job to control the number of threads.

When using MPI with Horovod, horovodrun is a simple wrapper around mpirun. In the case where fine-grained control over options is passed to mpirun, mpirun can be invoked directly, and it will be detected automatically by Horovod, e.g.,

CUDA_VISIBLE_DEVICES=4,5,6,7 mpirun -l -launcher=fork -hosts=localhost -np 4 \
    dp train --mpi-log=workers input.json

this is sometimes necessary for an HPC environment.

Whether distributed workers are initiated can be observed in the “Summary of the training” section in the log (world size > 1, and distributed).

[0] DEEPMD INFO    ---Summary of the training---------------------------------------
[0] DEEPMD INFO    distributed
[0] DEEPMD INFO    world size:           4
[0] DEEPMD INFO    my rank:              0
[0] DEEPMD INFO    node list:            ['exp-13-57']
[0] DEEPMD INFO    running on:           exp-13-57
[0] DEEPMD INFO    computing device:     gpu:0
[0] DEEPMD INFO    CUDA_VISIBLE_DEVICES: 0,1,2,3
[0] DEEPMD INFO    Count of visible GPU: 4
[0] DEEPMD INFO    num_intra_threads:    0
[0] DEEPMD INFO    num_inter_threads:    0
[0] DEEPMD INFO    -----------------------------------------------------------------

Logging

What’s more, 2 command-line arguments are defined to control the logging behavior when performing parallel training with MPI.

optional arguments:
  -l LOG_PATH, --log-path LOG_PATH
                        set log file to log messages to disk, if not
                        specified, the logs will only be output to console
                        (default: None)
  -m {master,collect,workers}, --mpi-log {master,collect,workers}
                        Set the manner of logging when running with MPI.
                        'master' logs only on main process, 'collect'
                        broadcasts logs from workers to master and 'workers'
                        means each process will output its own log (default:
                        master)

Multi-task training

Perform the multi-task training

Training on multiple data sets (each data set contains several data systems) can be performed in multi-task mode, with one common descriptor and multiple specific fitting nets for each data set. One can simply switch the following parameters in training input script to perform multi-task mode:

  • fitting_net –> fitting_net_dict, each key of which can be one individual fitting net.

  • training_data, validation_data –> data_dict, each key of which can be one individual data set contains several data systems for corresponding fitting net, the keys must be consistent with those in fitting_net_dict.

  • loss –> loss_dict, each key of which can be one individual loss setting for corresponding fitting net, the keys must be consistent with those in fitting_net_dict, if not set, the corresponding fitting net will use the default loss.

  • (Optional) fitting_weight, each key of which can be a non-negative integer or float, deciding the chosen probability for corresponding fitting net in training, if not set or invalid, the corresponding fitting net will not be used.

The training procedure will automatically choose single-task or multi-task mode, based on the above parameters. Note that parameters of single-task mode and multi-task mode can not be mixed.

An example input for training energy and dipole in water system can be found here: multi-task input on water.

The supported descriptors for multi-task mode are listed:

The supported fitting nets for multi-task mode are listed:

The output of dp freeze command in multi-task mode can be seen in freeze command.

Initialization from pretrained multi-task model

For advance training in multi-task mode, one can first train the descriptor on several upstream datasets and then transfer it on new downstream ones with newly added fitting nets. At the second step, you can also inherit some fitting nets trained on upstream datasets, by merely adding fitting net keys in fitting_net_dict and optional fitting net weights in fitting_weight.

Take multi-task input on water again for example. You can first train a multi-task model using input script with the following model part:

    "model": {
        "type_map": ["O", "H"],
        "descriptor": {
            "type":     "se_e2_a",
            "sel":      [46, 92],
            "rcut_smth":    0.5,
            "rcut":     6.0,
            "neuron":       [25, 50, 100],
        },
        "fitting_net_dict": {
            "water_dipole": {
                "type":         "dipole",
                "neuron":       [100, 100, 100],
            },
            "water_ener": {
                "neuron":       [240, 240, 240],
                "resnet_dt":    true,
            }
        },
    }

After training, you can freeze this multi-task model into one unit graph:

$ dp freeze -o graph.pb --united-model

Then if you want to transfer the trained descriptor and some fitting nets (take water_ener for example) to newly added datasets with new fitting net water_ener_2, you can modify the model part of the new input script in a more simplified way:

    "model": {
        "type_map": ["O", "H"],
        "descriptor": {},
        "fitting_net_dict": {
            "water_ener": {},
            "water_ener_2": {
                "neuron":       [240, 240, 240],
                "resnet_dt":    true,
            }
        },
    }

It will autocomplete the configurations according to the frozen graph.

Note that for newly added fitting net keys, other parts in the input script, including data_dict and loss_dict (optionally fitting_weight), should be set explicitly. While for old fitting net keys, it will inherit the old configurations if not set.

Finally, you can perform the modified multi-task training from the frozen model with command:

$ dp train input.json --init_frz_model graph.pb

Share layers among energy fitting networks

The multi-task training can be used to train multiple levels of energies (e.g. DFT and CCSD(T)) at the same time. In this situation, one can set model/fitting_net[ener]/layer_name> to share some of layers among fitting networks. The architecture of the layers with the same name should be the same.

For example, if one want to share the first and the third layers for two three-hidden-layer fitting networks, the following parameters should be set.

"fitting_net_dict": {
    "ccsd": {
        "neuron": [
            240,
            240,
            240
        ],
        "layer_name": ["l0", null, "l2", null]
    },
    "wb97m": {
        "neuron": [
            240,
            240,
            240
        ],
        "layer_name": ["l0", null, "l2", null]
    }
}

TensorBoard Usage

TensorBoard provides the visualization and tooling needed for machine learning experimentation. Full instructions for TensorBoard can be found here.

Highlighted features

DeePMD-kit can now use most of the interesting features enabled by TensorBoard!

  • Tracking and visualizing metrics, such as l2_loss, l2_energy_loss and l2_force_loss

  • Visualizing the model graph (ops and layers)

  • Viewing histograms of weights, biases, or other tensors as they change over time.

  • Viewing summaries of trainable variables

How to use Tensorboard with DeePMD-kit

Before running TensorBoard, make sure you have generated summary data in a log directory by modifying the input script, setting tensorboard to true in the training subsection will enable the TensorBoard data analysis. eg. water_se_a.json.

    "training" : {
	"systems":	["../data/"],
	"set_prefix":	"set",
	"stop_batch":	1000000,
	"batch_size":	1,

	"seed":		1,

	"_comment": " display and restart",
	"_comment": " frequencies counted in batch",
	"disp_file":	"lcurve.out",
	"disp_freq":	100,
	"numb_test":	10,
	"save_freq":	1000,
	"save_ckpt":	"model.ckpt",

	"disp_training":true,
	"time_training":true,
	"tensorboard":	true,
	"tensorboard_log_dir":"log",
	"tensorboard_freq": 1000,
	"profiling":	false,
	"profiling_file":"timeline.json",
	"_comment":	"that's all"
    }

Once you have event files, run TensorBoard and provide the log directory. This should print that TensorBoard has started. Next, connect to http://tensorboard_server_ip:6006.

TensorBoard requires a logdir to read logs from. For info on configuring TensorBoard, run TensorBoard –help. One can easily change the log name with “tensorboard_log_dir” and the sampling frequency with “tensorboard_freq”.

tensorboard --logdir path/to/logs

Examples

Tracking and visualizing loss metrics(red:train, blue:test)

l2 loss

l2 energy loss

l2 force loss

Visualizing DeePMD-kit model graph

DeePMD-kit graph

Viewing histograms of weights, biases, or other tensors as they change over time

DeePMD-kit histograms

DeePMD-kit distribution

Viewing summaries of trainable variables

DeePMD-kit scalar

Attention

Allowing the tensorboard analysis will takes extra execution time.(eg, 15% increasing @Nvidia GTX 1080Ti double precision with default water sample)

TensorBoard can be used in Google Chrome or Firefox. Other browsers might work, but there may be bugs or performance issues.

Known limitations of using GPUs

If you use DeePMD-kit in a GPU environment, the acceptable value range of some variables is additionally restricted compared to the CPU environment due to the software’s GPU implementations:

  1. The number of atom types of a given system must be less than 128.

  2. The maximum distance between an atom and its neighbors must be less than 128. It can be controlled by setting the rcut value of training parameters.

  3. Theoretically, the maximum number of atoms that a single GPU can accept is about 10,000,000. However, this value is limited by the GPU memory size currently, usually within 1000,000 atoms even in the model compression mode.

  4. The total sel value of training parameters(in model/descriptor section) must be less than 4096.

  5. The size of the last layer of the embedding net must be less than 1024 during the model compression process.

Finetune the pretrained model

Pretraining-and-finetuning is a widely used approach in other fields such as Computer Vision (CV) or Natural Language Processing (NLP) to vastly reduce the training cost, while it’s not trivial in potential models. Compositions and configurations of data samples or even computational parameters in upstream software (such as VASP) may be different between the pretrained and target datasets, leading to energy shifts or other diversities of training data.

Recently the emerging of methods such as DPA-1 has brought us to a new stage where we can perform similar pretraining-finetuning approaches. DPA-1 can hopefully learn the common knowledge in the pretrained dataset (especially the force information) and thus reduce the computational cost in downstream training tasks. If you have a pretrained model pretrained.pb (here we support models using se_atten descriptor and ener fitting net) on a large dataset (for example, OC2M in DPA-1 paper), a finetuning strategy can be performed by simply running:

$ dp train input.json --finetune pretrained.pb

The command above will change the energy bias in the last layer of the fitting net in pretrained.pb, according to the training dataset in input.json.

Warning

Note that the elements in the training dataset must be contained in the pretrained dataset.

The finetune procedure will inherit the model structures in pretrained.pb, and thus it will ignore the model parameters in input.json, such as descriptor, fitting_net, type_embedding and type_map. However, you can still set the trainable parameters in each part of input.json to control the training procedure.

To obtain a more simplified script, for example, you can change the model part in input.json to perform finetuning:

    "model": {
        "type_map":     ["O", "H"],
        "type_embedding": {"trainable":  true},
        "descriptor" :  {},
        "fitting_net" : {}
    }

Freeze and Compress

Freeze a model

The trained neural network is extracted from a checkpoint and dumped into a protobuf(.pb) file. This process is called “freezing” a model. The idea and part of our code are from Morgan. To freeze a model, typically one does

$ dp freeze -o graph.pb

in the folder where the model is trained. The output model is called graph.pb.

In multi-task mode:

  • This process will in default output several models, each of which contains the common descriptor and one of the user-defined fitting nets in fitting_net_dict, let’s name it fitting_key, together frozen in graph_{fitting_key}.pb. Those frozen models are exactly the same as single-task output with fitting net fitting_key.

  • If you add --united-model option in this situation, the total multi-task model will be frozen into one unit graph.pb, which is mainly for multi-task initialization and can not be used directly for inference.

Compress a model

Once the frozen model is obtained from DeePMD-kit, we can get the neural network structure and its parameters (weights, biases, etc.) from the trained model, and compress it in the following way:

dp compress -i graph.pb -o graph-compress.pb

where -i gives the original frozen model, -o gives the compressed model. Several other command line options can be passed to dp compress, which can be checked with

$ dp compress --help

An explanation will be provided

usage: dp compress [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
                   [-m {master,collect,workers}] [-i INPUT] [-o OUTPUT]
                   [-s STEP] [-e EXTRAPOLATE] [-f FREQUENCY]
                   [-c CHECKPOINT_FOLDER]

optional arguments:
  -h, --help            show this help message and exit
  -v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}, --log-level {DEBUG,3,INFO,2,WARNING,1,ERROR,0}
                        set verbosity level by string or number, 0=ERROR,
                        1=WARNING, 2=INFO and 3=DEBUG (default: INFO)
  -l LOG_PATH, --log-path LOG_PATH
                        set log file to log messages to disk, if not
                        specified, the logs will only be output to console
                        (default: None)
  -m {master,collect,workers}, --mpi-log {master,collect,workers}
                        Set the manner of logging when running with MPI.
                        'master' logs only on main process, 'collect'
                        broadcasts logs from workers to master and 'workers'
                        means each process will output its own log (default:
                        master)
  -i INPUT, --input INPUT
                        The original frozen model, which will be compressed by
                        the code (default: frozen_model.pb)
  -o OUTPUT, --output OUTPUT
                        The compressed model (default:
                        frozen_model_compressed.pb)
  -s STEP, --step STEP  Model compression uses fifth-order polynomials to
                        interpolate the embedding-net. It introduces two
                        tables with different step size to store the
                        parameters of the polynomials. The first table covers
                        the range of the training data, while the second table
                        is an extrapolation of the training data. The domain
                        of each table is uniformly divided by a given step
                        size. And the step(parameter) denotes the step size of
                        the first table and the second table will use 10 *
                        step as it's step size to save the memory. Usually the
                        value ranges from 0.1 to 0.001. Smaller step means
                        higher accuracy and bigger model size (default: 0.01)
  -e EXTRAPOLATE, --extrapolate EXTRAPOLATE
                        The domain range of the first table is automatically
                        detected by the code: [d_low, d_up]. While the second
                        table ranges from the first table's upper
                        boundary(d_up) to the extrapolate(parameter) * d_up:
                        [d_up, extrapolate * d_up] (default: 5)
  -f FREQUENCY, --frequency FREQUENCY
                        The frequency of tabulation overflow check(Whether the
                        input environment matrix overflow the first or second
                        table range). By default do not check the overflow
                        (default: -1)
  -c CHECKPOINT_FOLDER, --checkpoint-folder CHECKPOINT_FOLDER
                        path to checkpoint folder (default: .)
  -t TRAINING_SCRIPT, --training-script TRAINING_SCRIPT
                        The training script of the input frozen model
                        (default: None)

Parameter explanation

Model compression, which includes tabulating the embedding net. The table is composed of fifth-order polynomial coefficients and is assembled from two sub-tables. For model descriptor with se_e2_a type, the first sub-table takes the stride(parameter) as its uniform stride, while the second sub-table takes 10 * stride as its uniform stride; For model descriptor with se_e3 type, the first sub-table takes 10 * stride as it’s uniform stride, while the second sub-table takes 100 * stride as it’s uniform stride. The range of the first table is automatically detected by DeePMD-kit, while the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter) * upper. Finally, we added a check frequency parameter. It indicates how often the program checks for overflow(if the input environment matrix overflows the first or second table range) during the MD inference.

Justification of model compression

Model compression, with little loss of accuracy, can greatly speed up MD inference time. According to different simulation systems and training parameters, the speedup can reach more than 10 times at both CPU and GPU devices. At the same time, model compression can greatly change memory usage, reducing as much as 20 times under the same hardware conditions.

Acceptable original model version

The model compression interface requires the version of DeePMD-kit used in the original model generation should be 2.0.0-alpha.0 or above. If one has a frozen 1.2 or 1.3 model, one can upgrade it through the dp convert-from interface. (eg: dp convert-from 1.2/1.3 -i old_frozen_model.pb -o new_frozen_model.pb)

Acceptable descriptor type

Descriptors with se_e2_a, se_e3, se_e2_r and se_atten types are supported by the model compression feature. Hybrid mixed with the above descriptors is also supported.

Available activation functions for descriptor:

  • tanh

  • gelu

  • relu

  • relu6

  • softplus

  • sigmoid

Test

Test a model

The frozen model can be used in many ways. The most straightforward test can be performed using dp test. A typical usage of dp test is

dp test -m graph.pb -s /path/to/system -n 30

where -m gives the tested model, -s the path to the tested system and -n the number of tested frames. Several other command line options can be passed to dp test, which can be checked with

$ dp test --help

An explanation will be provided

usage: dp test [-h] [-m MODEL] [-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST]
               [-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE]

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
                        Frozen model file to import
  -s SYSTEM, --system SYSTEM
                        The system dir
  -S SET_PREFIX, --set-prefix SET_PREFIX
                        The set prefix
  -n NUMB_TEST, --numb-test NUMB_TEST
                        The number of data for test
  -r RAND_SEED, --rand-seed RAND_SEED
                        The random seed
  --shuffle-test        Shuffle test data
  -d DETAIL_FILE, --detail-file DETAIL_FILE
                        The prefix to files where details of energy, force and virial accuracy/accuracy per atom will be written
  -a, --atomic          Test the accuracy of atomic label, i.e. energy / tensor (dipole, polar)

Calculate Model Deviation

One can also use a subcommand to calculate the deviation of predicted forces or virials for a bunch of models in the following way:

dp model-devi -m graph.000.pb graph.001.pb graph.002.pb graph.003.pb -s ./data -o model_devi.out

where -m specifies graph files to be calculated, -s gives the data to be evaluated, -o the file to which model deviation results is dumped. Here is more information on this sub-command:

usage: dp model-devi [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}]
                     [-l LOG_PATH] [-m MODELS [MODELS ...]] [-s SYSTEM]
                     [-S SET_PREFIX] [-o OUTPUT] [-f FREQUENCY] [-i ITEMS]

optional arguments:
  -h, --help            show this help message and exit
  -v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}, --log-level {DEBUG,3,INFO,2,WARNING,1,ERROR,0}
                        set verbosity level by string or number, 0=ERROR,
                        1=WARNING, 2=INFO and 3=DEBUG (default: INFO)
  -l LOG_PATH, --log-path LOG_PATH
                        set log file to log messages to disk, if not
                        specified, the logs will only be output to console
                        (default: None)
  -m MODELS [MODELS ...], --models MODELS [MODELS ...]
                        Frozen models file to import (default:
                        ['graph.000.pb', 'graph.001.pb', 'graph.002.pb',
                        'graph.003.pb'])
  -s SYSTEM, --system SYSTEM
                        The system directory, not support recursive detection.
                        (default: .)
  -S SET_PREFIX, --set-prefix SET_PREFIX
                        The set prefix (default: set)
  -o OUTPUT, --output OUTPUT
                        The output file for results of model deviation
                        (default: model_devi.out)
  -f FREQUENCY, --frequency FREQUENCY
                        The trajectory frequency of the system (default: 1)

For more details concerning the definition of model deviation and its application, please refer to Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models, Computer Physics Communications, 2020, 253, 107206.

Inference

Note that the model for inference is required to be compatible with the DeePMD-kit package. See Model compatibility for details.

Python interface

One may use the python interface of DeePMD-kit for model inference, an example is given as follows

from deepmd.infer import DeepPot
import numpy as np

dp = DeepPot("graph.pb")
coord = np.array([[1, 0, 0], [0, 0, 1.5], [1, 0, 3]]).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])
atype = [1, 0, 1]
e, f, v = dp.eval(coord, cell, atype)

where e, f and v are predicted energy, force and virial of the system, respectively.

Furthermore, one can use the python interface to calculate model deviation.

from deepmd.infer import calc_model_devi
from deepmd.infer import DeepPot as DP
import numpy as np

coord = np.array([[1, 0, 0], [0, 0, 1.5], [1, 0, 3]]).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])
atype = [1, 0, 1]
graphs = [DP("graph.000.pb"), DP("graph.001.pb")]
model_devi = calc_model_devi(coord, cell, atype, graphs)

Note that if the model inference or model deviation is performed cyclically, one should avoid calling the same model multiple times. Otherwise, tensorFlow will never release the memory and this may lead to an out-of-memory (OOM) error.

C/C++ interface

C++ interface

The C++ interface of DeePMD-kit is also available for the model interface, which is considered faster than the Python interface. An example infer_water.cpp is given below:

#include "deepmd/DeepPot.h"

int main(){
  deepmd::DeepPot dp ("graph.pb");
  std::vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
  std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
  std::vector<int > atype = {1, 0, 1};
  double e;
  std::vector<double > f, v;
  dp.compute (e, f, v, coord, atype, cell);
}

where e, f and v are predicted energy, force and virial of the system, respectively. See deepmd::DeepPot for details.

You can compile infer_water.cpp using gcc:

gcc infer_water.cpp -L $deepmd_root/lib -L $tensorflow_root/lib -I $deepmd_root/include -Wl,--no-as-needed -ldeepmd_cc -lstdc++ -ltensorflow_cc -Wl,-rpath=$deepmd_root/lib -Wl,-rpath=$tensorflow_root/lib -o infer_water

and then run the program:

./infer_water

C interface

Although C is harder to write, the C library will not be affected by different versions of C++ compilers.

An example infer_water.c is given below:

#include <stdio.h>
#include <stdlib.h>
#include "deepmd/c_api.h"

int main(){
  const char* model = "graph.pb";
  double coord[] = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
  double cell[] = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
  int atype[] = {1, 0, 1};
  // init C pointers with given memory
  double* e = malloc(sizeof(*e));
  double* f = malloc(sizeof(*f) * 9); // natoms * 3
  double* v = malloc(sizeof(*v) * 9);
  double* ae = malloc(sizeof(*ae) * 9); // natoms
  double* av = malloc(sizeof(*av) * 27); // natoms * 9
  // DP model
  DP_DeepPot* dp = DP_NewDeepPot(model);
  DP_DeepPotCompute (dp, 3, coord, atype, cell, e, f, v, ae, av);
  // print results
  printf("energy: %f\n", *e);
  for (int ii = 0; ii < 9; ++ii)
    printf("force[%d]: %f\n", ii, f[ii]);
  for (int ii = 0; ii < 9; ++ii)
    printf("force[%d]: %f\n", ii, v[ii]);
  // free memory
  free(e);
  free(f);
  free(v);
  free(ae);
  free(av);
  free(dp);
}

where e, f and v are predicted energy, force and virial of the system, respectively. ae and av are atomic energy and atomic virials, respectively. See DP_DeepPotCompute() for details.

You can compile infer_water.c using gcc:

gcc infer_water.c -L $deepmd_root/lib -L $tensorflow_root/lib -I $deepmd_root/include -Wl,--no-as-needed -ldeepmd_c -Wl,-rpath=$deepmd_root/lib -Wl,-rpath=$tensorflow_root/lib -o infer_water

and then run the program:

./infer_water

Node.js interface

If Node.js interface is installed, one can use the Node.js interface for model inference, which is a wrapper of the header-only C++ API.

A simple example is shown below.

const deepmd = require("deepmd-kit");

const dp = new deepmd.DeepPot("graph.pb");

const coord = [1., 0., 0., 0., 0., 1.5, 1., 0., 3.];
const atype = [1, 0, 1];
const cell = [10., 0., 0., 0., 10., 0., 0., 0., 10.];

const v_coord = new deepmd.vectord(coord.length);
const v_atype = new deepmd.vectori(atype.length);
const v_cell = new deepmd.vectord(cell.length);
for (var i = 0; i < coord.length; i++) v_coord.set(i, coord[i]);
for (var i = 0; i < atype.length; i++) v_atype.set(i, atype[i]);
for (var i = 0; i < cell.length; i++) v_cell.set(i, cell[i]);

var energy = 0.0
var v_forces = new deepmd.vectord();
var v_virials = new deepmd.vectord();

energy = dp.compute(energy, v_forces, v_virials, v_coord, v_atype, v_cell);

console.log("energy:", energy);
console.log("forces:", [...Array(v_forces.size()).keys()].map(i => v_forces.get(i)));
console.log("virials:", [...Array(v_virials.size()).keys()].map(i => v_virials.get(i)));

Energy, forces, and virials will be printed to the screen.

Command line interface

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

usage: dp [-h] [--version]
          {transfer,train,freeze,test,compress,doc-train-input,model-devi,convert-from,neighbor-stat,train-nvnmd}
          ...

Named Arguments

--version

show program’s version number and exit

Valid subcommands

command

Possible choices: transfer, train, freeze, test, compress, doc-train-input, model-devi, convert-from, neighbor-stat, train-nvnmd

Sub-commands

transfer

pass parameters to another model

dp transfer [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
            [-r RAW_MODEL] [-O OLD_MODEL] [-o OUTPUT]
Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-r, --raw-model

the model receiving parameters

Default: “raw_frozen_model.pb”

-O, --old-model

the model providing parameters

Default: “old_frozen_model.pb”

-o, --output

the model after passing parameters

Default: “frozen_model.pb”

train

train a model

dp train [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
         [-m {master,collect,workers}]
         [-i INIT_MODEL | -r RESTART | -f INIT_FRZ_MODEL | -t FINETUNE]
         [-o OUTPUT] [--skip-neighbor-stat]
         INPUT
Positional Arguments
INPUT

the input parameter file in json or yaml format

Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-m, --mpi-log

Possible choices: master, collect, workers

Set the manner of logging when running with MPI. ‘master’ logs only on main process, ‘collect’ broadcasts logs from workers to master and ‘workers’ means each process will output its own log

Default: “master”

-i, --init-model

Initialize the model by the provided checkpoint.

-r, --restart

Restart the training from the provided checkpoint.

-f, --init-frz-model

Initialize the training from the frozen model.

-t, --finetune

Finetune the frozen pretrained model.

-o, --output

The output file of the parameters used in training.

Default: “out.json”

--skip-neighbor-stat

Skip calculating neighbor statistics. Sel checking, automatic sel, and model compression will be disabled.

Default: False

examples:

dp train input.json dp train input.json –restart model.ckpt dp train input.json –init-model model.ckpt

freeze

freeze the model

dp freeze [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
          [-c CHECKPOINT_FOLDER] [-o OUTPUT] [-n NODE_NAMES] [-w NVNMD_WEIGHT]
          [--united-model]
Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-c, --checkpoint-folder

path to checkpoint folder

Default: “.”

-o, --output

name of graph, will output to the checkpoint folder

Default: “frozen_model.pb”

-n, --node-names

the frozen nodes, if not set, determined from the model type

-w, --nvnmd-weight

the name of weight file (.npy), if set, save the model’s weight into the file

--united-model

When in multi-task mode, freeze all nodes into one united model

Default: False

examples:

dp freeze dp freeze -o graph.pb

test

test the model

dp test [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH] [-m MODEL]
        [-s SYSTEM | -f DATAFILE] [-S SET_PREFIX] [-n NUMB_TEST]
        [-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE] [-a]
Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-m, --model

Frozen model file to import

Default: “frozen_model.pb”

-s, --system

The system dir. Recursively detect systems in this directory

Default: “.”

-f, --datafile

The path to file of test list.

-S, --set-prefix

The set prefix

Default: “set”

-n, --numb-test

The number of data for test

Default: 100

-r, --rand-seed

The random seed

--shuffle-test

Shuffle test data

Default: False

-d, --detail-file

The prefix to files where details of energy, force and virial accuracy/accuracy per atom will be written

-a, --atomic

Test the accuracy of atomic label, i.e. energy / tensor (dipole, polar)

Default: False

examples:

dp test -m graph.pb -s /path/to/system -n 30

compress

compress a model

dp compress [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
            [-m {master,collect,workers}] [-i INPUT] [-o OUTPUT] [-s STEP]
            [-e EXTRAPOLATE] [-f FREQUENCY] [-c CHECKPOINT_FOLDER]
            [-t TRAINING_SCRIPT]
Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-m, --mpi-log

Possible choices: master, collect, workers

Set the manner of logging when running with MPI. ‘master’ logs only on main process, ‘collect’ broadcasts logs from workers to master and ‘workers’ means each process will output its own log

Default: “master”

-i, --input

The original frozen model, which will be compressed by the code

Default: “frozen_model.pb”

-o, --output

The compressed model

Default: “frozen_model_compressed.pb”

-s, --step

Model compression uses fifth-order polynomials to interpolate the embedding-net. It introduces two tables with different step size to store the parameters of the polynomials. The first table covers the range of the training data, while the second table is an extrapolation of the training data. The domain of each table is uniformly divided by a given step size. And the step(parameter) denotes the step size of the first table and the second table will use 10 * step as it’s step size to save the memory. Usually the value ranges from 0.1 to 0.001. Smaller step means higher accuracy and bigger model size

Default: 0.01

-e, --extrapolate

The domain range of the first table is automatically detected by the code: [d_low, d_up]. While the second table ranges from the first table’s upper boundary(d_up) to the extrapolate(parameter) * d_up: [d_up, extrapolate * d_up]

Default: 5

-f, --frequency

The frequency of tabulation overflow check(Whether the input environment matrix overflow the first or second table range). By default do not check the overflow

Default: -1

-c, --checkpoint-folder

path to checkpoint folder

Default: “model-compression”

-t, --training-script

The training script of the input frozen model

examples:

dp compress dp compress -i graph.pb -o compressed.pb

doc-train-input

print the documentation (in rst format) of input training parameters.

dp doc-train-input [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
                   [--out-type {rst,json}]
Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

--out-type

Possible choices: rst, json

The output type

Default: “rst”

model-devi

calculate model deviation

dp model-devi [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
              [-m MODELS [MODELS ...]] [-s SYSTEM] [-S SET_PREFIX] [-o OUTPUT]
              [-f FREQUENCY]
Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-m, --models

Frozen models file to import

Default: [‘graph.000.pb’, ‘graph.001.pb’, ‘graph.002.pb’, ‘graph.003.pb’]

-s, --system

The system directory. Recursively detect systems in this directory.

Default: “.”

-S, --set-prefix

The set prefix

Default: “set”

-o, --output

The output file for results of model deviation

Default: “model_devi.out”

-f, --frequency

The trajectory frequency of the system

Default: 1

examples:

dp model-devi -m graph.000.pb graph.001.pb graph.002.pb graph.003.pb -s ./data -o model_devi.out

convert-from

convert lower model version to supported version

dp convert-from [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
                [-i INPUT_MODEL] [-o OUTPUT_MODEL]
                [{auto,0.12,1.0,1.1,1.2,1.3,2.0,pbtxt}]
Positional Arguments
FROM

Possible choices: auto, 0.12, 1.0, 1.1, 1.2, 1.3, 2.0, pbtxt

The original model compatibility

Default: “auto”

Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-i, --input-model

the input model

Default: “frozen_model.pb”

-o, --output-model

the output model

Default: “convert_out.pb”

examples:

dp convert-from -i graph.pb -o graph_new.pb dp convert-from auto -i graph.pb -o graph_new.pb dp convert-from 1.0 -i graph.pb -o graph_new.pb

neighbor-stat

Calculate neighbor statistics

dp neighbor-stat [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
                 [-s SYSTEM] -r RCUT -t TYPE_MAP [TYPE_MAP ...] [--one-type]
Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-s, --system

The system dir. Recursively detect systems in this directory

Default: “.”

-r, --rcut

cutoff radius

-t, --type-map

type map

--one-type

treat all types as a single type. Used with se_atten descriptor.

Default: False

examples:

dp neighbor-stat -s data -r 6.0 -t O H

train-nvnmd

train nvnmd model

dp train-nvnmd [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-l LOG_PATH]
               [-r RESTART] [-s {s1,s2}] [--skip-neighbor-stat]
               INPUT
Positional Arguments
INPUT

the input parameter file in json format

Named Arguments
-v, --log-level

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING, 2=INFO and 3=DEBUG

Default: “INFO”

-l, --log-path

set log file to log messages to disk, if not specified, the logs will only be output to console

-r, --restart

Restart the training from the provided checkpoint.

-s, --step

Possible choices: s1, s2

steps to train model of NVNMD: s1 (train CNN), s2 (train QNN)

Default: “s1”

--skip-neighbor-stat

Skip calculating neighbor statistics. Sel checking, automatic sel, and model compression will be disabled.

Default: False

Integrate with third-party packages

Note that the model for inference is required to be compatible with the DeePMD-kit package. See Model compatibility for details.

Use deep potential with ASE

Deep potential can be set up as a calculator with ASE to obtain potential energies and forces.

from ase import Atoms
from deepmd.calculator import DP

water = Atoms(
    "H2O",
    positions=[(0.7601, 1.9270, 1), (1.9575, 1, 1), (1.0, 1.0, 1.0)],
    cell=[100, 100, 100],
    calculator=DP(model="frozen_model.pb"),
)
print(water.get_potential_energy())
print(water.get_forces())

Optimization is also available:

from ase.optimize import BFGS

dyn = BFGS(water)
dyn.run(fmax=1e-6)
print(water.get_positions())

Run MD with LAMMPS

Running an MD simulation with LAMMPS is simpler. In the LAMMPS input file, one needs to specify the pair style as follows

pair_style     deepmd graph.pb
pair_coeff     * * O H

where graph.pb is the file name of the frozen model. pair_coeff maps atom names (O H) with LAMMPS atom types (integers from 1 to Ntypes, i.e. 1 2).

LAMMPS commands

Enable DeePMD-kit plugin (plugin mode)

If you are using the plugin mode, enable DeePMD-kit package in LAMMPS with plugin command:

plugin load libdeepmd_lmp.so

After LAMMPS version patch_24Mar2022, another way to load plugins is to set the environmental variable LAMMPS_PLUGIN_PATH:

LAMMPS_PLUGIN_PATH=$deepmd_root/lib/deepmd_lmp

where $deepmd_root is the directory to install C++ interface.

The built-in mode doesn’t need this step.

pair_style deepmd

The DeePMD-kit package provides the pair_style deepmd

pair_style deepmd models ... keyword value ...
  • deepmd = style of this pair_style

  • models = frozen model(s) to compute the interaction. If multiple models are provided, then only the first model serves to provide energy and force prediction for each timestep of molecular dynamics, and the model deviation will be computed among all models every out_freq timesteps.

  • keyword = out_file or out_freq or fparam or fparam_from_compute or atomic or relative or relative_v or aparam or ttm

    out_file value = filename
        filename = The file name for the model deviation output. Default is model_devi.out
    out_freq value = freq
        freq = Frequency for the model deviation output. Default is 100.
    fparam value = parameters
        parameters = one or more frame parameters required for model evaluation.
    fparam_from_compute value = id
        id = compute id used to update the frame parameter.
    atomic = no value is required.
        If this keyword is set, the model deviation of each atom will be output.
    relative value = level
        level = The level parameter for computing the relative model deviation of the force
    relative_v value = level
        level = The level parameter for computing the relative model deviation of the virial
    aparam value = parameters
        parameters = one or more atomic parameters of each atom required for model evaluation
    ttm value = id
        id = fix ID of fix ttm
Examples
pair_style deepmd graph.pb
pair_style deepmd graph.pb fparam 1.2
pair_style deepmd graph_0.pb graph_1.pb graph_2.pb out_file md.out out_freq 10 atomic relative 1.0
pair_coeff * * O H

pair_style deepmd cp.pb fparam_from_compute TEMP
compute    TEMP all temp
Description

Evaluate the interaction of the system by using Deep Potential or Deep Potential Smooth Edition. It is noticed that deep potential is not a “pairwise” interaction, but a multi-body interaction.

This pair style takes the deep potential defined in a model file that usually has the .pb extension. The model can be trained and frozen by package DeePMD-kit, which can have either double or single float precision interface.

The model deviation evalulates the consistency of the force predictions from multiple models. By default, only the maximal, minimal and average model deviations are output. If the key atomic is set, then the model deviation of force prediction of each atom will be output.

By default, the model deviation is output in absolute value. If the keyword relative is set, then the relative model deviation of the force will be output, including values output by the keyword atomic. The relative model deviation of the force on atom \(i\) is defined by

\[E_{f_i}=\frac{\left|D_{f_i}\right|}{\left|f_i\right|+l}\]

where \(D_{f_i}\) is the absolute model deviation of the force on atom \(i\), \(f_i\) is the norm of the force and \(l\) is provided as the parameter of the keyword relative. If the keyword relative_v is set, then the relative model deviation of the virial will be output instead of the absolute value, with the same definition of that of the force:

\[E_{v_i}=\frac{\left|D_{v_i}\right|}{\left|v_i\right|+l}\]

If the keyword fparam is set, the given frame parameter(s) will be fed to the model. If the keyword fparam_from_compute is set, the global parameter(s) from compute command (e.g., temperature from compute temp command) will be fed to the model as the frame parameter(s). If the keyword aparam is set, the given atomic parameter(s) will be fed to the model, where each atom is assumed to have the same atomic parameter(s). If the keyword ttm is set, electronic temperatures from fix ttm command will be fed to the model as the atomic parameters.

Only a single pair_coeff command is used with the deepmd style which specifies atom names. These are mapped to LAMMPS atom types (integers from 1 to Ntypes) by specifying Ntypes additional arguments after * * in the pair_coeff command. If atom names are not set in the pair_coeff command, the training parameter type_map will be used by default. If the training parameter type_map is not set, atom names in the pair_coeff command cannot be set. In this case, atom type indexes in type.raw (integers from 0 to Ntypes-1) will map to LAMMPS atom types.

Spin is specified by keywords virtual_len and spin_norm. If the keyword virtual_len is set, the distance between virtual atom and its corresponding real atom for each type of magnetic atoms will be fed to the model as the spin parameters. If the keyword spin_norm is set, the magnitude of the magnetic moment for each type of magnetic atoms will be fed to the model as the spin parameters.

Restrictions
  • The deepmd pair style is provided in the USER-DEEPMD package, which is compiled from the DeePMD-kit, visit the DeePMD-kit website for more information.

Compute tensorial properties

The DeePMD-kit package provides the compute deeptensor/atom for computing atomic tensorial properties.

compute ID group-ID deeptensor/atom model_file
  • ID: user-assigned name of the computation

  • group-ID: ID of the group of atoms to compute

  • deeptensor/atom: the style of this compute

  • model_file: the name of the binary model file.

At this time, the training parameter type_map will be mapped to LAMMPS atom types.

Examples
compute         dipole all deeptensor/atom dipole.pb

The result of the compute can be dumped to trajectory file by

dump            1 all custom 100 water.dump id type c_dipole[1] c_dipole[2] c_dipole[3]
Restrictions
  • The deeptensor/atom compute is provided in the USER-DEEPMD package, which is compiled from the DeePMD-kit, visit the DeePMD-kit website for more information.

Long-range interaction

The reciprocal space part of the long-range interaction can be calculated by LAMMPS command kspace_style. To use it with DeePMD-kit, one writes

pair_style	deepmd graph.pb
pair_coeff  * *
kspace_style	pppm 1.0e-5
kspace_modify	gewald 0.45

Please notice that the DeePMD does nothing to the direct space part of the electrostatic interaction, because this part is assumed to be fitted in the DeePMD model (the direct space cut-off is thus the cut-off of the DeePMD model). The splitting parameter gewald is modified by the kspace_modify command.

Use of the centroid/stress/atom to get the full 3x3 “atomic-virial”

The DeePMD-kit also allows the computation of per-atom stress tensor defined as:

\[dvatom=-\sum_{m}( \mathbf{r}_n- \mathbf{r}_m) \frac{de_m}{d\mathbf{r}_n}\]

Where \(\mathbf{r}_n\) is the atomic position of nth atom, \(\mathbf{v}_n\) velocity of the atom and \(\frac{de_m}{d\mathbf{r}_n}\) the derivative of the atomic energy.

In LAMMPS one can get the per-atom stress using the command centroid/stress/atom:

compute ID group-ID centroid/stress/atom NULL virial

see LAMMPS doc page for more details on the meaning of the keywords.

Changed in version v2.2.3: v2.2.2 or previous versions passed per-atom stress (cvatom) with the per-atom pressure tensor, which is inconsistent with LAMMPS’s definition. LAMMPS defines per-atom stress as the negative of the per-atom pressure tensor. Such behavior is corrected in v2.2.3.

Examples

In order of computing the 9-component per-atom stress

compute stress all centroid/stress/atom NULL virial

Thus c_stress is an array with 9 components in the order xx,yy,zz,xy,xz,yz,yx,zx,zy.

If you use this feature please cite D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, S. Baroni - arXiv preprint arXiv:2108.10850, 2021

Computation of heat flux

Using a per-atom stress tensor one can, for example, compute the heat flux defined as:

\[\mathbf J = \sum_n e_n \mathbf v_n + \sum_{n,m} ( \mathbf r_m- \mathbf r_n) \frac{de_m}{d\mathbf r_n} \mathbf v_n\]

to compute the heat flux with LAMMPS:

compute ke_ID all ke/atom
compute pe_ID all pe/atom
compute stress_ID group-ID centroid/stress/atom NULL virial
compute flux_ID all heat/flux ke_ID pe_ID stress_ID
Examples
compute ke all ke/atom
compute pe all pe/atom
compute stress all centroid/stress/atom NULL virial
compute flux all heat/flux ke pe stress

c_flux is a global vector of length 6. The first three components are the \(x\), \(y\) and \(z\) components of the full heat flux vector. The others are the components of the so-called convective portion, see LAMMPS doc page for more detailes.

If you use these features please cite D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, S. Baroni - arXiv preprint arXiv:2108.10850, 2021

Run path-integral MD with i-PI

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions of atoms, while the DeePMD-kit provides a client named dp_ipi that computes the interactions (including energy, forces and virials). The server and client communicate via the Unix domain socket or the Internet socket. Installation instructions for i-PI can be found here. The client can be started by

i-pi input.xml &
dp_ipi water.json

It is noted that multiple instances of the client allow for computing, in parallel, the interactions of multiple replicas of the path-integral MD.

water.json is the parameter file for the client dp_ipi, and an example is provided:

{
    "verbose":		false,
    "use_unix":		true,
    "port":		31415,
    "host":		"localhost",
    "graph_file":	"graph.pb",
    "coord_file":	"conf.xyz",
    "atom_type" : {
	"OW":		0,
	"HW1":		1,
	"HW2":		1
    }
}

The option use_unix is set to true to activate the Unix domain socket, otherwise, the Internet socket is used.

The option port should be the same as that in input.xml:

<port>31415</port>

The option graph_file provides the file name of the frozen model. The model can have either double or single float precision interface.

The dp_ipi gets the atom names from an XYZ file provided by coord_file (meanwhile ignores all coordinates in it) and translates the names to atom types by rules provided by atom_type.

Running MD with GROMACS

DP/MM Simulation

This part gives a simple tutorial on how to run a DP/MM simulation for methane in water, which means using DP for methane and TIP3P for water. All relevant files can be found in examples/methane.

Topology Preparation

Similar to QM/MM simulation, the internal interactions (including bond, angle, dihedrals, LJ, Columb) of the region described by a neural network potential (NNP) have to be turned off. In GROMACS, bonded interactions can be turned off by modifying [ bonds ], [ angles ], [ dihedrals ] and [ pairs ] sections. And LJ and Columb interactions must be turned off by [ exclusions ] section.

For example, if one wants to simulate ethane in water, using DeepPotential for methane and TIP3P for water, the topology of methane should be like the following (as presented in examples/methane/methane.itp):

[ atomtypes ]
;name btype  mass  charge ptype    sigma  epsilon
  c3    c3   0.0     0.0     A 0.339771 0.451035
  hc    hc   0.0     0.0     A 0.260018 0.087027

[ moleculetype ]
;name            nrexcl
 methane          3

[ atoms ]
; nr type  resnr residue atom  cgnr  charge   mass
  1   c3      1     MOL   C1     1 -0.1068 12.010
  2   hc      1     MOL   H1     2  0.0267  1.008
  3   hc      1     MOL   H2     3  0.0267  1.008
  4   hc      1     MOL   H3     4  0.0267  1.008
  5   hc      1     MOL   H4     5  0.0267  1.008

[ bonds ]
; i  j  func  b0  kb
 1  2     5
 1  3     5
 1  4     5
 1  5     5

[ exclusions ]
; ai  aj1  aj2  aj3  aj4
  1    2    3    4    5
  2    1    3    4    5
  3    1    2    4    5
  4    1    2    3    5
  5    1    2    3    4

For comparison, the original topology file generated by acpype will be:

; methane_GMX.itp created by acpype (v: 2021-02-05T22:15:50CET) on Wed Sep  8 01:21:53 2021

[ atomtypes ]
;name   bond_type     mass     charge   ptype   sigma         epsilon       Amb
 c3       c3          0.00000  0.00000   A     3.39771e-01   4.51035e-01 ; 1.91  0.1078
 hc       hc          0.00000  0.00000   A     2.60018e-01   8.70272e-02 ; 1.46  0.0208

[ moleculetype ]
;name            nrexcl
 methane          3

[ atoms ]
;   nr  type  resi  res  atom  cgnr     charge      mass       ; qtot   bond_type
     1   c3     1   MOL    C1    1    -0.106800     12.01000 ; qtot -0.107
     2   hc     1   MOL    H1    2     0.026700      1.00800 ; qtot -0.080
     3   hc     1   MOL    H2    3     0.026700      1.00800 ; qtot -0.053
     4   hc     1   MOL    H3    4     0.026700      1.00800 ; qtot -0.027
     5   hc     1   MOL    H4    5     0.026700      1.00800 ; qtot 0.000

[ bonds ]
;   ai     aj funct   r             k
     1      2   1    1.0970e-01    3.1455e+05 ;     C1 - H1
     1      3   1    1.0970e-01    3.1455e+05 ;     C1 - H2
     1      4   1    1.0970e-01    3.1455e+05 ;     C1 - H3
     1      5   1    1.0970e-01    3.1455e+05 ;     C1 - H4

[ angles ]
;   ai     aj     ak    funct   theta         cth
     2      1      3      1    1.0758e+02    3.2635e+02 ;     H1 - C1     - H2
     2      1      4      1    1.0758e+02    3.2635e+02 ;     H1 - C1     - H3
     2      1      5      1    1.0758e+02    3.2635e+02 ;     H1 - C1     - H4
     3      1      4      1    1.0758e+02    3.2635e+02 ;     H2 - C1     - H3
     3      1      5      1    1.0758e+02    3.2635e+02 ;     H2 - C1     - H4
     4      1      5      1    1.0758e+02    3.2635e+02 ;     H3 - C1     - H4
DeepMD Settings

Before running simulations, we need to tell GROMACS to use DeepPotential by setting the environment variable GMX_DEEPMD_INPUT_JSON:

export GMX_DEEPMD_INPUT_JSON=input.json

Then, in your working directories, we have to write input.json file:

{
    "graph_file": "/path/to/graph.pb",
    "type_file": "type.raw",
    "index_file": "index.raw",
    "lambda": 1.0,
    "pbc": false
}

Here is an explanation for these settings:

  • graph_file : The graph file (with suffix .pb) generated by dp freeze command

  • type_file : File to specify DP atom types (in space-separated format). Here, type.raw looks like

1 0 0 0 0
  • index_file : File containing indices of DP atoms (in space-separated format), which should be consistent with the indices’ order in .gro file but starting from zero. Here, index.raw looks like

0 1 2 3 4
  • lambda: Optional, default 1.0. Used in alchemical calculations.

  • pbc: Optional, default true. If true, the GROMACS periodic condition is passed to DeepMD.

Run Simulation

Finally, you can run GROMACS using gmx mdrun as usual.

All-atom DP Simulation

This part gives an example of how to simulate all atoms described by a DeepPotential with Gromacs, taking water as an example. Instead of using [ exclusions ] to turn off the non-bonded energies, we can simply do this by setting LJ parameters (i.e. epsilon and sigma) and partial charges to 0, as shown in examples/water/gmx/water.top:

[ atomtypes ]
; name      at.num  mass     charge ptype  sigma      epsilon
HW           1       1.008   0.0000  A   0.00000e+00  0.00000e+00
OW           8      16.00    0.0000  A   0.00000e+00  0.00000e+00

As mentioned in the above section, input.json and relevant files (index.raw, type.raw) should also be created. Then, we can start the simulation under the NVT ensemble and plot the radial distribution function (RDF) by gmx rdf command. We can see that the RDF given by Gromacs+DP matches perfectly with Lammps+DP, which further provides an evidence on the validity of our simulation. rdf

However, we still recommend you run an all-atom DP simulation using LAMMPS since it is more stable and efficient.

Interfaces out of DeePMD-kit

The codes of the following interfaces are not a part of the DeePMD-kit package and maintained by other repositories. We list these interfaces here for user convenience.

dpdata

dpdata provides the predict method for System class:

import dpdata
dsys = dpdata.LabeledSystem('OUTCAR')
dp_sys = dsys.predict("frozen_model_compressed.pb")

By inferring with the DP model frozen_model_compressed.pb, dpdata will generate a new labeled system dp_sys with inferred energies, forces, and virials.

OpenMM plugin for DeePMD-kit

An OpenMM plugin is provided from JingHuangLab/openmm_deepmd_plugin, written by the Huang Lab at Westlake University.

AMBER interface to DeePMD-kit

An AMBER interface to DeePMD-kit is written by the [York Lab from Rutgers University. It is open-source at GitLab RutgersLBSR/AmberDPRc. Details can be found in this paper.

DP-GEN

DP-GEN provides a workflow to generate accurate DP models by calling DeePMD-kit’s command line interface (CLI) in the local or remote server. Details can be found in this paper.

MLatom

Mlatom provides an interface to the DeePMD-kit within MLatom’s workflow by calling DeePMD-kit’s CLI. Details can be found in this paper.

ABACUS

ABACUS can run molecular dynamics with a DP model. User is required to build ABACUS with DeePMD-kit.

Use NVNMD

Introduction

NVNMD stands for non-von Neumann molecular dynamics.

This is the training code we used to generate the results in our paper entitled “Accurate and Efficient Molecular Dynamics based on Machine Learning and non von Neumann Architecture”, which has been accepted by npj Computational Materials (DOI: 10.1038/s41524-022-00773-z).

Any user can follow two consecutive steps to run molecular dynamics (MD) on the proposed NVNMD computer, which has been released online: (i) to train a machine learning (ML) model that can decently reproduce the potential energy surface (PES); and (ii) to deploy the trained ML model on the proposed NVNMD computer, then run MD there to obtain the atomistic trajectories.

Training

Our training procedure consists of not only continuous neural network (CNN) training but also quantized neural network (QNN) training which uses the results of CNN as inputs. It is performed on CPU or GPU by using the training codes we open-sourced online.

To train an ML model that can decently reproduce the PES, a training and testing data set should be prepared first. This can be done by using either the state-of-the-art active learning tools or the outdated (i.e., less efficient) brute-force density functional theory (DFT)-based ab-initio molecular dynamics (AIMD) sampling.

If you just want to simply test the training function, you can use the example in the $deepmd_source_dir/examples/nvnmd directory. If you want to fully experience training and running MD functions, you can download the complete example from the website.

Then, copy the data set to the working directory

mkdir -p $workspace
cd $workspace
mkdir -p data
cp -r $dataset data

where $dataset is the path to the data set and $workspace is the path to the working directory.

Input script

Create and go to the training directory.

mkdir train
cd train

Then copy the input script train_cnn.json and train_qnn.json to the directory train

cp -r $deepmd_source_dir/examples/nvnmd/train/train_cnn.json train_cnn.json
cp -r $deepmd_source_dir/examples/nvnmd/train/train_qnn.json train_qnn.json

The structure of the input script is as follows

{
    "nvnmd" : {},
    "learning_rate" : {},
    "loss" : {},
    "training": {}
}
nvnmd

The “nvnmd” section is defined as

{
    "version": 0,
    "net_size":128,
    "sel":[60, 60],
    "rcut":6.0,
    "rcut_smth":0.5,
    "type_map": ["Ge", "Te"]
}

where items are defined as:

Item

Mean

Optional Value

version

the version of network structure

0 or 1

net_size

the size of nueral network

128

sel

the number of neighbors

version 0: integer list of lengths 1 to 4 are acceptable; version 1: integer

rcut

the cutoff radial

(0, 8.0]

rcut_smth

the smooth cutoff parameter

(0, 8.0]

type_map

mapping atom type to the name (str) of the type

string list, optional

Multiple versions of the nvnmd model correspond to different network structures. nvnmd-v0 and nvnmd-v1 differ in the following ways:

  1. nvnmd-v0 and nvnmd-v1 use the se_a descriptor and se_atten descriptor, respectively

  2. nvnmd-v0 has 1 set of parameters for each element and supports up to 4 element types. nvnmd-v1 shares 1 set of parameters for each element and supports up to 31 types.

  3. nvnmd-v0 distinguishes between neighboring atoms, so sel is a list of integers. nvnmd-v1 does not distinguish between neighboring atoms, so sel is an integer.

learning_rate

The “learning_rate” section is defined as

{
    "type":"exp",
    "start_lr": 1e-3,
    "stop_lr": 3e-8,
    "decay_steps": 5000
}

where items are defined as:

Item

Mean

Optional Value

type

learning rate variant type

exp

start_lr

the learning rate at the beginning of the training

a positive real number

stop_lr

the desired learning rate at the end of the training

a positive real number

decay_stops

the learning rate is decaying every {decay_stops} training steps

a positive integer

loss

The “loss” section is defined as

{
    "start_pref_e": 0.02,
    "limit_pref_e": 2,
    "start_pref_f": 1000,
    "limit_pref_f": 1,
    "start_pref_v": 0,
    "limit_pref_v": 0
}

where items are defined as:

Item

Mean

Optional Value

start_pref_e

the loss factor of energy at the beginning of the training

zero or positive real number

limit_pref_e

the loss factor of energy at the end of the training

zero or positive real number

start_pref_f

the loss factor of force at the beginning of the training

zero or positive real number

limit_pref_f

the loss factor of force at the end of the training

zero or positive real number

start_pref_v

the loss factor of virial at the beginning of the training

zero or positive real number

limit_pref_v

the loss factor of virial at the end of the training

zero or positive real number

training

The “training” section is defined as

{
  "seed": 1,
    "stop_batch": 1000000,
    "numb_test": 1,
    "disp_file": "lcurve.out",
    "disp_freq": 1000,
    "save_ckpt": "model.ckpt",
    "save_freq": 10000,
    "training_data":{
      "systems":["system1_path", "system2_path", "..."],
      "set_prefix": "set",
      "batch_size": ["batch_size_of_system1", "batch_size_of_system2", "..."]
    }
}

where items are defined as:

Item

Mean

Optional Value

seed

the randome seed

a integer

stop_batch

the total training steps

a positive integer

numb_test

the accuracy is test by using {numb_test} sample

a positive integer

disp_file

the log file where the training message display

a string

disp_freq

display frequency

a positive integer

save_ckpt

check point file

a string

save_freq

save frequency

a positive integer

systems

a list of data directory which contains the dataset

string list

set_prefix

the prefix of dataset

a string

batch_size

a list of batch size of corresponding dataset

a integer list

Training

Training can be invoked by

# step1: train CNN
dp train-nvnmd train_cnn.json -s s1
# step2: train QNN
dp train-nvnmd train_qnn.json -s s2

After the training process, you will get two folders: nvnmd_cnn and nvnmd_qnn. The nvnmd_cnn contains the model after continuous neural network (CNN) training. The nvnmd_qnn contains the model after quantized neural network (QNN) training. The binary file nvnmd_qnn/model.pb is the model file that is used to perform NVNMD in the server [http://nvnmd.picp.vip].

You can also restart the CNN training from the checkpoint (nvnmd_cnn/model.ckpt) by

dp train-nvnmd train_cnn.json -r nvnmd_cnn/model.ckpt -s s1

Testing

The frozen model can be used in many ways. The most straightforward testing can be invoked by

mkdir test
dp test -m ./nvnmd_qnn/frozen_model.pb -s path/to/system -d ./test/detail -n 99999 -l test/output.log

where the frozen model file to import is given via the -m command line flag, the path to the testing data set is given via the -s command line flag, and the file containing details of energy, forces and virials accuracy is given via the -d command line flag, the amount of data for testing is given via the -n command line flag.

Running MD in Bohrium

After CNN and QNN training, you can upload the ML model to our online NVNMD system and run MD there through Bohrium (https://bohrium.dp.tech). Bohrium is a research platfrom designed for AI for Science Era. For more information, please refer to Bohrium Introduction.

Registration

Click here to register a Bohrium account. If you already have an account for other DP products, you can skip this step and log in directly.

Top-up and create a project

After entering the homepage, you can click on the User Center in the lower left corner to top-up by yourself.

bohrium top up

After completing the top-up, click on the Projects, and then click New Project in the upper right corner of the page. Give the project a name that is easy for you to recognize and click OK. If the project has other collaborators, you can refer to Project Collaboration for more information.

bohrium project

Run job

We will use Utility to submit jobs, you can install it with the following command

pip install lbg

When using the Lebesgue Utility for the first time, you need to configure your account by

lbg config account

Enter your Bohrium account and the corresponding password.

Then you need prepare the configuration file job.json, the configuration file is as follows

{
    "job_name": "test",
    "command": "/usr/bin/lmp_mpi < in.lmp;",
    "log_file": "OUTCAR",
    "machine_type": "c8_m32_cpu",
    "job_type": "container",
    "image_name": "lammps_dp:29Sep2021",
    "platform": "hnu",
    "region": "default",
    "project_id": 0000
}

where items are defined as:

Item

Mean

Optional Value

job_name

the name of computing job, which can be named freely

a string

command

the command to be executed on the computing node

a string

log_file

the log file that can be viewed at any time during the calculation process, which can be viewed on the Bohrium “Jobs” page

a string

machine_type

the machine type used for the job

“c8_m32_cpu”

job_type

the job type

“container”

image_name

the image name used for the job

“lammps_dp:29Sep2021”

platform

resource provider

“hnu”

project_id

the project ID to which the job belongs, which can be viewed on the “Projects” page

a integer

Notice:The task will use 8 CPU cores for computation, so do not repeatedly use the mpirun command, otherwise an error will be reported. All 0000 after “project_id” need to be replaced with your own project ID, which can be viewed on the “Projects” page. Also, the JSON file format requires that no commas be added after the last field within the {}, otherwise, there will be a syntax error.

In addition, it is necessary to prepare input script of the MD simulation, the ML model named model.pb obtained by QNN training and data files containing information required for running an MD simulation (e.g., coord.lmp containing initial atom coordinates).

In the input script, one needs to specify the pair style as follows

pair_style nvnmd model.pb 6 2
pair_coeff * *

where model.pb is the path to model, 6 is the cutoff radius, 2 is the number of FPGA cards used with the maximum of 2.

After preparing the configuration file and the required files for calculation, using Lebesgue Utility to submit the job

lbg job submit -i job.json -p ./

where the configuration file for the job is given via the -i command line flag, the directory where the input files are located is given via the -p command line flag. Bohrium will package and upload the specified directory, and after decompressing it on the computing node, it will switch the working directory to that directory.

After the job is submitted successfully, the JOB ID and JOB GROUP ID will be output.

bohrium submit

Check job status

After successfully submitting the job, you can view the progress and related logs of the submitted jobs on the Jobs page.

bohrium status

Terminate and delete jobs

You can choose between terminate and delete operations.

  • Terminate: To end running jobs/job groups in advance, save the generated result files, and the status of the terminated jobs will be changed to “completed”.

  • Delete: To end running jobs/job groups, the status of the jobs will be changed to “failed”. Job result files will be deleted, and the jobs/job groups disappear from the list. The delete operation cannot be undone.

The Jobs page provides buttons to end jobs and job groups

bohrium group

bohrium job

You can also use the Lebesgue Utility tool to end jobs

lbg jobgroup terminate <JOB GROUP ID>
lbg job terminate <JOB ID>
lbg jobgroup rm <JOB GROUP ID>
lbg job rm <JOB ID>

Download Results

After the calculation is completed, you can download the results on the Jobs page, or save them to the data disk.

bohrium download

You can also download it using the commands of Lebesgue Utility

lbg job download <JOB ID>

or

lbg jobgroup download <JOB GROUP ID>

Running MD in Nvnmd website

After CNN and QNN training, you can upload the ML model to our online NVNMD system and run MD there.

Account application

The server website of NVNMD is available at http://nvnmd.picp.vip. You can visit the URL and enter the login interface.

login interface

To obtain an account, please send your application to the email (jie_liu@hnu.edu.cn, liujie@uw.edu). The username and password will be sent to you by email.

Adding task

After successfully obtaining the account, enter the username and password in the login interface, and click “Login” to enter the homepage.

homepage

The homepage displays the remaining calculation time and all calculation records not deleted. Click Add a new task to enter the interface for adding a new task.

add task

  • Task name: name of the task

  • Upload mode: two modes of uploading results to online data storage, including Manual upload and Automatic upload. Results need to be uploaded manually to online data storage with Manual upload mode and will be uploaded automatically with Automatic upload mode.

  • Input script: input file of the MD simulation.

In the input script, one needs to specify the pair style as follows

pair_style nvnmd model.pb
pair_coeff * *
  • Model file: the ML model named model.pb obtained by QNN training.

  • Data files: data files containing the information required for running an MD simulation (e.g., coord.lmp containing initial atom coordinates).

Next, you can click Submit to submit the task and then automatically return to the homepage.

record

Then, click Refresh to view the latest status of all calculation tasks.

Cancelling calculation

For the task whose calculation status is Pending and Running, you can click the corresponding Cancel on the homepage to stop the calculation.

cancelled task

Downloading results

For the task whose calculation status is Completed, Failed and Cancelled, you can click the corresponding Package or Separate files in the Download results bar on the homepage to download results.

Click Package to download a zipped package of all files including input files and output results.

download zipped package

Click Separate files to download the required separate files.

download separate files

If Manual upload mode is selected or the file has expired, click Upload on the download interface to upload manually.

Deleting record

For the task no longer needed, you can click the corresponding Delete on the homepage to delete the record.

Records cannot be retrieved after deletion.

Clearing records

Click Clear calculation records on the homepage to clear all records.

Records cannot be retrieved after clearing.

FAQs

As a consequence of differences in computers or systems, problems may occur. Some common circumstances are listed as follows. In addition, some frequently asked questions are listed as follows. If other unexpected problems occur, you’re welcome to contact us for help.

How to tune Fitting/embedding-net size ?

Here are some test forms on fitting-net size tuning or embedding-net size tuning performed on several different systems.

Al2O3

Fitting net size tuning form on Al2O3: (embedding-net size: [25,50,100])

Fitting-net size

Energy L2err(eV)

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[240,240,240]

1.742252e-02

7.259383e-05

4.014115e-02

[80,80,80]

1.799349e-02

7.497287e-05

4.042977e-02

[40,40,40]

1.799036e-02

7.495984e-05

4.068806e-02

[20,20,20]

1.834032e-02

7.641801e-05

4.094784e-02

[10,10,10]

1.913058e-02

7.971073e-05

4.154775e-02

[5,5,5]

1.932914e-02

8.053808e-05

4.188052e-02

[4,4,4]

1.944832e-02

8.103467e-05

4.217826e-02

[3,3,3]

2.068631e-02

8.619296e-05

4.300497e-02

[2,2,2]

2.267962e-02

9.449840e-05

4.413609e-02

[1,1,1]

2.813596e-02

1.172332e-04

4.781115e-02

[]

3.135002e-02

1.306251e-04

5.373120e-02

[] means no hidden layer, but there is still a linear output layer. This situation is equal to the linear regression.

Embedding net size tuning form on Al2O3: (Fitting-net size: [240,240,240])

Embedding-net size

Energy L2err(eV)

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[25,50,100]

1.742252e-02

7.259383e-05

4.014115e-02

[10,20,40]

2.909990e-02

1.212496e-04

4.734667e-02

[5,10,20]

3.357767e-02

1.399070e-04

5.706385e-02

[4,8,16]

6.060367e-02

2.525153e-04

7.333304e-02

[3,6,12]

5.656043e-02

2.356685e-04

7.793539e-02

[2,4,8]

5.277023e-02

2.198759e-04

7.459995e-02

[1,2,4]

1.302282e-01

5.426174e-04

9.672238e-02

Cu

Fitting net size tuning form on Cu: (embedding-net size: [25,50,100])

Fitting-net size

Energy L2err(eV)

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[240,240,240]

4.135548e-02

1.615449e-04

8.940946e-02

[20,20,20]

4.323858e-02

1.689007e-04

8.955762e-02

[10,10,10]

4.399364e-02

1.718502e-04

8.962891e-02

[5,5,5]

4.468404e-02

1.745470e-04

8.970111e-02

[4,4,4]

4.463580e-02

1.743586e-04

8.972011e-02

[3,3,3]

4.493758e-02

1.755374e-04

8.971303e-02

[2,2,2]

4.500736e-02

1.758100e-04

8.973878e-02

[1,1,1]

4.542073e-02

1.774247e-04

8.964761e-02

[]

4.545168e-02

1.775456e-04

8.983201e-02

Embedding net size tuning form on Cu: (Fitting-net size: [240,240,240])

Embedding-net size

Energy L2err(eV)

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[25,50,100]

4.135548e-02

1.615449e-04

8.940946e-02

[20,40,80]

4.203562e-02

1.642016e-04

8.925881e-02

[15,30,60]

4.146672e-02

1.619794e-04

8.936911e-02

[10,20,40]

4.263060e-02

1.665258e-04

8.955818e-02

[5,10,20]

4.994913e-02

1.951138e-04

9.007786e-02

[4,8,16]

1.022157e-01

3.992802e-04

9.532119e-02

[3,6,12]

1.362098e-01

5.320695e-04

1.073860e-01

[2,4,8]

7.061800e-02

2.758515e-04

9.126418e-02

[1,2,4] && seed = 1

9.843161e-02

3.844985e-04

9.348505e-02

[1,2,4] && seed = 2

9.404335e-02

3.673568e-04

9.304089e-02

[1,2,4] && seed = 3

1.508016e-01

5.890688e-04

1.382356e-01

[1,2,4] && seed = 4

9.686949e-02

3.783965e-04

9.294820e-02

Water

Fitting net size tuning form on water: (embedding-net size: [25,50,100])

Fitting-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[240,240,240]

9.1589E-04

5.1540E-02

[200,200,200]

9.3221E-04

5.2366E-02

[160,160,160]

9.4274E-04

5.3403E-02

[120,120,120]

9.5407E-04

5.3093E-02

[80,80,80]

9.4605E-04

5.3402E-02

[40,40,40]

9.8533E-04

5.5790E-02

[20,20,20]

1.0057E-03

5.8232E-02

[10,10,10]

1.0466E-03

6.2279E-02

[5,5,5]

1.1154E-03

6.7994E-02

[4,4,4]

1.1289E-03

6.9613E-02

[3,3,3]

1.2368E-03

7.9786E-02

[2,2,2]

1.3558E-03

9.7042E-02

[1,1,1]

1.4633E-03

1.1265E-01

[]

1.5193E-03

1.2136E-01

Embedding net size tuning form on water: (Fitting-net size: [240,240,240])

Embedding-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[25,50,100]

9.1589E-04

5.1540E-02

[20,40,80]

9.5080E-04

5.3593E-02

[15,30,60]

9.7996E-04

5.6338E-02

[10,20,40]

1.0353E-03

6.2776E-02

[5,10,20]

1.1254E-03

7.3195E-02

[4,8,16]

1.2495E-03

8.0371E-02

[3,6,12]

1.3604E-03

9.9883E-02

[2,4,8]

1.4358E-03

9.7389E-02

[1,2,4]

2.1765E-03

1.7276E-01

Mg-Al

Fitting net size tuning form on Mg-Al: (embedding-net size: [25,50,100])

Fitting-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[240,240,240]

3.9606e-03

1.6289e-02

[200,200,200]

3.9449e-03

1.6471e-02

[160,160,160]

4.0947e-03

1.6413e-02

[120,120,120]

3.9234e-03

1.6283e-02

[80,80,80]

3.9758e-03

1.6506e-02

[40,40,40]

3.9142e-03

1.6348e-02

[20,20,20]

4.1302e-03

1.7006e-02

[10,10,10]

4.3433e-03

1.7524e-02

[5,5,5]

5.3154e-03

1.9716e-02

[4,4,4]

5.4210e-03

1.9710e-02

[2,2,2]

6.2667e-03

2.2568e-02

[1,1,1]

7.3676e-03

2.6375e-02

[]

7.3999e-03

2.6097e-02

Embedding net size tuning form on Mg-Al: (Fitting-net size: [240,240,240])

Embedding-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[25,50,100]

3.9606e-03

1.6289e-02

[20,40,80]

4.0292e-03

1.6555e-02

[15,30,60]

4.1743e-03

1.7026e-02

[10,20,40]

4.8138e-03

1.8516e-02

[5,10,20]

5.6052e-03

2.0709e-02

[4,8,16]

6.1335e-03

2.1450e-02

[3,6,12]

6.6469e-03

2.3003e-02

[2,4,8]

6.8222e-03

2.6318e-02

[1,2,4]

1.0678e-02

3.9559e-02

How to control the parallelism of a job?

DeePMD-kit has three levels of parallelism. To get the best performance, one should control the number of threads used by DeePMD-kit. One should make sure the product of the parallel numbers is less than or equal to the number of cores available.

MPI (optional)

Parallelism for MPI is optional and used for multiple nodes, multiple GPU cards, or sometimes multiple CPU cores.

To enable MPI support for training, one should install horovod in advance. Note that the parallelism mode is data parallelism, so it is not expected to see the training time per batch decreases.

MPI support for inference is not directly supported by DeePMD-kit, but indirectly supported by the third-party software. For example, LAMMPS enables running simulations in parallel using the MPI parallel communication standard with distributed data. That software has to build against MPI.

Set the number of processes with:

mpirun -np $num_nodes dp

Note that mpirun here should be the same as the MPI used to build software. For example, one can use mpirun -h and lmp -h to see if mpirun and LAMMPS has the same MPI version.

Sometimes, $num_nodes and the nodes information can be directly given by the HPC scheduler system, if the MPI used here is the same as the MPI used to build the scheduler system. Otherwise, one have to manually assign these information.

Parallelism between independent operators

For CPU devices, TensorFlow use multiple streams to run independent operators (OP).

export TF_INTER_OP_PARALLELISM_THREADS=3

However, for GPU devices, TensorFlow uses only one compute stream and multiple copy streams. Note that some of DeePMD-kit OPs do not have GPU support, so it is still encouraged to set environmental variables even if one has a GPU.

Parallelism within an individual operators

For CPU devices, TF_INTRA_OP_PARALLELISM_THREADS controls parallelism within TensorFlow native OPs when TensorFlow is built against Eigen.

export TF_INTRA_OP_PARALLELISM_THREADS=2

OMP_NUM_THREADS is threads for OpenMP parallelism. It controls parallelism within TensorFlow native OPs when TensorFlow is built by Intel OneDNN and DeePMD-kit custom CPU OPs. It may also control parallelsim for NumPy when NumPy is built against OpenMP, so one who uses GPUs for training should also care this environmental variable.

export OMP_NUM_THREADS=2

There are several other environmental variables for OpenMP, such as KMP_BLOCKTIME. See Intel documentation for detailed information.

Tune the performance

There is no one general parallel configuration that works for all situations, so you are encouraged to tune parallel configurations yourself after empirical testing.

Here are some empirical examples. If you wish to use 3 cores of 2 CPUs on one node, you may set the environmental variables and run DeePMD-kit as follows:

export OMP_NUM_THREADS=3
export TF_INTRA_OP_PARALLELISM_THREADS=3
export TF_INTER_OP_PARALLELISM_THREADS=2
dp train input.json

For a node with 128 cores, it is recommended to start with the following variables:

export OMP_NUM_THREADS=16
export TF_INTRA_OP_PARALLELISM_THREADS=16
export TF_INTER_OP_PARALLELISM_THREADS=8

Again, in general, one should make sure the product of the parallel numbers is less than or equal to the number of cores available. In the above case, \(16 \times 8 = 128\), so threads will not compete with each other.

Do we need to set rcut < half boxsize?

When seeking the neighbors of atom i under periodic boundary conditions, DeePMD-kit considers all j atoms within cutoff rcut from atom i in all mirror cells.

So, there is no limitation on the setting of rcut.

PS: The reason why some software requires rcut < half box size is that they only consider the nearest mirrors from the center cell. DeePMD-kit is different from them.

How to set sel?

sel is short for “selected number of atoms in rcut”.

sel_a[i] is a list of integers. The length of the list should be the same as the number of atom types in the system.

sel_a[i] gives the number of the selected number of type i neighbors within rcut. To ensure that the results are strictly accurate, sel_a[i] should be larger than the largest number of type i neighbors in the rcut.

However, the computation overhead increases with sel_a[i], therefore, sel_a[i] should be as small as possible.

The setting of sel_a[i] should balance the above two considerations.

Installation

Inadequate versions of gcc/g++

Sometimes you may use a gcc/g++ of version < 4.8. In this way, you can still compile all the parts of TensorFlow and most of the parts of DeePMD-kit, but i-Pi and GROMACS plugins will be disabled automatically. Or if you have a gcc/g++ of version > 4.8, say, 7.2.0, you may choose to use it by doing

export CC=/path/to/gcc-7.2.0/bin/gcc
export CXX=/path/to/gcc-7.2.0/bin/g++

Build files left in DeePMD-kit

When you try to build a second time when installing DeePMD-kit, files produced before may contribute to failure. Thus, you may clear them by

cd build
rm -r *

and redo the cmake process.

The temperature undulates violently during the early stages of MD

This is probably because your structure is too far from the equilibrium configuration.

To make sure the potential model is truly accurate, we recommend checking model deviation.

MD: cannot run LAMMPS after installing a new version of DeePMD-kit

This typically happens when you install a new version of DeePMD-kit and copy directly the generated USER-DEEPMD to a LAMMPS source code folder and re-install LAMMPS.

To solve this problem, it suffices to first remove USER-DEEPMD from the LAMMPS source code by

make no-user-deepmd

and then install the new USER-DEEPMD.

If this does not solve your problem, try to decompress the LAMMPS source tarball and install LAMMPS from scratch again, which typically should be very fast.

Model compatibility

When the version of DeePMD-kit used to train the model is different from the that of DeePMD-kit running MDs, one has the problem of model compatibility.

DeePMD-kit guarantees that the codes with the same major and minor revisions are compatible. That is to say, v0.12.5 is compatible with v0.12.0, but is not compatible with v0.11.0 or v1.0.0.

One can execute dp convert-from to convert an old model to a new one.

Model version

v0.12

v1.0

v1.1

v1.2

v1.3

v2.0

v2.1

v2.2

Compatibility

😊

😊

😊

😊

😊

😄

😄

😄

Legend:

  • 😄: The model is compatible with the DeePMD-kit package.

  • 😊: The model is incompatible with the DeePMD-kit package, but one can execute dp convert-from to convert an old model to v2.2.

  • 😢: The model is incompatible with the DeePMD-kit package, and there is no way to convert models.

Why does a model have low precision?

Many phenomena are caused by model accuracy. For example, during simulations, temperatures explode, structures fall apart, and atoms are lost. One can test the model to confirm whether the model has the enough accuracy.

There are many reasons for a low-quality model. Some common reasons are listed below.

Data

Data units and signs

The unit of training data should follow what is listed in data section. Usually, the package to calculate the training data has different units from those of the DeePMD-kit. It is noted that some software label the energy gradient as forces, instead of the negative energy gradient. It is neccessary to check them carefully to avoid inconsistent data.

SCF coverage and data accuracy

The accuracy of models will not exceed the accuracy of training data, so the training data should reach enough accuracy. Here is a checklist for the accuracy of data:

  • SCF should converge to a suitable threshold for all points in the training data.

  • The convergence of the energy, force and virial with respect to the energy cutoff and k-spacing sample is checked.

  • Sometimes, QM software may generate unstable outliers, which should be removed.

  • The data should be extracted with enough digits and stored with the proper precision. Large energies may have low precision when they are stored as the single-precision floating-point format (FP32).

Enough data

If the model performs good on the training data, but has bad accuracy on another data, this means some data space is not covered by the training data. It can be validated by evaluting the model deviation with multiple models. If the model deviation of these data is high for some data, try to collect more data using DP-GEN.

Values of data

One should be aware that the errors of some data is also affected by the absolute values of this data. Stable structures tend to be more precise than unstable structures because unstable structures may have larger forces. Also, errors will be introduced in the Projector augmented wave (PAW) DFT calculations when the atoms are very close due to the overlap of pseudo-potentials. It is expected to see that data with large forces has larger errors and it is better to compare different models only with the same data.

Model

Enough sel

The sel of the descriptors must be enough for both training and test data. Otherwise, the model will be unreliable and give wrong results.

Cutoff radius

The model cannot fit the long-term interaction out of the cutoff radius. This is a designed approximation for performance, but one has to choose proper cutoff radius for the system.

Neural network size

The size of neural networks will affect the accuracy, but if one follows the parameters in the examples, this effect is insignificant. See FAQ: How to tune Fitting/embedding-net size for details.

Neural network precision

In some cases, one may want to use the FP32 precision to make the model faster. For some applications, FP32 is enough and thus is recommended, but one should still be aware that the precision of FP32 is not as high as that of FP64.

Training

Training steps

Generally speaking, the longer the number of training steps, the better the model. A balance between model accuracy and training time can be achieved. If one finds that model accuracy decreases with training time, there may be a problem with the data. See the data section for details.

Learning rate

Both too large and too small learning rate may affect the training. It is recommended to start with a large learning rate and end with a small learning rate. The learning rate from the examples is a good choice to start.

Find DeePMD-kit C/C++ library from CMake

After DeePMD-kit C/C++ library is installed, one can find DeePMD-kit from CMake:

find_package(DeePMD REQUIRED)

Note that you may need to add ${deepmd_root} to the cached CMake variable CMAKE_PREFIX_PATH.

To link against the C interface library, using

target_link_libraries(some_library PRIVATE DeePMD::deepmd_c)

To link against the C++ interface library, using

target_link_libraries(some_library PRIVATE DeePMD::deepmd_cc)

Coding Conventions

Preface

The aim of these coding standards is to help create a codebase with a defined and consistent coding style that every contributor can get easily familiar with. This will in enhance code readability as there will be no different coding styles from different contributors and everything will be documented. Also, PR diffs will be smaller because of the unified coding style. Finally, static typing will help in hunting down potential bugs before the code is even run.

Contributed code will not be refused merely because it does not strictly adhere to these conditions; as long as it’s internally consistent, clean, and correct, it probably will be accepted. But don’t be surprised if the “offending” code gets fiddled with overtime to conform to these conventions.

There are also GitHub actions CI checks for python code style which will annotate the PR diff for you to see the areas where your code is lacking compared to the set standard.

Rules

The code must be compatible with the oldest supported version of python which is 3.7

The project follows the generic coding conventions as specified in the Style Guide for Python Code, Docstring Conventions and Typing Conventions PEPs, clarified and extended as follows:

  • Do not use “*” imports such as from module import *. Instead, list imports explicitly.

  • Use 4 spaces per indentation level. No tabs.

  • No one-liner compound statements (i.e., no if x: return: use two lines).

  • Maximum line length is 88 characters as recommended by black which is less strict than Docstring Conventions suggests.

  • Use “StudlyCaps” for class names.

  • Use “lowercase” or “lowercase_with_underscores” for function, method, variable names and module names. For short names, joined lowercase may be used (e.g. “tagname”). Choose what is most readable.

  • No single-character variable names, except indices in loops that encompass a very small number of lines (for i in range(5): ...).

  • Avoid lambda expressions. Use named functions instead.

  • Avoid functional constructs (filter, map, etc.). Use list comprehensions instead.

  • Use "double quotes" for string literals, and """triple double quotes""" for docstring’s. Single quotes are OK for something like

    f"something {'this' if x else 'that'}"
    
  • Use f-strings s = f"{x:.2f}" instead of old style formating with "%f" % x. string format method "{x:.2f}".format() may be used sparsely where it is more convenient than f-strings.

Whitespace

Python is not C/C++ so whitespace should be used sparingly to maintain code readability

  • Read the Whitespace in Expressions and Statements section of PEP8.

  • Avoid trailing whitespaces.

  • Do not use excessive whitespace in your expressions and statements.

  • You should have blank spaces after commas, colons, and semi-colons if it isn’t trailing next to the end of a bracket, brace, or parentheses.

  • With any operators you should use space on both sides of the operator.

  • Colons for slicing are considered a binary operator, and should not have any spaces between them.

  • You should have parentheses with no space, directly next to the function when calling functions function().

  • When indexing or slicing the brackets should be directly next to the collection with no space collection["index"].

  • Whitespace used to line up variable values is not recommended.

  • Make sure you are consistent with the formats you choose when optional choices are available.

General advice

  • Get rid of as many break and continue statements as possible.

  • Write short functions. All functions should fit within a standard screen.

  • Use descriptive variable names.

Writing documentation in the code

Here is an example of how to write good docstrings:

The NumPy docstring documentation can be found here

It is a good practice to run pydocstyle check on your code or use a text editor that does it automatically):

$ pydocstyle filename.py

Run pycodestyle on your code

It’s a good idea to run pycodestyle on your code (or use a text editor that does it automatically):

$ pycodestyle filename.py

Run mypy on your code

It’s a good idea to run mypy on your code (or use a text editor that does it automatically):

$ mypy filename.py

Run pydocstyle on your code

It’s a good idea to run pycodestyle on your code (or use a text editor that does it automatically):

$ pycodestyle filename.py --max-line-length=88

Run black on your code

Another method of enforcing PEP8 is using a tool such as black. These tools tend to be very effective at cleaning up code but should be used carefully and code should be retested after cleaning it. Try:

$ black --help

Create a model

If you’d like to create a new model that isn’t covered by the existing DeePMD-kit library, but reuse DeePMD-kit’s other efficient modules such as data processing, trainner, etc, you may want to read this section.

To incorporate your custom model you’ll need to:

  1. Register and implement new components (e.g. descriptor) in a Python file. You may also want to register new TensorFlow OPs if necessary.

  2. Register new arguments for user inputs.

  3. Package new codes into a Python package.

  4. Test new models.

Design a new component

When creating a new component, take descriptor as the example, you should inherit deepmd.descriptor.descriptor.Descriptor class and override several methods. Abstract methods such as deepmd.descriptor.descriptor.Descriptor.build must be implemented and others are not. You should keep arguments of these methods unchanged.

After implementation, you need to register the component with a key:

from deepmd.descriptor import Descriptor

@Descriptor.register("some_descrpt")
class SomeDescript(Descriptor):
    def __init__(self, arg1: bool, arg2: float) -> None:
        pass

Register new arguments

To let someone uses your new component in their input file, you need to create a new method that returns some Argument of your new component, and then register new arguments. For example, the code below

from typing import List

from dargs import Argument
from deepmd.utils.argcheck import descrpt_args_plugin

@descrpt_args_plugin.register("some_descrpt")
def descrpt_some_args() -> List[Argument]:
    return [
        Argument("arg1", bool, optional=False, doc="balabala"),
        Argument("arg2", float, optional=True, default=6.0, doc="haha"),
    ]

allows one to use your new descriptor as below:

"descriptor" :{
    "type": "some_descrpt",
    "arg1": true,
    "arg2": 6.0
}

The arguments here should be consistent with the class arguments of your new component.

Package new codes

You may use setuptools to package new codes into a new Python package. It’s crucial to add your new component to entry_points['deepmd'] in setup.py:

    entry_points={
        'deepmd': [
            'some_descrpt=deepmd_some_descrtpt:SomeDescript',
        ],
    },

where deepmd_some_descrtpt is the module of your codes. It is equivalent to from deepmd_some_descrtpt import SomeDescript.

If you place SomeDescript and descrpt_some_args into different modules, you are also expected to add descrpt_some_args to entry_points.

After you install your new package, you can now use dp train to run your new model.

Atom Type Embedding

Overview

Here is an overview of the DeePMD-kit algorithm. Given a specific centric atom, we can obtain the matrix describing its local environment, named \(\mathcal R\). It is consist of the distance between the centric atom and its neighbors, as well as a direction vector. We can embed each distance into a vector of \(M_1\) dimension by an embedding net, so the environment matrix \(\mathcal R\) can be embedded into matrix \(\mathcal G\). We can thus extract a descriptor vector (of \(M_1 \times M_2\) dim) of the centric atom from the \(\mathcal G\) by some matrix multiplication, and put the descriptor into fitting net to get predicted energy \(E\). The vanilla version of DeePMD-kit builds embedding net and fitting net relying on the atom type, resulting in \(O(N)\) memory usage. After applying atom type embedding, in DeePMD-kit v2.0, we can share one embedding net and one fitting net in total, which decline training complexity largely.

Preliminary

In the following chart, you can find the meaning of symbols used to clarify the atom-type embedding algorithm.

\(i\): Type of centric atom

\(j\): Type of neighbor atom

\(s_{ij}\): Distance between centric atom and neighbor atom

\(\mathcal G_{ij}(\cdot)\): Origin embedding net, take \(s_{ij}\) as input and output embedding vector of \(M_1\) dim

\(\mathcal G(\cdot)\): Shared embedding net

\(\text{Multi}(\cdot)\): Matrix multiplication and flattening, output the descriptor vector of \(M_1\times M_2\) dim

\(F_i(\cdot)\): Origin fitting net, take the descriptor vector as input and output energy

\(F(\cdot)\): Shared fitting net

\(A(\cdot)\): Atom type embedding net, input is atom type, the output is type embedding vector of dim nchanl

So, we can formulate the training process as follows. Vanilla DeePMD-kit algorithm:

\[E = F_i( \text{Multi}( \mathcal G_{ij}( s_{ij} ) ) )\]

DeePMD-kit applying atom type embedding:

\[E = F( [ \text{Multi}( \mathcal G( [s_{ij}, A(i), A(j)] ) ), A(j)] )\]

or

\[E = F( [ \text{Multi}( \mathcal G( [s_{ij}, A(j)] ) ), A(j)] )\]

The difference between the two variants above is whether using the information of centric atom when generating the descriptor. Users can choose by modifying the type_one_side hyper-parameter in the input JSON file.

How to use

A detailed introduction can be found at se_e2_a_tebd. Looking for a fast start-up, you can simply add a type_embedding section in the input JSON file as displayed in the following, and the algorithm will adopt the atom type embedding algorithm automatically. An example of type_embedding is like

    "type_embedding":{
       "neuron":    [2, 4, 8],
       "resnet_dt": false,
       "seed":      1
    }

Code Modification

Atom-type embedding can be applied to varied embedding net and fitting net, as a result, we build a class TypeEmbedNet to support this free combination. In the following, we will go through the execution process of the code to explain our code modification.

trainer (train/trainer.py)

In trainer.py, it will parse the parameter from the input JSON file. If a type_embedding section is detected, it will build a TypeEmbedNet, which will be later input in the model. model will be built in the function _build_network.

model (model/ener.py)

When building the operation graph of the model in model.build. If a TypeEmbedNet is detected, it will build the operation graph of type embed net, embedding net and fitting net by order. The building process of type embed net can be found in TypeEmbedNet.build, which output the type embedding vector of each atom type (of [\(\text{ntypes} \times \text{nchanl}\)] dimensions). We then save the type embedding vector into input_dict, so that they can be fetched later in embedding net and fitting net.

embedding net (descriptor/se*.py)

In embedding net, we shall take local environment \(\mathcal R\) as input and output matrix \(\mathcal G\). Functions called in this process by the order is

build -> _pass_filter -> _filter -> _filter_lower

_pass_filter: It will first detect whether an atom type embedding exists, if so, it will apply atom type embedding algorithm and doesn’t divide the input by type.

_filter: It will call _filter_lower function to obtain the result of matrix multiplication (\(\mathcal G^T\cdot \mathcal R\)), do further multiplication involved in \(\text{Multi}(\cdot)\), and finally output the result of descriptor vector of \(M_1 \times M_2\) dim.

_filter_lower: The main function handling input modification. If type embedding exists, it will call _concat_type_embedding function to concat the first column of input \(\mathcal R\) (the column of \(s_{ij}\)) with the atom type embedding information. It will decide whether to use the atom type embedding vector of the centric atom according to the value of type_one_side (if set True, then we only use the vector of the neighbor atom). The modified input will be put into the fitting net to get \(\mathcal G\) for further matrix multiplication stage.

fitting net (fit/ener.py)

In fitting net, it takes the descriptor vector as input, whose dimension is [natoms, \(M_1\times M_2\)]. Because we need to involve information on the centric atom in this step, we need to generate a matrix named atype_embed (of dim [natoms, nchanl]), in which each row is the type embedding vector of the specific centric atom. The input is sorted by type of centric atom, we also know the number of a particular atom type (stored in natoms[2+i]), thus we get the type vector of the centric atom. In the build phase of the fitting net, it will check whether type embedding exists in input_dict and fetch them. After that, call embed_atom_type function to look up the embedding vector for the type vector of the centric atom to obtain atype_embed, and concat input with it ([input, atype_embed]). The modified input goes through fitting net` to get predicted energy.

Note

You can’t apply the compression method while using atom-type embedding.

Python API

deepmd package

Root of the deepmd package, exposes all public classes and submodules.

class deepmd.DeepEval(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = False)[source]

Bases: object

Common methods for DeepPot, DeepWFC, DeepPolar, …

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_sizebool or int or AutomaticBatchSize, default: False

If True, automatic batch size will be used. If int, it will be used as the initial batch size.

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval_typeebd()

Evaluate output of type embedding network by using this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval_typeebd() ndarray[source]

Evaluate output of type embedding network by using this model.

Returns
np.ndarray

The output of type embedding network. The shape is [ntypes, o_size], where ntypes is the number of types, and o_size is the number of nodes in the output layer.

Raises
KeyError

If the model does not enable type embedding.

See also

deepmd.utils.type_embed.TypeEmbedNet

The type embedding network.

Examples

Get the output of type embedding network of graph.pb:

>>> from deepmd.infer import DeepPotential
>>> dp = DeepPotential('graph.pb')
>>> dp.eval_typeebd()
load_prefix: str
make_natoms_vec(atom_types: ndarray, mixed_type: bool = False) ndarray[source]

Make the natom vector used by deepmd-kit.

Parameters
atom_types

The type of atoms

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

property model_type: str

Get type of model.

:type:str

property model_version: str

Get version of model.

Returns
str

version of model

static reverse_map(vec: ndarray, imap: List[int]) ndarray[source]

Reverse mapping of a vector according to the index map.

Parameters
vec

Input vector. Be of shape [nframes, natoms, -1]

imap

Index map. Be of shape [natoms]

Returns
vec_out

Reverse mapped vector.

property sess: Session

Get TF session.

static sort_input(coord: ndarray, atom_type: ndarray, sel_atoms: Optional[List[int]] = None, mixed_type: bool = False)[source]

Sort atoms in the system according their types.

Parameters
coord

The coordinates of atoms. Should be of shape [nframes, natoms, 3]

atom_type

The type of atoms Should be of shape [natoms]

sel_atoms

The selected atoms by type

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
coord_out

The coordinates after sorting

atom_type_out

The atom types after sorting

idx_map

The index mapping from the input to the output. For example coord_out = coord[:,idx_map,:]

sel_atom_type

Only output if sel_atoms is not None The sorted selected atom types

sel_idx_map

Only output if sel_atoms is not None The index mapping from the selected atoms to sorted selected atoms.

deepmd.DeepPotential(model_file: Union[str, Path], load_prefix: str = 'load', default_tf_graph: bool = False) Union[DeepDipole, DeepGlobalPolar, DeepPolar, DeepPot, DeepDOS, DeepWFC][source]

Factory function that will inialize appropriate potential read from model_file.

Parameters
model_filestr

The name of the frozen model file.

load_prefixstr

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Returns
Union[DeepDipole, DeepGlobalPolar, DeepPolar, DeepPot, DeepWFC]

one of the available potentials

Raises
RuntimeError

if model file does not correspond to any implementd potential

class deepmd.DipoleChargeModifier(model_name: str, model_charge_map: List[float], sys_charge_map: List[float], ewald_h: float = 1, ewald_beta: float = 1)[source]

Bases: DeepDipole

Parameters
model_name

The model file for the DeepDipole model

model_charge_map

Gives the amount of charge for the wfcc

sys_charge_map

Gives the amount of charge for the real atoms

ewald_h

Grid spacing of the reciprocal part of Ewald sum. Unit: A

ewald_beta

Splitting parameter of the Ewald sum. Unit: A^{-1}

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

build_fv_graph()

Build the computational graph for the force and virial inference.

eval(coord, box, atype[, eval_fv])

Evaluate the modification.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

modify_data(data, data_sys)

Modify data.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

build_fv_graph() Tensor[source]

Build the computational graph for the force and virial inference.

eval(coord: ndarray, box: ndarray, atype: ndarray, eval_fv: bool = True) Tuple[ndarray, ndarray, ndarray][source]

Evaluate the modification.

Parameters
coord

The coordinates of atoms

box

The simulation region. PBC is assumed

atype

The atom types

eval_fv

Evaluate force and virial

Returns
tot_e

The energy modification

tot_f

The force modification

tot_v

The virial modification

load_prefix: str
modify_data(data: dict, data_sys: DeepmdData) None[source]

Modify data.

Parameters
data

Internal data of DeepmdData. Be a dict, has the following keys - coord coordinates - box simulation box - type atom types - find_energy tells if data has energy - find_force tells if data has force - find_virial tells if data has virial - energy energy - force force - virial virial

data_sysDeepmdData

The data system.

Subpackages

deepmd.cluster package

Module that reads node resources, auto detects if running local or on SLURM.

deepmd.cluster.get_resource() Tuple[str, List[str], Optional[List[int]]][source]

Get local or slurm resources: nodename, nodelist, and gpus.

Returns
Tuple[str, List[str], Optional[List[int]]]

nodename, nodelist, and gpus

Submodules
deepmd.cluster.local module

Get local GPU resources.

deepmd.cluster.local.get_gpus()[source]

Get available IDs of GPU cards at local. These IDs are valid when used as the TensorFlow device ID.

Returns
Optional[List[int]]

List of available GPU IDs. Otherwise, None.

deepmd.cluster.local.get_resource() Tuple[str, List[str], Optional[List[int]]][source]

Get local resources: nodename, nodelist, and gpus.

Returns
Tuple[str, List[str], Optional[List[int]]]

nodename, nodelist, and gpus

deepmd.cluster.slurm module

MOdule to get resources on SLURM cluster.

References

https://github.com/deepsense-ai/tensorflow_on_slurm ####

deepmd.cluster.slurm.get_resource() Tuple[str, List[str], Optional[List[int]]][source]

Get SLURM resources: nodename, nodelist, and gpus.

Returns
Tuple[str, List[str], Optional[List[int]]]

nodename, nodelist, and gpus

Raises
RuntimeError

if number of nodes could not be retrieved

ValueError

list of nodes is not of the same length sa number of nodes

ValueError

if current nodename is not found in node list

deepmd.descriptor package
class deepmd.descriptor.Descriptor(*args, **kwargs)[source]

Bases: PluginVariant

The abstract class for descriptors. All specific descriptors should be based on this class.

The descriptor \(\mathcal{D}\) describes the environment of an atom, which should be a function of coordinates and types of its neighbour atoms.

Notes

Only methods and attributes defined in this class are generally public, that can be called by other classes.

Examples

>>> descript = Descriptor(type="se_e2_a", rcut=6., rcut_smth=0.5, sel=[50])
>>> type(descript)
<class 'deepmd.descriptor.se_a.DescrptSeA'>
Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

abstract build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: Dict[str, Any], reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_tf.Tensor

The coordinate of atoms

atype_tf.Tensor

The type of atoms

natomstf.Tensor

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of frames

meshtf.Tensor

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dictdict[str, Any]

Dictionary for additional inputs

reusebool, optional

The weights in the networks should be reused when get the variable.

suffixstr, optional

Name suffix to identify this descriptor

Returns
descriptor: tf.Tensor

The output descriptor

Notes

This method must be implemented, as it’s called by other classes.

build_type_exclude_mask(exclude_types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt: int, atype: Tensor, shape0: Tensor) Tensor[source]

Build the type exclude mask for the descriptor.

Parameters
exclude_typesList[Tuple[int, int]]

The list of excluded types, e.g. [(0, 1), (1, 0)] means the interaction between type 0 and type 1 is excluded.

ntypesint

The number of types.

selList[int]

The list of the number of selected neighbors for each type.

ndescrptint

The number of descriptors for each atom.

atypetf.Tensor

The type of atoms, with the size of shape0.

shape0tf.Tensor

The shape of the first dimension of the inputs, which is equal to nsamples * natoms.

Returns
tf.Tensor

The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of GLOBAL_TF_FLOAT_PRECISION. The mask has the value of 1 if the interaction between two types is not excluded, and 0 otherwise.

Notes

To exclude the interaction between two types, the derivative of energy with respect to distances (or angles) between two atoms should be zero[R08579741114c-1]_, i.e.

\[\forall i \in \text{type 1}, j \in \text{type 2}, \frac{\partial{E}}{\partial{r_{ij}}} = 0\]

When embedding networks between every two types are built, we can just remove that network. But when type_one_side is enabled, a network may be built for multiple pairs of types. In this case, we need to build a mask to exclude the interaction between two types.

The mask assumes the descriptors are sorted by neighbro type with the fixed number of given sel and each neighbor has the same number of descriptors (for example 4).

References

1

Jinzhe Zeng, Timothy J. Giese, ̧Sölen Ekesan, Darrin M. York, Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/molecular Mechanical Simulations of Chemical Reactions in Solution, J. Chem. Theory Comput., 2021, 17 (11), 6993-7009.

abstract compute_input_stats(data_coord: List[ndarray], data_box: List[ndarray], data_atype: List[ndarray], natoms_vec: List[ndarray], mesh: List[ndarray], input_dict: Dict[str, List[ndarray]], **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coordlist[np.ndarray]

The coordinates. Can be generated by deepmd.model.model_stat.make_stat_input()

data_boxlist[np.ndarray]

The box. Can be generated by deepmd.model.model_stat.make_stat_input()

data_atypelist[np.ndarray]

The atom types. Can be generated by deepmd.model.model_stat.make_stat_input()

natoms_veclist[np.ndarray]

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.model_stat.make_stat_input()

meshlist[np.ndarray]

The mesh for neighbor searching. Can be generated by deepmd.model.model_stat.make_stat_input()

input_dictdict[str, list[np.ndarray]]

Dictionary for additional input

**kwargs

Additional keyword arguments which may contain mixed_type and real_natoms_vec.

Notes

This method must be implemented, as it’s called by other classes.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5.0, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_distfloat

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph definition of the model

table_extrapolatefloat, default: 5.

The scale of model extrapolation

table_stride_1float, default: 0.01

The uniform stride of the first table

table_stride_2float, default: 0.1

The uniform stride of the second table

check_frequencyint, default: -1

The overflow check frequency

suffixstr, optional

The suffix of the scope

Notes

This method is called by others when the descriptor supported compression.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

Notes

This method is called by others when the descriptor supported compression.

property explicit_ntypes: bool

Explicit ntypes with type embedding.

abstract get_dim_out() int[source]

Returns the output dimension of this descriptor.

Returns
int

the output dimension of this descriptor

Notes

This method must be implemented, as it’s called by other classes.

get_dim_rot_mat_1() int[source]

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.

Returns
int

the first dimension of the rotation matrix

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlisttf.Tensor

Neighbor list

rijtf.Tensor

The relative distance between the neighbor and the center atom.

sel_alist[int]

The number of neighbors with full information

sel_rlist[int]

The number of neighbors with only radial information

abstract get_ntypes() int[source]

Returns the number of atom types.

Returns
int

the number of atom types

Notes

This method must be implemented, as it’s called by other classes.

abstract get_rcut() float[source]

Returns the cut-off radius.

Returns
float

the cut-off radius

Notes

This method must be implemented, as it’s called by other classes.

get_tensor_names(suffix: str = '') Tuple[str][source]

Get names of tensors.

Parameters
suffixstr

The suffix of the scope

Returns
Tuple[str]

Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

Notes

This method is called by others when the descriptor supported initialization from the given variables.

pass_tensors_from_frz_model(*tensors: Tensor) None[source]

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

Parameters
*tensorstf.Tensor

passed tensors

Notes

The number of parameters in the method must be equal to the numbers of returns in get_tensor_names().

abstract prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_enertf.Tensor

The atomic energy

natomstf.Tensor

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
forcetf.Tensor

The force on atoms

virialtf.Tensor

The total virial

atom_virialtf.Tensor

The atomic virial

static register(key: str) Callable[source]

Register a descriptor plugin.

Parameters
keystr

the key of a descriptor

Returns
Descriptor

the registered descriptor

Examples

>>> @Descriptor.register("some_descrpt")
    class SomeDescript(Descriptor):
        pass
class deepmd.descriptor.DescrptHybrid(*args, **kwargs)[source]

Bases: Descriptor

Concate a list of descriptors to form a new descriptor.

Parameters
listlist

Build a descriptor from the concatenation of the list of descriptors.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Get the neighbor information of the descriptor, returns the nlist of the descriptor with the largest cut-off radius.

get_nlist_i(ii)

Get the neighbor information of the ii-th descriptor.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, mixed_type: bool = False, real_natoms_vec: Optional[list] = None, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

real_natoms_vec

If mixed_type is True, it takes in the real natoms_vec for each frame.

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5.0, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_distfloat

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolatefloat, default: 5.

The scale of model extrapolation

table_stride_1float, default: 0.01

The uniform stride of the first table

table_stride_2float, default: 0.1

The uniform stride of the second table

check_frequencyint, default: -1

The overflow check frequency

suffixstr, optional

The suffix of the scope

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

property explicit_ntypes: bool

Explicit ntypes with type embedding.

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Get the neighbor information of the descriptor, returns the nlist of the descriptor with the largest cut-off radius.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_nlist_i(ii: int) Tuple[Tensor, Tensor, List[int], List[int]][source]

Get the neighbor information of the ii-th descriptor.

Parameters
iiint

The index of the descriptor

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_tensor_names(suffix: str = '') Tuple[str][source]

Get names of tensors.

Parameters
suffixstr

The suffix of the scope

Returns
Tuple[str]

Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

suma

The sum of relative coord statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

suma2

The sum of square of relative coord statisitcs.

pass_tensors_from_frz_model(*tensors: Tensor) None[source]

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

Parameters
*tensorstf.Tensor

passed tensors

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

class deepmd.descriptor.DescrptLocFrame(*args, **kwargs)[source]

Bases: Descriptor

Defines a local frame at each atom, and the compute the descriptor as local coordinates under this frame.

Parameters
rcut

The cut-off radius

sel_alist[str]

The length of the list should be the same as the number of atom types in the system. sel_a[i] gives the selected number of type-i neighbors. The full relative coordinates of the neighbors are used by the descriptor.

sel_rlist[str]

The length of the list should be the same as the number of atom types in the system. sel_r[i] gives the selected number of type-i neighbors. Only relative distance of the neighbors are used by the descriptor. sel_a[i] + sel_r[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius.

axis_rule: list[int]

The length should be 6 times of the number of types. - axis_rule[i*6+0]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance. - axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom. - axis_rule[i*6+2]: index of the axis atom defining the first axis. Note that the neighbors with the same class and type are sorted according to their relative distance. - axis_rule[i*6+3]: class of the atom defining the second axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance. - axis_rule[i*6+4]: type of the atom defining the second axis of type-i atom. - axis_rule[i*6+5]: index of the axis atom defining the second axis. Note that the neighbors with the same class and type are sorted according to their relative distance.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]
Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_rot_mat() Tensor[source]

Get rotational matrix.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

class deepmd.descriptor.DescrptSeA(*args, **kwargs)[source]

Bases: DescrptSe

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes the distance between atoms as input.

The descriptor \(\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}\) is given by [1]

\[\mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_<\]

where \(\mathcal{R}^i \in \mathbb{R}^{N \times 4}\) is the coordinate matrix, and each row of \(\mathcal{R}^i\) can be constructed as follows

\[(\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ]\]

where \(\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})\) is the relative coordinate and \(r_{ji}=\lVert \mathbf{R}_{ji} \lVert\) is its norm. The switching function \(s(r)\) is defined as:

\[\begin{split}s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases}\end{split}\]

Each row of the embedding matrix \(\mathcal{G}^i \in \mathbb{R}^{N \times M_1}\) consists of outputs of a embedding network \(\mathcal{N}\) of \(s(r_{ji})\):

\[(\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji}))\]

\(\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}\) takes first \(M_2\) columns of \(\mathcal{G}^i\). The equation of embedding network \(\mathcal{N}\) can be found at deepmd.utils.network.embedding_net().

Parameters
rcut

The cut-off radius \(r_c\)

rcut_smth

From where the environment matrix should be smoothed \(r_s\)

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net \(\mathcal{N}\)

axis_neuron

Number of the axis neuron \(M_2\) (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

multi_task

If the model has multi fitting nets to train.

References

1(1,2)

Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_dim_rot_mat_1() int[source]

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_rot_mat() Tensor[source]

Get rotational matrix.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

suma

The sum of relative coord statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

suma2

The sum of square of relative coord statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

class deepmd.descriptor.DescrptSeAEbd(*args, **kwargs)[source]

Bases: DescrptSeA

DeepPot-SE descriptor with type embedding approach.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

axis_neuron

Number of the axis neuron (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

type_nchanl

Number of channels for type representation

type_nlayer

Number of hidden layers for the type embedding net (skip connected).

numb_aparam

Number of atomic parameters. If >0 it will be embedded with atom types.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are {0}

precision

The precision of the embedding net parameters. Supported options are {1}

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

class deepmd.descriptor.DescrptSeAEf(*args, **kwargs)[source]

Bases: Descriptor

Smooth edition descriptor with Ef.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

axis_neuron

Number of the axis neuron (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs. Should have ‘efield’.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_dim_rot_mat_1() int[source]

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_rot_mat() Tensor[source]

Get rotational matrix.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

class deepmd.descriptor.DescrptSeAEfLower(*args, **kwargs)[source]

Bases: DescrptSeA

Helper class for implementing DescrptSeAEf.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_, atype_, natoms, box_, mesh, input_dict, suffix='', reuse=None)[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict, **kwargs)[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

class deepmd.descriptor.DescrptSeAMask(*args, **kwargs)[source]

Bases: DescrptSeA

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes the distance between atoms as input.

The descriptor \(\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}\) is given by [1]

\[\mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_<\]

where \(\mathcal{R}^i \in \mathbb{R}^{N \times 4}\) is the coordinate matrix, and each row of \(\mathcal{R}^i\) can be constructed as follows

\[(\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ]\]

where \(\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})\) is the relative coordinate and \(r_{ji}=\lVert \mathbf{R}_{ji} \lVert\) is its norm. The switching function \(s(r)\) is defined as:

\[\begin{split}s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases}\end{split}\]

Each row of the embedding matrix \(\mathcal{G}^i \in \mathbb{R}^{N \times M_1}\) consists of outputs of a embedding network \(\mathcal{N}\) of \(s(r_{ji})\):

\[(\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji}))\]

\(\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}\) takes first \(M_2\) columns of \(\mathcal{G}^i\). The equation of embedding network \(\mathcal{N}\) can be found at deepmd.utils.network.embedding_net(). Specially for descriptor se_a_mask is a concise implementation of se_a. The difference is that se_a_mask only considered a non-pbc system. And accept a mask matrix to indicate the atom i in frame j is a real atom or not. (1 means real atom, 0 means ghost atom) Thus se_a_mask can accept a variable number of atoms in a frame.

Parameters
sellist[str]

sel[i] specifies the maxmum number of type i atoms in the neighbor list.

neuronlist[int]

Number of neurons in each hidden layers of the embedding net \(\mathcal{N}\)

axis_neuron

Number of the axis neuron \(M_2\) (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function

The activation function in the embedding net. Supported options are {0}

precision

The precision of the embedding net parameters. Supported options are {1}

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

References

1

Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cutoff radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: Dict[str, Any], reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

get_rcut() float[source]

Returns the cutoff radius.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

None for se_a_mask op

atom_virial

None for se_a_mask op

class deepmd.descriptor.DescrptSeAtten(*args, **kwargs)[source]

Bases: DescrptSeA

Smooth version descriptor with attention.

Parameters
rcut

The cut-off radius \(r_c\)

rcut_smth

From where the environment matrix should be smoothed \(r_s\)

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net \(\mathcal{N}\)

axis_neuron

Number of the axis neuron \(M_2\) (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

attn

The length of hidden vector during scale-dot attention computation.

attn_layer

The number of layers in attention mechanism.

attn_dotr

Whether to dot the relative coordinates on the attention weights as a gated scheme.

attn_mask

Whether to mask the diagonal in the attention weights.

multi_task

If the model has multi fitting nets to train.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the attention descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

build_type_exclude_mask(exclude_types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt: int, atype: Tensor, shape0: Tensor, nei_type_vec: Tensor) Tensor[source]

Build the type exclude mask for the attention descriptor.

Parameters
exclude_typesList[Tuple[int, int]]

The list of excluded types, e.g. [(0, 1), (1, 0)] means the interaction between type 0 and type 1 is excluded.

ntypesint

The number of types.

selList[int]

The list of the number of selected neighbors for each type.

ndescrptint

The number of descriptors for each atom.

atypetf.Tensor

The type of atoms, with the size of shape0.

shape0tf.Tensor

The shape of the first dimension of the inputs, which is equal to nsamples * natoms.

nei_type_vectf.Tensor

The type of neighbors, with the size of (shape0, nnei).

Returns
tf.Tensor

The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of GLOBAL_TF_FLOAT_PRECISION. The mask has the value of 1 if the interaction between two types is not excluded, and 0 otherwise.

Notes

This method has the similiar way to build the type exclude mask as deepmd.descriptor.descriptor.Descriptor.build_type_exclude_mask(). The mathmatical expression has been explained in that method. The difference is that the attention descriptor has provided the type of the neighbors (idx_j) that is not in order, so we use it from an extra input.

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, mixed_type: bool = False, real_natoms_vec: Optional[list] = None, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. If mixed_type is True, this para is blank. See real_natoms_vec.

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

real_natoms_vec

If mixed_type is True, it takes in the real natoms_vec for each frame.

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

property explicit_ntypes: bool

Explicit ntypes with type embedding.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

class deepmd.descriptor.DescrptSeR(*args, **kwargs)[source]

Bases: DescrptSe

DeepPot-SE constructed from radial information of atomic configurations.

The embedding takes the distance between atoms as input.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict, **kwargs)[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

get_dim_out()[source]

Returns the output dimension of this descriptor.

get_nlist()[source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes()[source]

Returns the number of atom types.

get_rcut()[source]

Returns the cut-off radius.

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

class deepmd.descriptor.DescrptSeT(*args, **kwargs)[source]

Bases: DescrptSe

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations.

The embedding takes angles between two neighboring atoms as input.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

suma

The sum of relative coord statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

suma2

The sum of square of relative coord statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

Submodules
deepmd.descriptor.descriptor module
class deepmd.descriptor.descriptor.Descriptor(*args, **kwargs)[source]

Bases: PluginVariant

The abstract class for descriptors. All specific descriptors should be based on this class.

The descriptor \(\mathcal{D}\) describes the environment of an atom, which should be a function of coordinates and types of its neighbour atoms.

Notes

Only methods and attributes defined in this class are generally public, that can be called by other classes.

Examples

>>> descript = Descriptor(type="se_e2_a", rcut=6., rcut_smth=0.5, sel=[50])
>>> type(descript)
<class 'deepmd.descriptor.se_a.DescrptSeA'>
Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

abstract build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: Dict[str, Any], reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_tf.Tensor

The coordinate of atoms

atype_tf.Tensor

The type of atoms

natomstf.Tensor

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of frames

meshtf.Tensor

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dictdict[str, Any]

Dictionary for additional inputs

reusebool, optional

The weights in the networks should be reused when get the variable.

suffixstr, optional

Name suffix to identify this descriptor

Returns
descriptor: tf.Tensor

The output descriptor

Notes

This method must be implemented, as it’s called by other classes.

build_type_exclude_mask(exclude_types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt: int, atype: Tensor, shape0: Tensor) Tensor[source]

Build the type exclude mask for the descriptor.

Parameters
exclude_typesList[Tuple[int, int]]

The list of excluded types, e.g. [(0, 1), (1, 0)] means the interaction between type 0 and type 1 is excluded.

ntypesint

The number of types.

selList[int]

The list of the number of selected neighbors for each type.

ndescrptint

The number of descriptors for each atom.

atypetf.Tensor

The type of atoms, with the size of shape0.

shape0tf.Tensor

The shape of the first dimension of the inputs, which is equal to nsamples * natoms.

Returns
tf.Tensor

The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of GLOBAL_TF_FLOAT_PRECISION. The mask has the value of 1 if the interaction between two types is not excluded, and 0 otherwise.

Notes

To exclude the interaction between two types, the derivative of energy with respect to distances (or angles) between two atoms should be zero[Rafc1ae60e195-1]_, i.e.

\[\forall i \in \text{type 1}, j \in \text{type 2}, \frac{\partial{E}}{\partial{r_{ij}}} = 0\]

When embedding networks between every two types are built, we can just remove that network. But when type_one_side is enabled, a network may be built for multiple pairs of types. In this case, we need to build a mask to exclude the interaction between two types.

The mask assumes the descriptors are sorted by neighbro type with the fixed number of given sel and each neighbor has the same number of descriptors (for example 4).

References

1

Jinzhe Zeng, Timothy J. Giese, ̧Sölen Ekesan, Darrin M. York, Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/molecular Mechanical Simulations of Chemical Reactions in Solution, J. Chem. Theory Comput., 2021, 17 (11), 6993-7009.

abstract compute_input_stats(data_coord: List[ndarray], data_box: List[ndarray], data_atype: List[ndarray], natoms_vec: List[ndarray], mesh: List[ndarray], input_dict: Dict[str, List[ndarray]], **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coordlist[np.ndarray]

The coordinates. Can be generated by deepmd.model.model_stat.make_stat_input()

data_boxlist[np.ndarray]

The box. Can be generated by deepmd.model.model_stat.make_stat_input()

data_atypelist[np.ndarray]

The atom types. Can be generated by deepmd.model.model_stat.make_stat_input()

natoms_veclist[np.ndarray]

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.model_stat.make_stat_input()

meshlist[np.ndarray]

The mesh for neighbor searching. Can be generated by deepmd.model.model_stat.make_stat_input()

input_dictdict[str, list[np.ndarray]]

Dictionary for additional input

**kwargs

Additional keyword arguments which may contain mixed_type and real_natoms_vec.

Notes

This method must be implemented, as it’s called by other classes.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5.0, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_distfloat

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph definition of the model

table_extrapolatefloat, default: 5.

The scale of model extrapolation

table_stride_1float, default: 0.01

The uniform stride of the first table

table_stride_2float, default: 0.1

The uniform stride of the second table

check_frequencyint, default: -1

The overflow check frequency

suffixstr, optional

The suffix of the scope

Notes

This method is called by others when the descriptor supported compression.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

Notes

This method is called by others when the descriptor supported compression.

property explicit_ntypes: bool

Explicit ntypes with type embedding.

abstract get_dim_out() int[source]

Returns the output dimension of this descriptor.

Returns
int

the output dimension of this descriptor

Notes

This method must be implemented, as it’s called by other classes.

get_dim_rot_mat_1() int[source]

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.

Returns
int

the first dimension of the rotation matrix

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlisttf.Tensor

Neighbor list

rijtf.Tensor

The relative distance between the neighbor and the center atom.

sel_alist[int]

The number of neighbors with full information

sel_rlist[int]

The number of neighbors with only radial information

abstract get_ntypes() int[source]

Returns the number of atom types.

Returns
int

the number of atom types

Notes

This method must be implemented, as it’s called by other classes.

abstract get_rcut() float[source]

Returns the cut-off radius.

Returns
float

the cut-off radius

Notes

This method must be implemented, as it’s called by other classes.

get_tensor_names(suffix: str = '') Tuple[str][source]

Get names of tensors.

Parameters
suffixstr

The suffix of the scope

Returns
Tuple[str]

Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

Notes

This method is called by others when the descriptor supported initialization from the given variables.

pass_tensors_from_frz_model(*tensors: Tensor) None[source]

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

Parameters
*tensorstf.Tensor

passed tensors

Notes

The number of parameters in the method must be equal to the numbers of returns in get_tensor_names().

abstract prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_enertf.Tensor

The atomic energy

natomstf.Tensor

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
forcetf.Tensor

The force on atoms

virialtf.Tensor

The total virial

atom_virialtf.Tensor

The atomic virial

static register(key: str) Callable[source]

Register a descriptor plugin.

Parameters
keystr

the key of a descriptor

Returns
Descriptor

the registered descriptor

Examples

>>> @Descriptor.register("some_descrpt")
    class SomeDescript(Descriptor):
        pass
deepmd.descriptor.hybrid module
class deepmd.descriptor.hybrid.DescrptHybrid(*args, **kwargs)[source]

Bases: Descriptor

Concate a list of descriptors to form a new descriptor.

Parameters
listlist

Build a descriptor from the concatenation of the list of descriptors.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Get the neighbor information of the descriptor, returns the nlist of the descriptor with the largest cut-off radius.

get_nlist_i(ii)

Get the neighbor information of the ii-th descriptor.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, mixed_type: bool = False, real_natoms_vec: Optional[list] = None, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

real_natoms_vec

If mixed_type is True, it takes in the real natoms_vec for each frame.

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5.0, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_distfloat

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolatefloat, default: 5.

The scale of model extrapolation

table_stride_1float, default: 0.01

The uniform stride of the first table

table_stride_2float, default: 0.1

The uniform stride of the second table

check_frequencyint, default: -1

The overflow check frequency

suffixstr, optional

The suffix of the scope

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

property explicit_ntypes: bool

Explicit ntypes with type embedding.

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Get the neighbor information of the descriptor, returns the nlist of the descriptor with the largest cut-off radius.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_nlist_i(ii: int) Tuple[Tensor, Tensor, List[int], List[int]][source]

Get the neighbor information of the ii-th descriptor.

Parameters
iiint

The index of the descriptor

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_tensor_names(suffix: str = '') Tuple[str][source]

Get names of tensors.

Parameters
suffixstr

The suffix of the scope

Returns
Tuple[str]

Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

suma

The sum of relative coord statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

suma2

The sum of square of relative coord statisitcs.

pass_tensors_from_frz_model(*tensors: Tensor) None[source]

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

Parameters
*tensorstf.Tensor

passed tensors

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

deepmd.descriptor.loc_frame module
class deepmd.descriptor.loc_frame.DescrptLocFrame(*args, **kwargs)[source]

Bases: Descriptor

Defines a local frame at each atom, and the compute the descriptor as local coordinates under this frame.

Parameters
rcut

The cut-off radius

sel_alist[str]

The length of the list should be the same as the number of atom types in the system. sel_a[i] gives the selected number of type-i neighbors. The full relative coordinates of the neighbors are used by the descriptor.

sel_rlist[str]

The length of the list should be the same as the number of atom types in the system. sel_r[i] gives the selected number of type-i neighbors. Only relative distance of the neighbors are used by the descriptor. sel_a[i] + sel_r[i] is recommended to be larger than the maximally possible number of type-i neighbors in the cut-off radius.

axis_rule: list[int]

The length should be 6 times of the number of types. - axis_rule[i*6+0]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance. - axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom. - axis_rule[i*6+2]: index of the axis atom defining the first axis. Note that the neighbors with the same class and type are sorted according to their relative distance. - axis_rule[i*6+3]: class of the atom defining the second axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors only with relative distance. - axis_rule[i*6+4]: type of the atom defining the second axis of type-i atom. - axis_rule[i*6+5]: index of the axis atom defining the second axis. Note that the neighbors with the same class and type are sorted according to their relative distance.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]
Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_rot_mat() Tensor[source]

Get rotational matrix.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

deepmd.descriptor.se module
class deepmd.descriptor.se.DescrptSe(*args, **kwargs)[source]

Bases: Descriptor

A base class for smooth version of descriptors.

Notes

All of these descriptors have an environmental matrix and an embedding network (deepmd.utils.network.embedding_net()), so they can share some similiar methods without defining them twice.

Attributes
embedding_net_variablesdict

initial embedding network variables

descrpt_reshapetf.Tensor

the reshaped descriptor

descrpt_derivtf.Tensor

the descriptor derivative

rijtf.Tensor

distances between two atoms

nlisttf.Tensor

the neighbor list

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

get_tensor_names(suffix: str = '') Tuple[str][source]

Get names of tensors.

Parameters
suffixstr

The suffix of the scope

Returns
Tuple[str]

Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

pass_tensors_from_frz_model(descrpt_reshape: Tensor, descrpt_deriv: Tensor, rij: Tensor, nlist: Tensor)[source]

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

Parameters
descrpt_reshape

The passed descrpt_reshape tensor

descrpt_deriv

The passed descrpt_deriv tensor

rij

The passed rij tensor

nlist

The passed nlist tensor

property precision: DType

Precision of filter network.

deepmd.descriptor.se_a module
class deepmd.descriptor.se_a.DescrptSeA(*args, **kwargs)[source]

Bases: DescrptSe

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes the distance between atoms as input.

The descriptor \(\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}\) is given by [1]

\[\mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_<\]

where \(\mathcal{R}^i \in \mathbb{R}^{N \times 4}\) is the coordinate matrix, and each row of \(\mathcal{R}^i\) can be constructed as follows

\[(\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ]\]

where \(\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})\) is the relative coordinate and \(r_{ji}=\lVert \mathbf{R}_{ji} \lVert\) is its norm. The switching function \(s(r)\) is defined as:

\[\begin{split}s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases}\end{split}\]

Each row of the embedding matrix \(\mathcal{G}^i \in \mathbb{R}^{N \times M_1}\) consists of outputs of a embedding network \(\mathcal{N}\) of \(s(r_{ji})\):

\[(\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji}))\]

\(\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}\) takes first \(M_2\) columns of \(\mathcal{G}^i\). The equation of embedding network \(\mathcal{N}\) can be found at deepmd.utils.network.embedding_net().

Parameters
rcut

The cut-off radius \(r_c\)

rcut_smth

From where the environment matrix should be smoothed \(r_s\)

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net \(\mathcal{N}\)

axis_neuron

Number of the axis neuron \(M_2\) (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

multi_task

If the model has multi fitting nets to train.

References

1

Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_dim_rot_mat_1() int[source]

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_rot_mat() Tensor[source]

Get rotational matrix.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

suma

The sum of relative coord statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

suma2

The sum of square of relative coord statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

deepmd.descriptor.se_a_ebd module
class deepmd.descriptor.se_a_ebd.DescrptSeAEbd(*args, **kwargs)[source]

Bases: DescrptSeA

DeepPot-SE descriptor with type embedding approach.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

axis_neuron

Number of the axis neuron (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

type_nchanl

Number of channels for type representation

type_nlayer

Number of hidden layers for the type embedding net (skip connected).

numb_aparam

Number of atomic parameters. If >0 it will be embedded with atom types.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are {0}

precision

The precision of the embedding net parameters. Supported options are {1}

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

deepmd.descriptor.se_a_ef module
class deepmd.descriptor.se_a_ef.DescrptSeAEf(*args, **kwargs)[source]

Bases: Descriptor

Smooth edition descriptor with Ef.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

axis_neuron

Number of the axis neuron (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

pass_tensors_from_frz_model(*tensors)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs. Should have ‘efield’.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_dim_rot_mat_1() int[source]

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

get_rot_mat() Tensor[source]

Get rotational matrix.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

class deepmd.descriptor.se_a_ef.DescrptSeAEfLower(*args, **kwargs)[source]

Bases: DescrptSeA

Helper class for implementing DescrptSeAEf.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_, atype_, natoms, box_, mesh, input_dict, suffix='', reuse=None)[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict, **kwargs)[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

deepmd.descriptor.se_a_mask module
class deepmd.descriptor.se_a_mask.DescrptSeAMask(*args, **kwargs)[source]

Bases: DescrptSeA

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes the distance between atoms as input.

The descriptor \(\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}\) is given by [1]

\[\mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_<\]

where \(\mathcal{R}^i \in \mathbb{R}^{N \times 4}\) is the coordinate matrix, and each row of \(\mathcal{R}^i\) can be constructed as follows

\[(\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ]\]

where \(\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})\) is the relative coordinate and \(r_{ji}=\lVert \mathbf{R}_{ji} \lVert\) is its norm. The switching function \(s(r)\) is defined as:

\[\begin{split}s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases}\end{split}\]

Each row of the embedding matrix \(\mathcal{G}^i \in \mathbb{R}^{N \times M_1}\) consists of outputs of a embedding network \(\mathcal{N}\) of \(s(r_{ji})\):

\[(\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji}))\]

\(\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}\) takes first \(M_2\) columns of \(\mathcal{G}^i\). The equation of embedding network \(\mathcal{N}\) can be found at deepmd.utils.network.embedding_net(). Specially for descriptor se_a_mask is a concise implementation of se_a. The difference is that se_a_mask only considered a non-pbc system. And accept a mask matrix to indicate the atom i in frame j is a real atom or not. (1 means real atom, 0 means ghost atom) Thus se_a_mask can accept a variable number of atoms in a frame.

Parameters
sellist[str]

sel[i] specifies the maxmum number of type i atoms in the neighbor list.

neuronlist[int]

Number of neurons in each hidden layers of the embedding net \(\mathcal{N}\)

axis_neuron

Number of the axis neuron \(M_2\) (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function

The activation function in the embedding net. Supported options are {0}

precision

The precision of the embedding net parameters. Supported options are {1}

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

References

1

Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, USA, 4441–4451.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cutoff radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: Dict[str, Any], reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

get_rcut() float[source]

Returns the cutoff radius.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

None for se_a_mask op

atom_virial

None for se_a_mask op

deepmd.descriptor.se_atten module
class deepmd.descriptor.se_atten.DescrptSeAtten(*args, **kwargs)[source]

Bases: DescrptSeA

Smooth version descriptor with attention.

Parameters
rcut

The cut-off radius \(r_c\)

rcut_smth

From where the environment matrix should be smoothed \(r_s\)

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net \(\mathcal{N}\)

axis_neuron

Number of the axis neuron \(M_2\) (number of columns of the sub-matrix of the embedding matrix)

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

attn

The length of hidden vector during scale-dot attention computation.

attn_layer

The number of layers in attention mechanism.

attn_dotr

Whether to dot the relative coordinates on the attention weights as a gated scheme.

attn_mask

Whether to mask the diagonal in the attention weights.

multi_task

If the model has multi fitting nets to train.

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the attention descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_rot_mat()

Get rotational matrix.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

build_type_exclude_mask(exclude_types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt: int, atype: Tensor, shape0: Tensor, nei_type_vec: Tensor) Tensor[source]

Build the type exclude mask for the attention descriptor.

Parameters
exclude_typesList[Tuple[int, int]]

The list of excluded types, e.g. [(0, 1), (1, 0)] means the interaction between type 0 and type 1 is excluded.

ntypesint

The number of types.

selList[int]

The list of the number of selected neighbors for each type.

ndescrptint

The number of descriptors for each atom.

atypetf.Tensor

The type of atoms, with the size of shape0.

shape0tf.Tensor

The shape of the first dimension of the inputs, which is equal to nsamples * natoms.

nei_type_vectf.Tensor

The type of neighbors, with the size of (shape0, nnei).

Returns
tf.Tensor

The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of GLOBAL_TF_FLOAT_PRECISION. The mask has the value of 1 if the interaction between two types is not excluded, and 0 otherwise.

Notes

This method has the similiar way to build the type exclude mask as deepmd.descriptor.descriptor.Descriptor.build_type_exclude_mask(). The mathmatical expression has been explained in that method. The difference is that the attention descriptor has provided the type of the neighbors (idx_j) that is not in order, so we use it from an extra input.

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, mixed_type: bool = False, real_natoms_vec: Optional[list] = None, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. If mixed_type is True, this para is blank. See real_natoms_vec.

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

real_natoms_vec

If mixed_type is True, it takes in the real natoms_vec for each frame.

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

property explicit_ntypes: bool

Explicit ntypes with type embedding.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr, optional

The suffix of the scope

deepmd.descriptor.se_r module
class deepmd.descriptor.se_r.DescrptSeR(*args, **kwargs)[source]

Bases: DescrptSe

DeepPot-SE constructed from radial information of atomic configurations.

The embedding takes the distance between atoms as input.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict, **kwargs)[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

get_dim_out()[source]

Returns the output dimension of this descriptor.

get_nlist()[source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes()[source]

Returns the number of atom types.

get_rcut()[source]

Returns the cut-off radius.

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

deepmd.descriptor.se_t module
class deepmd.descriptor.se_t.DescrptSeT(*args, **kwargs)[source]

Bases: DescrptSe

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations.

The embedding takes angles between two neighboring atoms as input.

Parameters
rcut

The cut-off radius

rcut_smth

From where the environment matrix should be smoothed

sellist[str]

sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuronlist[int]

Number of neurons in each hidden layers of the embedding net

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
explicit_ntypes

Explicit ntypes with type embedding.

precision

Precision of filter network.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the computational graph for the descriptor.

build_type_exclude_mask(exclude_types, ...)

Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, ...)

Compute the statisitcs (avg and std) of the training data.

enable_compression(min_nbor_dist, graph, ...)

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_dim_out()

Returns the output dimension of this descriptor.

get_dim_rot_mat_1()

Returns the first dimension of the rotation matrix.

get_nlist()

Returns neighbor information.

get_ntypes()

Returns the number of atom types.

get_rcut()

Returns the cut-off radius.

get_tensor_names([suffix])

Get names of tensors.

init_variables(graph, graph_def[, suffix])

Init the embedding net variables with the given dict.

merge_input_stats(stat_dict)

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

pass_tensors_from_frz_model(descrpt_reshape, ...)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms)

Compute force and virial.

register(key)

Register a descriptor plugin.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for the descriptor.

Parameters
coord_

The coordinate of atoms

atype_

The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box_tf.Tensor

The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
descriptor

The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list, input_dict: dict, **kwargs) None[source]

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the statistics.

Parameters
data_coord

The coordinates. Can be generated by deepmd.model.make_stat_input

data_box

The box. Can be generated by deepmd.model.make_stat_input

data_atype

The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms. Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by deepmd.model.make_stat_input

input_dict

Dictionary for additional input

**kwargs

Additional keyword arguments.

enable_compression(min_nbor_dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate: float = 5, table_stride_1: float = 0.01, table_stride_2: float = 0.1, check_frequency: int = -1, suffix: str = '') None[source]

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.

Parameters
min_nbor_dist

The nearest distance between atoms

graphtf.Graph

The graph of the model

graph_deftf.GraphDef

The graph_def of the model

table_extrapolate

The scale of model extrapolation

table_stride_1

The uniform stride of the first table

table_stride_2

The uniform stride of the second table

check_frequency

The overflow check frequency

suffixstr, optional

The suffix of the scope

get_dim_out() int[source]

Returns the output dimension of this descriptor.

get_nlist() Tuple[Tensor, Tensor, List[int], List[int]][source]

Returns neighbor information.

Returns
nlist

Neighbor list

rij

The relative distance between the neighbor and the center atom.

sel_a

The number of neighbors with full information

sel_r

The number of neighbors with only radial information

get_ntypes() int[source]

Returns the number of atom types.

get_rcut() float[source]

Returns the cut-off radius.

merge_input_stats(stat_dict)[source]

Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict

The dict of statisitcs computed from compute_input_stats, including:

sumr

The sum of radial statisitcs.

suma

The sum of relative coord statisitcs.

sumn

The sum of neighbor numbers.

sumr2

The sum of square of radial statisitcs.

suma2

The sum of square of relative coord statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) Tuple[Tensor, Tensor, Tensor][source]

Compute force and virial.

Parameters
atom_ener

The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns
force

The force on atoms

virial

The total virial

atom_virial

The atomic virial

deepmd.entrypoints package

Submodule that contains all the DeePMD-Kit entry point scripts.

deepmd.entrypoints.compress(*, input: str, output: str, extrapolate: int, step: float, frequency: str, checkpoint_folder: str, training_script: str, mpi_log: str, log_path: Optional[str], log_level: int, **kwargs)[source]

Compress model.

The table is composed of fifth-order polynomial coefficients and is assembled from two sub-tables. The first table takes the step parameter as the domain’s uniform step size, while the second table takes 10 * step as it’s uniform step size. The range of the first table is automatically detected by the code, while the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter) * upper.

Parameters
inputstr

frozen model file to compress

outputstr

compressed model filename

extrapolateint

scale of model extrapolation

stepfloat

uniform step size of the tabulation’s first table

frequencystr

frequency of tabulation overflow check

checkpoint_folderstr

trining checkpoint folder for freezing

training_scriptstr

training script of the input frozen model

mpi_logstr

mpi logging mode for training

log_pathOptional[str]

if speccified log will be written to this file

log_levelint

logging level

**kwargs

additional arguments

deepmd.entrypoints.convert(*, FROM: str, input_model: str, output_model: str, **kwargs)[source]
deepmd.entrypoints.doc_train_input(*, out_type: str = 'rst', **kwargs)[source]

Print out trining input arguments to console.

deepmd.entrypoints.freeze(*, checkpoint_folder: str, output: str, node_names: Optional[str] = None, nvnmd_weight: Optional[str] = None, united_model: bool = False, **kwargs)[source]

Freeze the graph in supplied folder.

Parameters
checkpoint_folderstr

location of the folder with model

outputstr

output file name

node_namesOptional[str], optional

names of nodes to output, by default None

nvnmd_weightOptional[str], optional

nvnmd weight file

united_modelbool

when in multi-task mode, freeze all nodes into one unit model

**kwargs

other arguments

deepmd.entrypoints.make_model_devi(*, models: list, system: str, set_prefix: str, output: str, frequency: int, **kwargs)[source]

Make model deviation calculation.

Parameters
modelslist

A list of paths of models to use for making model deviation

systemstr

The path of system to make model deviation calculation

set_prefixstr

The set prefix of the system

outputstr

The output file for model deviation results

frequencyint

The number of steps that elapse between writing coordinates in a trajectory by a MD engine (such as Gromacs / Lammps). This paramter is used to determine the index in the output file.

**kwargs

Arbitrary keyword arguments.

deepmd.entrypoints.neighbor_stat(*, system: str, rcut: float, type_map: List[str], one_type: bool = False, **kwargs)[source]

Calculate neighbor statistics.

Parameters
systemstr

system to stat

rcutfloat

cutoff radius

type_maplist[str]

type map

one_typebool, optional, default=False

treat all types as a single type

**kwargs

additional arguments

Examples

>>> neighbor_stat(system='.', rcut=6., type_map=["C", "H", "O", "N", "P", "S", "Mg", "Na", "HW", "OW", "mNa", "mCl", "mC", "mH", "mMg", "mN", "mO", "mP"])
min_nbor_dist: 0.6599510670195264
max_nbor_size: [23, 26, 19, 16, 2, 2, 1, 1, 72, 37, 5, 0, 31, 29, 1, 21, 20, 5]
deepmd.entrypoints.test(*, model: str, system: str, datafile: str, set_prefix: str, numb_test: int, rand_seed: Optional[int], shuffle_test: bool, detail_file: str, atomic: bool, **kwargs)[source]

Test model predictions.

Parameters
modelstr

path where model is stored

systemstr

system directory

datafilestr

the path to the list of systems to test

set_prefixstr

string prefix of set

numb_testint

munber of tests to do

rand_seedOptional[int]

seed for random generator

shuffle_testbool

whether to shuffle tests

detail_fileOptional[str]

file where test details will be output

atomicbool

whether per atom quantities should be computed

**kwargs

additional arguments

Raises
RuntimeError

if no valid system was found

deepmd.entrypoints.train_dp(*, INPUT: str, init_model: Optional[str], restart: Optional[str], output: str, init_frz_model: str, mpi_log: str, log_level: int, log_path: Optional[str], is_compress: bool = False, skip_neighbor_stat: bool = False, finetune: Optional[str] = None, **kwargs)

Run DeePMD model training.

Parameters
INPUTstr

json/yaml control file

init_modelOptional[str]

path to checkpoint folder or None

restartOptional[str]

path to checkpoint folder or None

outputstr

path for dump file with arguments

init_frz_modelstr

path to frozen model or None

mpi_logstr

mpi logging mode

log_levelint

logging level defined by int 0-3

log_pathOptional[str]

logging file path or None if logs are to be output only to stdout

is_compressbool

indicates whether in the model compress mode

skip_neighbor_statbool, default=False

skip checking neighbor statistics

finetuneOptional[str]

path to pretrained model or None

**kwargs

additional arguments

Raises
RuntimeError

if distributed training job name is wrong

deepmd.entrypoints.transfer(*, old_model: str, raw_model: str, output: str, **kwargs)[source]

Transfer operation from old fron graph to new prepared raw graph.

Parameters
old_modelstr

frozen old graph model

raw_modelstr

new model that will accept ops from old model

outputstr

new model with transfered parameters will be saved to this location

**kwargs

additional arguments

Submodules
deepmd.entrypoints.compress module

Compress a model, which including tabulating the embedding-net.

deepmd.entrypoints.compress.compress(*, input: str, output: str, extrapolate: int, step: float, frequency: str, checkpoint_folder: str, training_script: str, mpi_log: str, log_path: Optional[str], log_level: int, **kwargs)[source]

Compress model.

The table is composed of fifth-order polynomial coefficients and is assembled from two sub-tables. The first table takes the step parameter as the domain’s uniform step size, while the second table takes 10 * step as it’s uniform step size. The range of the first table is automatically detected by the code, while the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter) * upper.

Parameters
inputstr

frozen model file to compress

outputstr

compressed model filename

extrapolateint

scale of model extrapolation

stepfloat

uniform step size of the tabulation’s first table

frequencystr

frequency of tabulation overflow check

checkpoint_folderstr

trining checkpoint folder for freezing

training_scriptstr

training script of the input frozen model

mpi_logstr

mpi logging mode for training

log_pathOptional[str]

if speccified log will be written to this file

log_levelint

logging level

**kwargs

additional arguments

deepmd.entrypoints.convert module
deepmd.entrypoints.convert.convert(*, FROM: str, input_model: str, output_model: str, **kwargs)[source]
deepmd.entrypoints.doc module

Module that prints train input arguments docstrings.

deepmd.entrypoints.doc.doc_train_input(*, out_type: str = 'rst', **kwargs)[source]

Print out trining input arguments to console.

deepmd.entrypoints.freeze module

Script for freezing TF trained graph so it can be used with LAMMPS and i-PI.

References

https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

deepmd.entrypoints.freeze.freeze(*, checkpoint_folder: str, output: str, node_names: Optional[str] = None, nvnmd_weight: Optional[str] = None, united_model: bool = False, **kwargs)[source]

Freeze the graph in supplied folder.

Parameters
checkpoint_folderstr

location of the folder with model

outputstr

output file name

node_namesOptional[str], optional

names of nodes to output, by default None

nvnmd_weightOptional[str], optional

nvnmd weight file

united_modelbool

when in multi-task mode, freeze all nodes into one unit model

**kwargs

other arguments

deepmd.entrypoints.ipi module

Use dp_ipi inside the Python package.

deepmd.entrypoints.ipi.dp_ipi()[source]

dp_ipi.

deepmd.entrypoints.main module

DeePMD-Kit entry point module.

deepmd.entrypoints.main.get_ll(log_level: str) int[source]

Convert string to python logging level.

Parameters
log_levelstr

allowed input values are: DEBUG, INFO, WARNING, ERROR, 3, 2, 1, 0

Returns
int

one of python logging module log levels - 10, 20, 30 or 40

deepmd.entrypoints.main.main(args: Optional[Union[List[str], Namespace]] = None)[source]

DeePMD-Kit entry point.

Parameters
argsList[str] or argparse.Namespace, optional

list of command line arguments, used to avoid calling from the subprocess, as it is quite slow to import tensorflow; if Namespace is given, it will be used directly

Raises
RuntimeError

if no command was input

deepmd.entrypoints.main.main_parser() ArgumentParser[source]

DeePMD-Kit commandline options argument parser.

Returns
argparse.ArgumentParser

main parser of DeePMD-kit

deepmd.entrypoints.main.parse_args(args: Optional[List[str]] = None) Namespace[source]

Parse arguments and convert argument strings to objects.

Parameters
argsList[str]

list of command line arguments, main purpose is testing default option None takes arguments from sys.argv

Returns
argparse.Namespace

the populated namespace

deepmd.entrypoints.neighbor_stat module
deepmd.entrypoints.neighbor_stat.neighbor_stat(*, system: str, rcut: float, type_map: List[str], one_type: bool = False, **kwargs)[source]

Calculate neighbor statistics.

Parameters
systemstr

system to stat

rcutfloat

cutoff radius

type_maplist[str]

type map

one_typebool, optional, default=False

treat all types as a single type

**kwargs

additional arguments

Examples

>>> neighbor_stat(system='.', rcut=6., type_map=["C", "H", "O", "N", "P", "S", "Mg", "Na", "HW", "OW", "mNa", "mCl", "mC", "mH", "mMg", "mN", "mO", "mP"])
min_nbor_dist: 0.6599510670195264
max_nbor_size: [23, 26, 19, 16, 2, 2, 1, 1, 72, 37, 5, 0, 31, 29, 1, 21, 20, 5]
deepmd.entrypoints.test module

Test trained DeePMD model.

deepmd.entrypoints.test.test(*, model: str, system: str, datafile: str, set_prefix: str, numb_test: int, rand_seed: Optional[int], shuffle_test: bool, detail_file: str, atomic: bool, **kwargs)[source]

Test model predictions.

Parameters
modelstr

path where model is stored

systemstr

system directory

datafilestr

the path to the list of systems to test

set_prefixstr

string prefix of set

numb_testint

munber of tests to do

rand_seedOptional[int]

seed for random generator

shuffle_testbool

whether to shuffle tests

detail_fileOptional[str]

file where test details will be output

atomicbool

whether per atom quantities should be computed

**kwargs

additional arguments

Raises
RuntimeError

if no valid system was found

deepmd.entrypoints.train module

DeePMD training entrypoint script.

Can handle local or distributed training.

deepmd.entrypoints.train.train(*, INPUT: str, init_model: Optional[str], restart: Optional[str], output: str, init_frz_model: str, mpi_log: str, log_level: int, log_path: Optional[str], is_compress: bool = False, skip_neighbor_stat: bool = False, finetune: Optional[str] = None, **kwargs)[source]

Run DeePMD model training.

Parameters
INPUTstr

json/yaml control file

init_modelOptional[str]

path to checkpoint folder or None

restartOptional[str]

path to checkpoint folder or None

outputstr

path for dump file with arguments

init_frz_modelstr

path to frozen model or None

mpi_logstr

mpi logging mode

log_levelint

logging level defined by int 0-3

log_pathOptional[str]

logging file path or None if logs are to be output only to stdout

is_compressbool

indicates whether in the model compress mode

skip_neighbor_statbool, default=False

skip checking neighbor statistics

finetuneOptional[str]

path to pretrained model or None

**kwargs

additional arguments

Raises
RuntimeError

if distributed training job name is wrong

deepmd.entrypoints.transfer module

Module used for transfering parameters between models.

deepmd.entrypoints.transfer.transfer(*, old_model: str, raw_model: str, output: str, **kwargs)[source]

Transfer operation from old fron graph to new prepared raw graph.

Parameters
old_modelstr

frozen old graph model

raw_modelstr

new model that will accept ops from old model

outputstr

new model with transfered parameters will be saved to this location

**kwargs

additional arguments

deepmd.fit package
class deepmd.fit.DOSFitting(*args, **kwargs)[source]

Bases: Fitting

Fitting the density of states (DOS) of the system. The energy should be shifted by the fermi level.

Parameters
descrpt

The descrptor \(\mathcal{D}\)

neuron

Number of neurons \(N\) in each hidden layer of the fitting net

resnet_dt

Time-step dt in the resnet construction: \(y = x + dt * \phi (Wx + b)\)

numb_fparam

Number of frame parameter

numb_aparam

Number of atomic parameter

! numb_dos (added)

Number of gridpoints on which the DOS is evaluated (NEDOS in VASP)

rcond

The condition number for the regression of atomic energy.

trainable

If the weights of fitting net are trainable. Suppose that we have \(N_l\) hidden layers in the fitting net, this list is of length \(N_l + 1\), specifying if the hidden layers and the output layer are trainable.

seed

Random seed for initializing the network parameters.

activation_function

The activation function \(\boldsymbol{\phi}\) in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

layer_namelist[Optional[str]], optional

The name of the each layer. If two layers, either in the same fitting or different fittings, have the same name, they will share the same neural network parameters.

use_aparam_as_mask: bool, optional

If True, the atomic parameters will be used as a mask that determines the atom is real/virtual. And the aparam will not be used as the atomic parameters for embedding.

Attributes
precision

Precision of fitting network.

Methods

build(inputs, natoms[, input_dict, reuse, ...])

Build the computational graph for fitting net.

compute_input_stats(all_stat[, protection])

Compute the input statistics.

compute_output_stats(all_stat[, mixed_type])

Compute the ouput statistics.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(inputs: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for fitting net.

Parameters
inputs

The input descriptor

input_dict

Additional dict for inputs. if numb_fparam > 0, should have input_dict[‘fparam’] if numb_aparam > 0, should have input_dict[‘aparam’]

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
ener

The system energy

compute_input_stats(all_stat: dict, protection: float = 0.01) None[source]

Compute the input statistics.

Parameters
all_stat

if numb_fparam > 0 must have all_stat[‘fparam’] if numb_aparam > 0 must have all_stat[‘aparam’] can be prepared by model.make_stat_input

protection

Divided-by-zero protection

compute_output_stats(all_stat: dict, mixed_type: bool = False) None[source]

Compute the ouput statistics.

Parameters
all_stat

must have the following components: all_stat[‘dos’] of shape n_sys x n_batch x n_frame x numb_dos can be prepared by model.make_stat_input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_dos() int[source]

Get the number of gridpoints in energy space.

get_numb_fparam() int[source]

Get the number of frame parameters.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

class deepmd.fit.DipoleFittingSeA(*args, **kwargs)[source]

Bases: Fitting

Fit the atomic dipole with descriptor se_a.

Parameters
descrpttf.Tensor

The descrptor

neuronList[int]

Number of neurons in each hidden layer of the fitting net

resnet_dtbool

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel_typeList[int]

The atom types selected to have an atomic dipole prediction. If is None, all atoms are selected.

seedint

Random seed for initializing the network parameters.

activation_functionstr

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precisionstr

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
precision

Precision of fitting network.

Methods

build(input_d, rot_mat, natoms[, ...])

Build the computational graph for fitting net.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_out_size()

Get the output size.

get_sel_type()

Get selected type.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for fitting net.

Parameters
input_d

The input descriptor

rot_mat

The rotation matrix from the descriptor.

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

input_dict

Additional dict for inputs.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
dipole

The atomic dipole.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

get_out_size() int[source]

Get the output size. Should be 3.

get_sel_type() int[source]

Get selected type.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

class deepmd.fit.EnerFitting(*args, **kwargs)[source]

Bases: Fitting

Fitting the energy of the system. The force and the virial can also be trained.

The potential energy \(E\) is a fitting network function of the descriptor \(\mathcal{D}\):

\[E(\mathcal{D}) = \mathcal{L}^{(n)} \circ \mathcal{L}^{(n-1)} \circ \cdots \circ \mathcal{L}^{(1)} \circ \mathcal{L}^{(0)}\]

The first \(n\) hidden layers \(\mathcal{L}^{(0)}, \cdots, \mathcal{L}^{(n-1)}\) are given by

\[\mathbf{y}=\mathcal{L}(\mathbf{x};\mathbf{w},\mathbf{b})= \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b})\]

where \(\mathbf{x} \in \mathbb{R}^{N_1}\) is the input vector and \(\mathbf{y} \in \mathbb{R}^{N_2}\) is the output vector. \(\mathbf{w} \in \mathbb{R}^{N_1 \times N_2}\) and \(\mathbf{b} \in \mathbb{R}^{N_2}\) are weights and biases, respectively, both of which are trainable if trainable[i] is True. \(\boldsymbol{\phi}\) is the activation function.

The output layer \(\mathcal{L}^{(n)}\) is given by

\[\mathbf{y}=\mathcal{L}^{(n)}(\mathbf{x};\mathbf{w},\mathbf{b})= \mathbf{x}^T\mathbf{w}+\mathbf{b}\]

where \(\mathbf{x} \in \mathbb{R}^{N_{n-1}}\) is the input vector and \(\mathbf{y} \in \mathbb{R}\) is the output scalar. \(\mathbf{w} \in \mathbb{R}^{N_{n-1}}\) and \(\mathbf{b} \in \mathbb{R}\) are weights and bias, respectively, both of which are trainable if trainable[n] is True.

Parameters
descrpt

The descrptor \(\mathcal{D}\)

neuron

Number of neurons \(N\) in each hidden layer of the fitting net

resnet_dt

Time-step dt in the resnet construction: \(y = x + dt * \phi (Wx + b)\)

numb_fparam

Number of frame parameter

numb_aparam

Number of atomic parameter

rcond

The condition number for the regression of atomic energy.

tot_ener_zero

Force the total energy to zero. Useful for the charge fitting.

trainable

If the weights of fitting net are trainable. Suppose that we have \(N_l\) hidden layers in the fitting net, this list is of length \(N_l + 1\), specifying if the hidden layers and the output layer are trainable.

seed

Random seed for initializing the network parameters.

atom_ener

Specifying atomic energy contribution in vacuum. The set_davg_zero key in the descrptor should be set.

activation_function

The activation function \(\boldsymbol{\phi}\) in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

layer_namelist[Optional[str]], optional

The name of the each layer. If two layers, either in the same fitting or different fittings, have the same name, they will share the same neural network parameters.

use_aparam_as_mask: bool, optional

If True, the atomic parameters will be used as a mask that determines the atom is real/virtual. And the aparam will not be used as the atomic parameters for embedding.

Attributes
precision

Precision of fitting network.

Methods

build(inputs, natoms[, input_dict, reuse, ...])

Build the computational graph for fitting net.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

compute_input_stats(all_stat[, protection])

Compute the input statistics.

compute_output_stats(all_stat[, mixed_type])

Compute the ouput statistics.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_fparam()

Get the number of frame parameters.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(inputs: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for fitting net.

Parameters
inputs

The input descriptor

input_dict

Additional dict for inputs. if numb_fparam > 0, should have input_dict[‘fparam’] if numb_aparam > 0, should have input_dict[‘aparam’]

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
ener

The system energy

change_energy_bias(data, frozen_model, origin_type_map, full_type_map, bias_shift='delta', ntest=10) None[source]

Change the energy bias according to the input data and the pretrained model.

Parameters
dataDeepmdDataSystem

The training data.

frozen_modelstr

The path file of frozen model.

origin_type_maplist

The original type_map in dataset, they are targets to change the energy bias.

full_type_mapstr

The full type_map in pretrained model

bias_shiftstr

The mode for changing energy bias : [‘delta’, ‘statistic’] ‘delta’ : perform predictions on energies of target dataset,

and do least sqaure on the errors to obtain the target shift as bias.

‘statistic’ : directly use the statistic energy bias in the target dataset.

ntestint

The number of test samples in a system to change the energy bias.

compute_input_stats(all_stat: dict, protection: float = 0.01) None[source]

Compute the input statistics.

Parameters
all_stat

if numb_fparam > 0 must have all_stat[‘fparam’] if numb_aparam > 0 must have all_stat[‘aparam’] can be prepared by model.make_stat_input

protection

Divided-by-zero protection

compute_output_stats(all_stat: dict, mixed_type: bool = False) None[source]

Compute the ouput statistics.

Parameters
all_stat

must have the following components: all_stat[‘energy’] of shape n_sys x n_batch x n_frame can be prepared by model.make_stat_input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

The loss function parameters.

lrLearningRateExp

The learning rate.

Returns
Loss

The loss function.

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_fparam() int[source]

Get the number of frame parameters.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

class deepmd.fit.Fitting(*args, **kwargs)[source]

Bases: PluginVariant

Attributes
precision

Precision of fitting network.

Methods

get_loss(loss, lr)

Get the loss function.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

abstract get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

Notes

This method is called by others when the fitting supported initialization from the given variables.

property precision: DType

Precision of fitting network.

static register(key: str) Callable[source]

Register a Fitting plugin.

Parameters
keystr

the key of a Fitting

Returns
Fitting

the registered Fitting

Examples

>>> @Fitting.register("some_fitting")
    class SomeFitting(Fitting):
        pass
class deepmd.fit.GlobalPolarFittingSeA(descrpt: Tensor, neuron: List[int] = [120, 120, 120], resnet_dt: bool = True, sel_type: Optional[List[int]] = None, fit_diag: bool = True, scale: Optional[List[float]] = None, diag_shift: Optional[List[float]] = None, seed: Optional[int] = None, activation_function: str = 'tanh', precision: str = 'default')[source]

Bases: object

Fit the system polarizability with descriptor se_a.

Parameters
descrpttf.Tensor

The descrptor

neuronList[int]

Number of neurons in each hidden layer of the fitting net

resnet_dtbool

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel_typeList[int]

The atom types selected to have an atomic polarizability prediction

fit_diagbool

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.

scaleList[float]

The output of the fitting net (polarizability matrix) for type i atom will be scaled by scale[i]

diag_shiftList[float]

The diagonal part of the polarizability matrix of type i will be shifted by diag_shift[i]. The shift operation is carried out after scale.

seedint

Random seed for initializing the network parameters.

activation_functionstr

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precisionstr

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

Methods

build(input_d, rot_mat, natoms[, ...])

Build the computational graph for fitting net.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_out_size()

Get the output size.

get_sel_type()

Get selected atom types.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

build(input_d, rot_mat, natoms, input_dict: Optional[dict] = None, reuse=None, suffix='') Tensor[source]

Build the computational graph for fitting net.

Parameters
input_d

The input descriptor

rot_mat

The rotation matrix from the descriptor.

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

input_dict

Additional dict for inputs.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
polar

The system polarizability

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

get_out_size() int[source]

Get the output size. Should be 9.

get_sel_type() int[source]

Get selected atom types.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

class deepmd.fit.PolarFittingSeA(*args, **kwargs)[source]

Bases: Fitting

Fit the atomic polarizability with descriptor se_a.

Parameters
descrpttf.Tensor

The descrptor

neuronList[int]

Number of neurons in each hidden layer of the fitting net

resnet_dtbool

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel_typeList[int]

The atom types selected to have an atomic polarizability prediction. If is None, all atoms are selected.

fit_diagbool

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.

scaleList[float]

The output of the fitting net (polarizability matrix) for type i atom will be scaled by scale[i]

diag_shiftList[float]

The diagonal part of the polarizability matrix of type i will be shifted by diag_shift[i]. The shift operation is carried out after scale.

seedint

Random seed for initializing the network parameters.

activation_functionstr

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precisionstr

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
precision

Precision of fitting network.

Methods

build(input_d, rot_mat, natoms[, ...])

Build the computational graph for fitting net.

compute_input_stats(all_stat[, protection])

Compute the input statistics.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_out_size()

Get the output size.

get_sel_type()

Get selected atom types.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '')[source]

Build the computational graph for fitting net.

Parameters
input_d

The input descriptor

rot_mat

The rotation matrix from the descriptor.

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

input_dict

Additional dict for inputs.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
atomic_polar

The atomic polarizability

compute_input_stats(all_stat, protection=0.01)[source]

Compute the input statistics.

Parameters
all_stat

Dictionary of inputs. can be prepared by model.make_stat_input

protection

Divided-by-zero protection

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

get_out_size() int[source]

Get the output size. Should be 9.

get_sel_type() List[int][source]

Get selected atom types.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

Submodules
deepmd.fit.dipole module
class deepmd.fit.dipole.DipoleFittingSeA(*args, **kwargs)[source]

Bases: Fitting

Fit the atomic dipole with descriptor se_a.

Parameters
descrpttf.Tensor

The descrptor

neuronList[int]

Number of neurons in each hidden layer of the fitting net

resnet_dtbool

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel_typeList[int]

The atom types selected to have an atomic dipole prediction. If is None, all atoms are selected.

seedint

Random seed for initializing the network parameters.

activation_functionstr

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precisionstr

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
precision

Precision of fitting network.

Methods

build(input_d, rot_mat, natoms[, ...])

Build the computational graph for fitting net.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_out_size()

Get the output size.

get_sel_type()

Get selected type.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for fitting net.

Parameters
input_d

The input descriptor

rot_mat

The rotation matrix from the descriptor.

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

input_dict

Additional dict for inputs.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
dipole

The atomic dipole.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

get_out_size() int[source]

Get the output size. Should be 3.

get_sel_type() int[source]

Get selected type.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

deepmd.fit.dos module
class deepmd.fit.dos.DOSFitting(*args, **kwargs)[source]

Bases: Fitting

Fitting the density of states (DOS) of the system. The energy should be shifted by the fermi level.

Parameters
descrpt

The descrptor \(\mathcal{D}\)

neuron

Number of neurons \(N\) in each hidden layer of the fitting net

resnet_dt

Time-step dt in the resnet construction: \(y = x + dt * \phi (Wx + b)\)

numb_fparam

Number of frame parameter

numb_aparam

Number of atomic parameter

! numb_dos (added)

Number of gridpoints on which the DOS is evaluated (NEDOS in VASP)

rcond

The condition number for the regression of atomic energy.

trainable

If the weights of fitting net are trainable. Suppose that we have \(N_l\) hidden layers in the fitting net, this list is of length \(N_l + 1\), specifying if the hidden layers and the output layer are trainable.

seed

Random seed for initializing the network parameters.

activation_function

The activation function \(\boldsymbol{\phi}\) in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

layer_namelist[Optional[str]], optional

The name of the each layer. If two layers, either in the same fitting or different fittings, have the same name, they will share the same neural network parameters.

use_aparam_as_mask: bool, optional

If True, the atomic parameters will be used as a mask that determines the atom is real/virtual. And the aparam will not be used as the atomic parameters for embedding.

Attributes
precision

Precision of fitting network.

Methods

build(inputs, natoms[, input_dict, reuse, ...])

Build the computational graph for fitting net.

compute_input_stats(all_stat[, protection])

Compute the input statistics.

compute_output_stats(all_stat[, mixed_type])

Compute the ouput statistics.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(inputs: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for fitting net.

Parameters
inputs

The input descriptor

input_dict

Additional dict for inputs. if numb_fparam > 0, should have input_dict[‘fparam’] if numb_aparam > 0, should have input_dict[‘aparam’]

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
ener

The system energy

compute_input_stats(all_stat: dict, protection: float = 0.01) None[source]

Compute the input statistics.

Parameters
all_stat

if numb_fparam > 0 must have all_stat[‘fparam’] if numb_aparam > 0 must have all_stat[‘aparam’] can be prepared by model.make_stat_input

protection

Divided-by-zero protection

compute_output_stats(all_stat: dict, mixed_type: bool = False) None[source]

Compute the ouput statistics.

Parameters
all_stat

must have the following components: all_stat[‘dos’] of shape n_sys x n_batch x n_frame x numb_dos can be prepared by model.make_stat_input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_dos() int[source]

Get the number of gridpoints in energy space.

get_numb_fparam() int[source]

Get the number of frame parameters.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

deepmd.fit.ener module
class deepmd.fit.ener.EnerFitting(*args, **kwargs)[source]

Bases: Fitting

Fitting the energy of the system. The force and the virial can also be trained.

The potential energy \(E\) is a fitting network function of the descriptor \(\mathcal{D}\):

\[E(\mathcal{D}) = \mathcal{L}^{(n)} \circ \mathcal{L}^{(n-1)} \circ \cdots \circ \mathcal{L}^{(1)} \circ \mathcal{L}^{(0)}\]

The first \(n\) hidden layers \(\mathcal{L}^{(0)}, \cdots, \mathcal{L}^{(n-1)}\) are given by

\[\mathbf{y}=\mathcal{L}(\mathbf{x};\mathbf{w},\mathbf{b})= \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b})\]

where \(\mathbf{x} \in \mathbb{R}^{N_1}\) is the input vector and \(\mathbf{y} \in \mathbb{R}^{N_2}\) is the output vector. \(\mathbf{w} \in \mathbb{R}^{N_1 \times N_2}\) and \(\mathbf{b} \in \mathbb{R}^{N_2}\) are weights and biases, respectively, both of which are trainable if trainable[i] is True. \(\boldsymbol{\phi}\) is the activation function.

The output layer \(\mathcal{L}^{(n)}\) is given by

\[\mathbf{y}=\mathcal{L}^{(n)}(\mathbf{x};\mathbf{w},\mathbf{b})= \mathbf{x}^T\mathbf{w}+\mathbf{b}\]

where \(\mathbf{x} \in \mathbb{R}^{N_{n-1}}\) is the input vector and \(\mathbf{y} \in \mathbb{R}\) is the output scalar. \(\mathbf{w} \in \mathbb{R}^{N_{n-1}}\) and \(\mathbf{b} \in \mathbb{R}\) are weights and bias, respectively, both of which are trainable if trainable[n] is True.

Parameters
descrpt

The descrptor \(\mathcal{D}\)

neuron

Number of neurons \(N\) in each hidden layer of the fitting net

resnet_dt

Time-step dt in the resnet construction: \(y = x + dt * \phi (Wx + b)\)

numb_fparam

Number of frame parameter

numb_aparam

Number of atomic parameter

rcond

The condition number for the regression of atomic energy.

tot_ener_zero

Force the total energy to zero. Useful for the charge fitting.

trainable

If the weights of fitting net are trainable. Suppose that we have \(N_l\) hidden layers in the fitting net, this list is of length \(N_l + 1\), specifying if the hidden layers and the output layer are trainable.

seed

Random seed for initializing the network parameters.

atom_ener

Specifying atomic energy contribution in vacuum. The set_davg_zero key in the descrptor should be set.

activation_function

The activation function \(\boldsymbol{\phi}\) in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

layer_namelist[Optional[str]], optional

The name of the each layer. If two layers, either in the same fitting or different fittings, have the same name, they will share the same neural network parameters.

use_aparam_as_mask: bool, optional

If True, the atomic parameters will be used as a mask that determines the atom is real/virtual. And the aparam will not be used as the atomic parameters for embedding.

Attributes
precision

Precision of fitting network.

Methods

build(inputs, natoms[, input_dict, reuse, ...])

Build the computational graph for fitting net.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

compute_input_stats(all_stat[, protection])

Compute the input statistics.

compute_output_stats(all_stat[, mixed_type])

Compute the ouput statistics.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_fparam()

Get the number of frame parameters.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(inputs: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '') Tensor[source]

Build the computational graph for fitting net.

Parameters
inputs

The input descriptor

input_dict

Additional dict for inputs. if numb_fparam > 0, should have input_dict[‘fparam’] if numb_aparam > 0, should have input_dict[‘aparam’]

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
ener

The system energy

change_energy_bias(data, frozen_model, origin_type_map, full_type_map, bias_shift='delta', ntest=10) None[source]

Change the energy bias according to the input data and the pretrained model.

Parameters
dataDeepmdDataSystem

The training data.

frozen_modelstr

The path file of frozen model.

origin_type_maplist

The original type_map in dataset, they are targets to change the energy bias.

full_type_mapstr

The full type_map in pretrained model

bias_shiftstr

The mode for changing energy bias : [‘delta’, ‘statistic’] ‘delta’ : perform predictions on energies of target dataset,

and do least sqaure on the errors to obtain the target shift as bias.

‘statistic’ : directly use the statistic energy bias in the target dataset.

ntestint

The number of test samples in a system to change the energy bias.

compute_input_stats(all_stat: dict, protection: float = 0.01) None[source]

Compute the input statistics.

Parameters
all_stat

if numb_fparam > 0 must have all_stat[‘fparam’] if numb_aparam > 0 must have all_stat[‘aparam’] can be prepared by model.make_stat_input

protection

Divided-by-zero protection

compute_output_stats(all_stat: dict, mixed_type: bool = False) None[source]

Compute the ouput statistics.

Parameters
all_stat

must have the following components: all_stat[‘energy’] of shape n_sys x n_batch x n_frame can be prepared by model.make_stat_input

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

The loss function parameters.

lrLearningRateExp

The learning rate.

Returns
Loss

The loss function.

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_fparam() int[source]

Get the number of frame parameters.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

deepmd.fit.fitting module
class deepmd.fit.fitting.Fitting(*args, **kwargs)[source]

Bases: PluginVariant

Attributes
precision

Precision of fitting network.

Methods

get_loss(loss, lr)

Get the loss function.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

abstract get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

Notes

This method is called by others when the fitting supported initialization from the given variables.

property precision: DType

Precision of fitting network.

static register(key: str) Callable[source]

Register a Fitting plugin.

Parameters
keystr

the key of a Fitting

Returns
Fitting

the registered Fitting

Examples

>>> @Fitting.register("some_fitting")
    class SomeFitting(Fitting):
        pass
deepmd.fit.polar module
class deepmd.fit.polar.GlobalPolarFittingSeA(descrpt: Tensor, neuron: List[int] = [120, 120, 120], resnet_dt: bool = True, sel_type: Optional[List[int]] = None, fit_diag: bool = True, scale: Optional[List[float]] = None, diag_shift: Optional[List[float]] = None, seed: Optional[int] = None, activation_function: str = 'tanh', precision: str = 'default')[source]

Bases: object

Fit the system polarizability with descriptor se_a.

Parameters
descrpttf.Tensor

The descrptor

neuronList[int]

Number of neurons in each hidden layer of the fitting net

resnet_dtbool

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel_typeList[int]

The atom types selected to have an atomic polarizability prediction

fit_diagbool

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.

scaleList[float]

The output of the fitting net (polarizability matrix) for type i atom will be scaled by scale[i]

diag_shiftList[float]

The diagonal part of the polarizability matrix of type i will be shifted by diag_shift[i]. The shift operation is carried out after scale.

seedint

Random seed for initializing the network parameters.

activation_functionstr

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precisionstr

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

Methods

build(input_d, rot_mat, natoms[, ...])

Build the computational graph for fitting net.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_out_size()

Get the output size.

get_sel_type()

Get selected atom types.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

build(input_d, rot_mat, natoms, input_dict: Optional[dict] = None, reuse=None, suffix='') Tensor[source]

Build the computational graph for fitting net.

Parameters
input_d

The input descriptor

rot_mat

The rotation matrix from the descriptor.

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

input_dict

Additional dict for inputs.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
polar

The system polarizability

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

Parameters
lossdict

the loss dict

lrLearningRateExp

the learning rate

Returns
Loss

the loss function

get_out_size() int[source]

Get the output size. Should be 9.

get_sel_type() int[source]

Get selected atom types.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

class deepmd.fit.polar.PolarFittingSeA(*args, **kwargs)[source]

Bases: Fitting

Fit the atomic polarizability with descriptor se_a.

Parameters
descrpttf.Tensor

The descrptor

neuronList[int]

Number of neurons in each hidden layer of the fitting net

resnet_dtbool

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel_typeList[int]

The atom types selected to have an atomic polarizability prediction. If is None, all atoms are selected.

fit_diagbool

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.

scaleList[float]

The output of the fitting net (polarizability matrix) for type i atom will be scaled by scale[i]

diag_shiftList[float]

The diagonal part of the polarizability matrix of type i will be shifted by diag_shift[i]. The shift operation is carried out after scale.

seedint

Random seed for initializing the network parameters.

activation_functionstr

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precisionstr

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

Attributes
precision

Precision of fitting network.

Methods

build(input_d, rot_mat, natoms[, ...])

Build the computational graph for fitting net.

compute_input_stats(all_stat[, protection])

Compute the input statistics.

enable_mixed_precision([mixed_prec])

Reveive the mixed precision setting.

get_loss(loss, lr)

Get the loss function.

get_out_size()

Get the output size.

get_sel_type()

Get selected atom types.

init_variables(graph, graph_def[, suffix])

Init the fitting net variables with the given dict.

register(key)

Register a Fitting plugin.

build(input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = '')[source]

Build the computational graph for fitting net.

Parameters
input_d

The input descriptor

rot_mat

The rotation matrix from the descriptor.

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

input_dict

Additional dict for inputs.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
atomic_polar

The atomic polarizability

compute_input_stats(all_stat, protection=0.01)[source]

Compute the input statistics.

Parameters
all_stat

Dictionary of inputs. can be prepared by model.make_stat_input

protection

Divided-by-zero protection

enable_mixed_precision(mixed_prec: Optional[dict] = None) None[source]

Reveive the mixed precision setting.

Parameters
mixed_prec

The mixed precision setting used in the embedding net

get_loss(loss: dict, lr) Loss[source]

Get the loss function.

get_out_size() int[source]

Get the output size. Should be 9.

get_sel_type() List[int][source]

Get selected atom types.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = '') None[source]

Init the fitting net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffixstr

suffix to name scope

deepmd.infer package

Submodule containing all the implemented potentials.

class deepmd.infer.DeepDOS(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True)[source]

Bases: DeepEval

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_sizebool or int or AutomaticBatchSize, default: True

If True, automatic batch size will be used. If int, it will be used as the initial batch size.

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the dos, atom_dos by using this model.

eval_descriptor(coords, cells, atom_types[, ...])

Evaluate descriptors by using this DP.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam()

Get the number (dimension) of frame parameters of this DP.

get_ntypes()

Get the number of atom types of this model.

get_numb_dos()

Get the length of DOS output of this DP model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Unsupported in this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...][source]

Evaluate the dos, atom_dos by using this model.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Calculate the atomic energy and virial

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
dos

The electron density of state.

atom_dos

The atom-sited density of state. Only returned when atomic == True

eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array[source]

Evaluate descriptors by using this DP.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

efield

The external field on atoms. The array should be of size nframes x natoms x 3

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
descriptor

Descriptors.

get_dim_aparam() int[source]

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam() int[source]

Get the number (dimension) of frame parameters of this DP.

get_ntypes() int[source]

Get the number of atom types of this model.

get_numb_dos() int[source]

Get the length of DOS output of this DP model.

get_rcut() float[source]

Get the cut-off radius of this model.

get_sel_type() List[int][source]

Unsupported in this model.

get_type_map() List[str][source]

Get the type map (element name of the atom types) of this model.

load_prefix: str
class deepmd.infer.DeepDipole(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
class deepmd.infer.DeepEval(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = False)[source]

Bases: object

Common methods for DeepPot, DeepWFC, DeepPolar, …

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_sizebool or int or AutomaticBatchSize, default: False

If True, automatic batch size will be used. If int, it will be used as the initial batch size.

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval_typeebd()

Evaluate output of type embedding network by using this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval_typeebd() ndarray[source]

Evaluate output of type embedding network by using this model.

Returns
np.ndarray

The output of type embedding network. The shape is [ntypes, o_size], where ntypes is the number of types, and o_size is the number of nodes in the output layer.

Raises
KeyError

If the model does not enable type embedding.

See also

deepmd.utils.type_embed.TypeEmbedNet

The type embedding network.

Examples

Get the output of type embedding network of graph.pb:

>>> from deepmd.infer import DeepPotential
>>> dp = DeepPotential('graph.pb')
>>> dp.eval_typeebd()
load_prefix: str
make_natoms_vec(atom_types: ndarray, mixed_type: bool = False) ndarray[source]

Make the natom vector used by deepmd-kit.

Parameters
atom_types

The type of atoms

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

property model_type: str

Get type of model.

:type:str

property model_version: str

Get version of model.

Returns
str

version of model

static reverse_map(vec: ndarray, imap: List[int]) ndarray[source]

Reverse mapping of a vector according to the index map.

Parameters
vec

Input vector. Be of shape [nframes, natoms, -1]

imap

Index map. Be of shape [natoms]

Returns
vec_out

Reverse mapped vector.

property sess: Session

Get TF session.

static sort_input(coord: ndarray, atom_type: ndarray, sel_atoms: Optional[List[int]] = None, mixed_type: bool = False)[source]

Sort atoms in the system according their types.

Parameters
coord

The coordinates of atoms. Should be of shape [nframes, natoms, 3]

atom_type

The type of atoms Should be of shape [natoms]

sel_atoms

The selected atoms by type

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
coord_out

The coordinates after sorting

atom_type_out

The atom types after sorting

idx_map

The index mapping from the input to the output. For example coord_out = coord[:,idx_map,:]

sel_atom_type

Only output if sel_atoms is not None The sorted selected atom types

sel_idx_map

Only output if sel_atoms is not None The index mapping from the selected atoms to sorted selected atoms.

class deepmd.infer.DeepGlobalPolar(model_file: str, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filestr

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None) ndarray[source]

Evaluate the model.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Not used in this model

fparam

Not used in this model

aparam

Not used in this model

efield

Not used in this model

Returns
tensor

The returned tensor If atomic == False then of size nframes x variable_dof else of size nframes x natoms x variable_dof

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
class deepmd.infer.DeepPolar(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
class deepmd.infer.DeepPot(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True)[source]

Bases: DeepEval

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_sizebool or int or AutomaticBatchSize, default: True

If True, automatic batch size will be used. If int, it will be used as the initial batch size.

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Examples

>>> from deepmd.infer import DeepPot
>>> import numpy as np
>>> dp = DeepPot('graph.pb')
>>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
>>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])
>>> atype = [1,0,1]
>>> e, f, v = dp.eval(coord, cell, atype)

where e, f and v are predicted energy, force and virial of the system, respectively.

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the energy, force and virial by using this DP.

eval_descriptor(coords, cells, atom_types[, ...])

Evaluate descriptors by using this DP.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_descriptor_type()

Get the descriptor type of this model.

get_dim_aparam()

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam()

Get the number (dimension) of frame parameters of this DP.

get_ntypes()

Get the number of atom types of this model.

get_ntypes_spin()

Get the number of spin atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Unsupported in this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...][source]

Evaluate the energy, force and virial by using this DP.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Calculate the atomic energy and virial

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

efield

The external field on atoms. The array should be of size nframes x natoms x 3

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
energy

The system energy.

force

The force on each atom

virial

The virial

atom_energy

The atomic energy. Only returned when atomic == True

atom_virial

The atomic virial. Only returned when atomic == True

eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array[source]

Evaluate descriptors by using this DP.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

efield

The external field on atoms. The array should be of size nframes x natoms x 3

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
descriptor

Descriptors.

get_descriptor_type() List[int][source]

Get the descriptor type of this model.

get_dim_aparam() int[source]

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam() int[source]

Get the number (dimension) of frame parameters of this DP.

get_ntypes() int[source]

Get the number of atom types of this model.

get_ntypes_spin()[source]

Get the number of spin atom types of this model.

get_rcut() float[source]

Get the cut-off radius of this model.

get_sel_type() List[int][source]

Unsupported in this model.

get_type_map() List[str][source]

Get the type map (element name of the atom types) of this model.

load_prefix: str
deepmd.infer.DeepPotential(model_file: Union[str, Path], load_prefix: str = 'load', default_tf_graph: bool = False) Union[DeepDipole, DeepGlobalPolar, DeepPolar, DeepPot, DeepDOS, DeepWFC][source]

Factory function that will inialize appropriate potential read from model_file.

Parameters
model_filestr

The name of the frozen model file.

load_prefixstr

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Returns
Union[DeepDipole, DeepGlobalPolar, DeepPolar, DeepPot, DeepWFC]

one of the available potentials

Raises
RuntimeError

if model file does not correspond to any implementd potential

class deepmd.infer.DeepWFC(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
class deepmd.infer.DipoleChargeModifier(model_name: str, model_charge_map: List[float], sys_charge_map: List[float], ewald_h: float = 1, ewald_beta: float = 1)[source]

Bases: DeepDipole

Parameters
model_name

The model file for the DeepDipole model

model_charge_map

Gives the amount of charge for the wfcc

sys_charge_map

Gives the amount of charge for the real atoms

ewald_h

Grid spacing of the reciprocal part of Ewald sum. Unit: A

ewald_beta

Splitting parameter of the Ewald sum. Unit: A^{-1}

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

build_fv_graph()

Build the computational graph for the force and virial inference.

eval(coord, box, atype[, eval_fv])

Evaluate the modification.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

modify_data(data, data_sys)

Modify data.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

build_fv_graph() Tensor[source]

Build the computational graph for the force and virial inference.

eval(coord: ndarray, box: ndarray, atype: ndarray, eval_fv: bool = True) Tuple[ndarray, ndarray, ndarray][source]

Evaluate the modification.

Parameters
coord

The coordinates of atoms

box

The simulation region. PBC is assumed

atype

The atom types

eval_fv

Evaluate force and virial

Returns
tot_e

The energy modification

tot_f

The force modification

tot_v

The virial modification

load_prefix: str
modify_data(data: dict, data_sys: DeepmdData) None[source]

Modify data.

Parameters
data

Internal data of DeepmdData. Be a dict, has the following keys - coord coordinates - box simulation box - type atom types - find_energy tells if data has energy - find_force tells if data has force - find_virial tells if data has virial - energy energy - force force - virial virial

data_sysDeepmdData

The data system.

class deepmd.infer.EwaldRecp(hh, beta)[source]

Bases: object

Evaluate the reciprocal part of the Ewald sum.

Methods

eval(coord, charge, box)

Evaluate.

eval(coord: ndarray, charge: ndarray, box: ndarray) Tuple[ndarray, ndarray, ndarray][source]

Evaluate.

Parameters
coord

The coordinates of atoms

charge

The atomic charge

box

The simulation region. PBC is assumed

Returns
e

The energy

f

The force

v

The virial

deepmd.infer.calc_model_devi(coord, box, atype, models, fname=None, frequency=1, mixed_type=False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None)[source]

Python interface to calculate model deviation.

Parameters
coordnumpy.ndarray, n_frames x n_atoms x 3

Coordinates of system to calculate

boxnumpy.ndarray or None, n_frames x 3 x 3

Box to specify periodic boundary condition. If None, no pbc will be used

atypenumpy.ndarray, n_atoms x 1

Atom types

modelslist of DeepPot models

Models used to evaluate deviation

fnamestr or None

File to dump results, default None

frequencyint

Steps between frames (if the system is given by molecular dynamics engine), default 1

mixed_typebool

Whether the input atype is in mixed_type format or not

fparamnumpy.ndarray

frame specific parameters

aparamnumpy.ndarray

atomic specific parameters

Returns
model_devinumpy.ndarray, n_frames x 8

Model deviation results. The first column is index of steps, the other 7 columns are max_devi_v, min_devi_v, avg_devi_v, max_devi_f, min_devi_f, avg_devi_f, devi_e.

Examples

>>> from deepmd.infer import calc_model_devi
>>> from deepmd.infer import DeepPot as DP
>>> import numpy as np
>>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
>>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])
>>> atype = [1,0,1]
>>> graphs = [DP("graph.000.pb"), DP("graph.001.pb")]
>>> model_devi = calc_model_devi(coord, cell, atype, graphs)
Submodules
deepmd.infer.data_modifier module
class deepmd.infer.data_modifier.DipoleChargeModifier(model_name: str, model_charge_map: List[float], sys_charge_map: List[float], ewald_h: float = 1, ewald_beta: float = 1)[source]

Bases: DeepDipole

Parameters
model_name

The model file for the DeepDipole model

model_charge_map

Gives the amount of charge for the wfcc

sys_charge_map

Gives the amount of charge for the real atoms

ewald_h

Grid spacing of the reciprocal part of Ewald sum. Unit: A

ewald_beta

Splitting parameter of the Ewald sum. Unit: A^{-1}

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

build_fv_graph()

Build the computational graph for the force and virial inference.

eval(coord, box, atype[, eval_fv])

Evaluate the modification.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

modify_data(data, data_sys)

Modify data.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

build_fv_graph() Tensor[source]

Build the computational graph for the force and virial inference.

eval(coord: ndarray, box: ndarray, atype: ndarray, eval_fv: bool = True) Tuple[ndarray, ndarray, ndarray][source]

Evaluate the modification.

Parameters
coord

The coordinates of atoms

box

The simulation region. PBC is assumed

atype

The atom types

eval_fv

Evaluate force and virial

Returns
tot_e

The energy modification

tot_f

The force modification

tot_v

The virial modification

load_prefix: str
modify_data(data: dict, data_sys: DeepmdData) None[source]

Modify data.

Parameters
data

Internal data of DeepmdData. Be a dict, has the following keys - coord coordinates - box simulation box - type atom types - find_energy tells if data has energy - find_force tells if data has force - find_virial tells if data has virial - energy energy - force force - virial virial

data_sysDeepmdData

The data system.

deepmd.infer.deep_dipole module
class deepmd.infer.deep_dipole.DeepDipole(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
deepmd.infer.deep_dos module
class deepmd.infer.deep_dos.DeepDOS(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True)[source]

Bases: DeepEval

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_sizebool or int or AutomaticBatchSize, default: True

If True, automatic batch size will be used. If int, it will be used as the initial batch size.

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the dos, atom_dos by using this model.

eval_descriptor(coords, cells, atom_types[, ...])

Evaluate descriptors by using this DP.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam()

Get the number (dimension) of frame parameters of this DP.

get_ntypes()

Get the number of atom types of this model.

get_numb_dos()

Get the length of DOS output of this DP model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Unsupported in this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...][source]

Evaluate the dos, atom_dos by using this model.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Calculate the atomic energy and virial

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
dos

The electron density of state.

atom_dos

The atom-sited density of state. Only returned when atomic == True

eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array[source]

Evaluate descriptors by using this DP.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

efield

The external field on atoms. The array should be of size nframes x natoms x 3

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
descriptor

Descriptors.

get_dim_aparam() int[source]

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam() int[source]

Get the number (dimension) of frame parameters of this DP.

get_ntypes() int[source]

Get the number of atom types of this model.

get_numb_dos() int[source]

Get the length of DOS output of this DP model.

get_rcut() float[source]

Get the cut-off radius of this model.

get_sel_type() List[int][source]

Unsupported in this model.

get_type_map() List[str][source]

Get the type map (element name of the atom types) of this model.

load_prefix: str
deepmd.infer.deep_eval module
class deepmd.infer.deep_eval.DeepEval(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = False)[source]

Bases: object

Common methods for DeepPot, DeepWFC, DeepPolar, …

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_sizebool or int or AutomaticBatchSize, default: False

If True, automatic batch size will be used. If int, it will be used as the initial batch size.

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval_typeebd()

Evaluate output of type embedding network by using this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval_typeebd() ndarray[source]

Evaluate output of type embedding network by using this model.

Returns
np.ndarray

The output of type embedding network. The shape is [ntypes, o_size], where ntypes is the number of types, and o_size is the number of nodes in the output layer.

Raises
KeyError

If the model does not enable type embedding.

See also

deepmd.utils.type_embed.TypeEmbedNet

The type embedding network.

Examples

Get the output of type embedding network of graph.pb:

>>> from deepmd.infer import DeepPotential
>>> dp = DeepPotential('graph.pb')
>>> dp.eval_typeebd()
load_prefix: str
make_natoms_vec(atom_types: ndarray, mixed_type: bool = False) ndarray[source]

Make the natom vector used by deepmd-kit.

Parameters
atom_types

The type of atoms

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

property model_type: str

Get type of model.

:type:str

property model_version: str

Get version of model.

Returns
str

version of model

static reverse_map(vec: ndarray, imap: List[int]) ndarray[source]

Reverse mapping of a vector according to the index map.

Parameters
vec

Input vector. Be of shape [nframes, natoms, -1]

imap

Index map. Be of shape [natoms]

Returns
vec_out

Reverse mapped vector.

property sess: Session

Get TF session.

static sort_input(coord: ndarray, atom_type: ndarray, sel_atoms: Optional[List[int]] = None, mixed_type: bool = False)[source]

Sort atoms in the system according their types.

Parameters
coord

The coordinates of atoms. Should be of shape [nframes, natoms, 3]

atom_type

The type of atoms Should be of shape [natoms]

sel_atoms

The selected atoms by type

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
coord_out

The coordinates after sorting

atom_type_out

The atom types after sorting

idx_map

The index mapping from the input to the output. For example coord_out = coord[:,idx_map,:]

sel_atom_type

Only output if sel_atoms is not None The sorted selected atom types

sel_idx_map

Only output if sel_atoms is not None The index mapping from the selected atoms to sorted selected atoms.

deepmd.infer.deep_polar module
class deepmd.infer.deep_polar.DeepGlobalPolar(model_file: str, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filestr

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None) ndarray[source]

Evaluate the model.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Not used in this model

fparam

Not used in this model

aparam

Not used in this model

efield

Not used in this model

Returns
tensor

The returned tensor If atomic == False then of size nframes x variable_dof else of size nframes x natoms x variable_dof

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
class deepmd.infer.deep_polar.DeepPolar(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
deepmd.infer.deep_pot module
class deepmd.infer.deep_pot.DeepPot(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True)[source]

Bases: DeepEval

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_sizebool or int or AutomaticBatchSize, default: True

If True, automatic batch size will be used. If int, it will be used as the initial batch size.

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Examples

>>> from deepmd.infer import DeepPot
>>> import numpy as np
>>> dp = DeepPot('graph.pb')
>>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
>>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])
>>> atype = [1,0,1]
>>> e, f, v = dp.eval(coord, cell, atype)

where e, f and v are predicted energy, force and virial of the system, respectively.

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the energy, force and virial by using this DP.

eval_descriptor(coords, cells, atom_types[, ...])

Evaluate descriptors by using this DP.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_descriptor_type()

Get the descriptor type of this model.

get_dim_aparam()

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam()

Get the number (dimension) of frame parameters of this DP.

get_ntypes()

Get the number of atom types of this model.

get_ntypes_spin()

Get the number of spin atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Unsupported in this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...][source]

Evaluate the energy, force and virial by using this DP.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Calculate the atomic energy and virial

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

efield

The external field on atoms. The array should be of size nframes x natoms x 3

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
energy

The system energy.

force

The force on each atom

virial

The virial

atom_energy

The atomic energy. Only returned when atomic == True

atom_virial

The atomic virial. Only returned when atomic == True

eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array[source]

Evaluate descriptors by using this DP.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam

The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.

efield

The external field on atoms. The array should be of size nframes x natoms x 3

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
descriptor

Descriptors.

get_descriptor_type() List[int][source]

Get the descriptor type of this model.

get_dim_aparam() int[source]

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam() int[source]

Get the number (dimension) of frame parameters of this DP.

get_ntypes() int[source]

Get the number of atom types of this model.

get_ntypes_spin()[source]

Get the number of spin atom types of this model.

get_rcut() float[source]

Get the cut-off radius of this model.

get_sel_type() List[int][source]

Unsupported in this model.

get_type_map() List[str][source]

Get the type map (element name of the atom types) of this model.

load_prefix: str
deepmd.infer.deep_tensor module
class deepmd.infer.deep_tensor.DeepTensor(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepEval

Evaluates a tensor model.

Parameters
model_file: str

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam()

Get the number (dimension) of frame parameters of this DP.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = True, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) ndarray[source]

Evaluate the model.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

If True (default), return the atomic tensor Otherwise return the global tensor

fparam

Not used in this model

aparam

Not used in this model

efield

Not used in this model

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
tensor

The returned tensor If atomic == False then of size nframes x output_dim else of size nframes x natoms x output_dim

eval_full(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[array] = None, aparam: Optional[array] = None, efield: Optional[array] = None, mixed_type: bool = False) Tuple[ndarray, ...][source]

Evaluate the model with interface similar to the energy model. Will return global tensor, component-wise force and virial and optionally atomic tensor and atomic virial.

Parameters
coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Whether to calculate atomic tensor and virial

fparam

Not used in this model

aparam

Not used in this model

efield

Not used in this model

mixed_type

Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.

Returns
tensor

The global tensor. shape: [nframes x nout]

force

The component-wise force (negative derivative) on each atom. shape: [nframes x nout x natoms x 3]

virial

The component-wise virial of the tensor. shape: [nframes x nout x 9]

atom_tensor

The atomic tensor. Only returned when atomic == True shape: [nframes x natoms x nout]

atom_virial

The atomic virial. Only returned when atomic == True shape: [nframes x nout x natoms x 9]

get_dim_aparam() int[source]

Get the number (dimension) of atomic parameters of this DP.

get_dim_fparam() int[source]

Get the number (dimension) of frame parameters of this DP.

get_ntypes() int[source]

Get the number of atom types of this model.

get_rcut() float[source]

Get the cut-off radius of this model.

get_sel_type() List[int][source]

Get the selected atom types of this model.

get_type_map() List[str][source]

Get the type map (element name of the atom types) of this model.

load_prefix: str
tensors = {'t_box': 't_box:0', 't_coord': 't_coord:0', 't_mesh': 't_mesh:0', 't_natoms': 't_natoms:0', 't_ntypes': 'descrpt_attr/ntypes:0', 't_ouput_dim': 'model_attr/output_dim:0', 't_rcut': 'descrpt_attr/rcut:0', 't_sel_type': 'model_attr/sel_type:0', 't_tmap': 'model_attr/tmap:0', 't_type': 't_type:0'}
deepmd.infer.deep_wfc module
class deepmd.infer.deep_wfc.DeepWFC(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False)[source]

Bases: DeepTensor

Constructor.

Parameters
model_filePath

The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default_tf_graphbool

If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning

For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes
model_type

Get type of model.

model_version

Get version of model.

sess

Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

Evaluate the model.

eval_full(coords, cells, atom_types[, ...])

Evaluate the model with interface similar to the energy model.

eval_typeebd()

Evaluate output of type embedding network by using this model.

get_dim_aparam()

Unsupported in this model.

get_dim_fparam()

Unsupported in this model.

get_ntypes()

Get the number of atom types of this model.

get_rcut()

Get the cut-off radius of this model.

get_sel_type()

Get the selected atom types of this model.

get_type_map()

Get the type map (element name of the atom types) of this model.

make_natoms_vec(atom_types[, mixed_type])

Make the natom vector used by deepmd-kit.

reverse_map(vec, imap)

Reverse mapping of a vector according to the index map.

sort_input(coord, atom_type[, sel_atoms, ...])

Sort atoms in the system according their types.

get_dim_aparam() int[source]

Unsupported in this model.

get_dim_fparam() int[source]

Unsupported in this model.

load_prefix: str
deepmd.infer.ewald_recp module
class deepmd.infer.ewald_recp.EwaldRecp(hh, beta)[source]

Bases: object

Evaluate the reciprocal part of the Ewald sum.

Methods

eval(coord, charge, box)

Evaluate.

eval(coord: ndarray, charge: ndarray, box: ndarray) Tuple[ndarray, ndarray, ndarray][source]

Evaluate.

Parameters
coord

The coordinates of atoms

charge

The atomic charge

box

The simulation region. PBC is assumed

Returns
e

The energy

f

The force

v

The virial

deepmd.infer.model_devi module
deepmd.infer.model_devi.calc_model_devi(coord, box, atype, models, fname=None, frequency=1, mixed_type=False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None)[source]

Python interface to calculate model deviation.

Parameters
coordnumpy.ndarray, n_frames x n_atoms x 3

Coordinates of system to calculate

boxnumpy.ndarray or None, n_frames x 3 x 3

Box to specify periodic boundary condition. If None, no pbc will be used

atypenumpy.ndarray, n_atoms x 1

Atom types

modelslist of DeepPot models

Models used to evaluate deviation

fnamestr or None

File to dump results, default None

frequencyint

Steps between frames (if the system is given by molecular dynamics engine), default 1

mixed_typebool

Whether the input atype is in mixed_type format or not

fparamnumpy.ndarray

frame specific parameters

aparamnumpy.ndarray

atomic specific parameters

Returns
model_devinumpy.ndarray, n_frames x 8

Model deviation results. The first column is index of steps, the other 7 columns are max_devi_v, min_devi_v, avg_devi_v, max_devi_f, min_devi_f, avg_devi_f, devi_e.

Examples

>>> from deepmd.infer import calc_model_devi
>>> from deepmd.infer import DeepPot as DP
>>> import numpy as np
>>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
>>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])
>>> atype = [1,0,1]
>>> graphs = [DP("graph.000.pb"), DP("graph.001.pb")]
>>> model_devi = calc_model_devi(coord, cell, atype, graphs)
deepmd.infer.model_devi.calc_model_devi_e(es: ndarray) ndarray[source]

Calculate model deviation of total energy per atom.

Here we don’t use the atomic energy, as the decomposition of energy is arbitrary and not unique. There is no fitting target for atomic energy.

Parameters
esnumpy.ndarray

size of `n_models x n_frames x 1

Returns
max_devi_enumpy.ndarray

maximum deviation of energy

deepmd.infer.model_devi.calc_model_devi_f(fs: ndarray) Tuple[ndarray][source]

Calculate model deviation of force.

Parameters
fsnumpy.ndarray

size of n_models x n_frames x n_atoms x 3

Returns
max_devi_fnumpy.ndarray

maximum deviation of force in all atoms

min_devi_fnumpy.ndarray

minimum deviation of force in all atoms

avg_devi_fnumpy.ndarray

average deviation of force in all atoms

deepmd.infer.model_devi.calc_model_devi_v(vs: ndarray) Tuple[ndarray][source]

Calculate model deviation of virial.

Parameters
vsnumpy.ndarray

size of n_models x n_frames x 9

Returns
max_devi_vnumpy.ndarray

maximum deviation of virial in 9 elements

min_devi_vnumpy.ndarray

minimum deviation of virial in 9 elements

avg_devi_vnumpy.ndarray

average deviation of virial in 9 elements

deepmd.infer.model_devi.make_model_devi(*, models: list, system: str, set_prefix: str, output: str, frequency: int, **kwargs)[source]

Make model deviation calculation.

Parameters
modelslist

A list of paths of models to use for making model deviation

systemstr

The path of system to make model deviation calculation

set_prefixstr

The set prefix of the system

outputstr

The output file for model deviation results

frequencyint

The number of steps that elapse between writing coordinates in a trajectory by a MD engine (such as Gromacs / Lammps). This paramter is used to determine the index in the output file.

**kwargs

Arbitrary keyword arguments.

deepmd.infer.model_devi.write_model_devi_out(devi: ndarray, fname: str, header: str = '')[source]

Write output of model deviation.

Parameters
devinumpy.ndarray

the first column is the steps index

fnamestr

the file name to dump

headerstr, default=””

the header to dump

deepmd.loggers package

Module taking care of logging duties.

deepmd.loggers.set_log_handles(level: int, log_path: Optional[Path] = None, mpi_log: Optional[str] = None)[source]

Set desired level for package loggers and add file handlers.

Parameters
levelint

logging level

log_pathOptional[str]

path to log file, if None logs will be send only to console. If the parent directory does not exist it will be automatically created, by default None

mpi_logOptional[str], optional

mpi log type. Has three options. master will output logs to file and console only from rank==0. collect will write messages from all ranks to one file opened under rank==0 and to console. workers will open one log file for each worker designated by its rank, console behaviour is the same as for collect. If this argument is specified, package ‘mpi4py’ must be already installed. by default None

Raises
RuntimeError

If the argument mpi_log is specified, package mpi4py is not installed.

Notes

Logging levels:

our notation

python logging

tensorflow cpp

OpenMP

debug

10

10

0

1/on/true/yes

info

20

20

1

0/off/false/no

warning

30

30

2

0/off/false/no

error

40

40

3

0/off/false/no

References

https://groups.google.com/g/mpi4py/c/SaNzc8bdj6U https://stackoverflow.com/questions/35869137/avoid-tensorflow-print-on-standard-error https://stackoverflow.com/questions/56085015/suppress-openmp-debug-messages-when-running-tensorflow-on-cpu

Submodules
deepmd.loggers.loggers module

Logger initialization for package.

deepmd.loggers.loggers.set_log_handles(level: int, log_path: Optional[Path] = None, mpi_log: Optional[str] = None)[source]

Set desired level for package loggers and add file handlers.

Parameters
levelint

logging level

log_pathOptional[str]

path to log file, if None logs will be send only to console. If the parent directory does not exist it will be automatically created, by default None

mpi_logOptional[str], optional

mpi log type. Has three options. master will output logs to file and console only from rank==0. collect will write messages from all ranks to one file opened under rank==0 and to console. workers will open one log file for each worker designated by its rank, console behaviour is the same as for collect. If this argument is specified, package ‘mpi4py’ must be already installed. by default None

Raises
RuntimeError

If the argument mpi_log is specified, package mpi4py is not installed.

Notes

Logging levels:

our notation

python logging

tensorflow cpp

OpenMP

debug

10

10

0

1/on/true/yes

info

20

20

1

0/off/false/no

warning

30

30

2

0/off/false/no

error

40

40

3

0/off/false/no

References

https://groups.google.com/g/mpi4py/c/SaNzc8bdj6U https://stackoverflow.com/questions/35869137/avoid-tensorflow-print-on-standard-error https://stackoverflow.com/questions/56085015/suppress-openmp-debug-messages-when-running-tensorflow-on-cpu

deepmd.loss package
class deepmd.loss.DOSLoss(starter_learning_rate: float, numb_dos: int = 500, start_pref_dos: float = 1.0, limit_pref_dos: float = 1.0, start_pref_cdf: float = 1000, limit_pref_cdf: float = 1.0, start_pref_ados: float = 0.0, limit_pref_ados: float = 0.0, start_pref_acdf: float = 0.0, limit_pref_acdf: float = 0.0, protect_value: float = 1e-08, log_fit: bool = False, **kwargs)[source]

Bases: Loss

Loss function for DeepDOS models.

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

class deepmd.loss.EnerDipoleLoss(starter_learning_rate: float, start_pref_e: float = 0.1, limit_pref_e: float = 1.0, start_pref_ed: float = 1.0, limit_pref_ed: float = 1.0)[source]

Bases: Loss

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

class deepmd.loss.EnerSpinLoss(starter_learning_rate: float, start_pref_e: float = 0.02, limit_pref_e: float = 1.0, start_pref_fr: float = 1000, limit_pref_fr: float = 1.0, start_pref_fm: float = 10000, limit_pref_fm: float = 10.0, start_pref_v: float = 0.0, limit_pref_v: float = 0.0, start_pref_ae: float = 0.0, limit_pref_ae: float = 0.0, start_pref_pf: float = 0.0, limit_pref_pf: float = 0.0, relative_f: Optional[float] = None, enable_atom_ener_coeff: bool = False, use_spin: Optional[list] = None)[source]

Bases: Loss

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

print_header

print_on_training

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

print_header()[source]
print_on_training(tb_writer, cur_batch, sess, natoms, feed_dict_test, feed_dict_batch)[source]
class deepmd.loss.EnerStdLoss(starter_learning_rate: float, start_pref_e: float = 0.02, limit_pref_e: float = 1.0, start_pref_f: float = 1000, limit_pref_f: float = 1.0, start_pref_v: float = 0.0, limit_pref_v: float = 0.0, start_pref_ae: float = 0.0, limit_pref_ae: float = 0.0, start_pref_pf: float = 0.0, limit_pref_pf: float = 0.0, relative_f: Optional[float] = None, enable_atom_ener_coeff: bool = False, start_pref_gf: float = 0.0, limit_pref_gf: float = 0.0, numb_generalized_coord: int = 0, **kwargs)[source]

Bases: Loss

Standard loss function for DP models.

Parameters
starter_learning_ratefloat

The learning rate at the start of the training.

start_pref_efloat

The prefactor of energy loss at the start of the training.

limit_pref_efloat

The prefactor of energy loss at the end of the training.

start_pref_ffloat

The prefactor of force loss at the start of the training.

limit_pref_ffloat

The prefactor of force loss at the end of the training.

start_pref_vfloat

The prefactor of virial loss at the start of the training.

limit_pref_vfloat

The prefactor of virial loss at the end of the training.

start_pref_aefloat

The prefactor of atomic energy loss at the start of the training.

limit_pref_aefloat

The prefactor of atomic energy loss at the end of the training.

start_pref_pffloat

The prefactor of atomic prefactor force loss at the start of the training.

limit_pref_pffloat

The prefactor of atomic prefactor force loss at the end of the training.

relative_ffloat

If provided, relative force error will be used in the loss. The difference of force will be normalized by the magnitude of the force in the label with a shift given by relative_f

enable_atom_ener_coeffbool

if true, the energy will be computed as sum_i c_i E_i

start_pref_gffloat

The prefactor of generalized force loss at the start of the training.

limit_pref_gffloat

The prefactor of generalized force loss at the end of the training.

numb_generalized_coordint

The dimension of generalized coordinates.

**kwargs

Other keyword arguments.

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

class deepmd.loss.TensorLoss(jdata, **kwarg)[source]

Bases: Loss

Loss function for tensorial properties.

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

Submodules
deepmd.loss.dos module
class deepmd.loss.dos.DOSLoss(starter_learning_rate: float, numb_dos: int = 500, start_pref_dos: float = 1.0, limit_pref_dos: float = 1.0, start_pref_cdf: float = 1000, limit_pref_cdf: float = 1.0, start_pref_ados: float = 0.0, limit_pref_ados: float = 0.0, start_pref_acdf: float = 0.0, limit_pref_acdf: float = 0.0, protect_value: float = 1e-08, log_fit: bool = False, **kwargs)[source]

Bases: Loss

Loss function for DeepDOS models.

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

deepmd.loss.ener module
class deepmd.loss.ener.EnerDipoleLoss(starter_learning_rate: float, start_pref_e: float = 0.1, limit_pref_e: float = 1.0, start_pref_ed: float = 1.0, limit_pref_ed: float = 1.0)[source]

Bases: Loss

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

class deepmd.loss.ener.EnerSpinLoss(starter_learning_rate: float, start_pref_e: float = 0.02, limit_pref_e: float = 1.0, start_pref_fr: float = 1000, limit_pref_fr: float = 1.0, start_pref_fm: float = 10000, limit_pref_fm: float = 10.0, start_pref_v: float = 0.0, limit_pref_v: float = 0.0, start_pref_ae: float = 0.0, limit_pref_ae: float = 0.0, start_pref_pf: float = 0.0, limit_pref_pf: float = 0.0, relative_f: Optional[float] = None, enable_atom_ener_coeff: bool = False, use_spin: Optional[list] = None)[source]

Bases: Loss

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

print_header

print_on_training

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

print_header()[source]
print_on_training(tb_writer, cur_batch, sess, natoms, feed_dict_test, feed_dict_batch)[source]
class deepmd.loss.ener.EnerStdLoss(starter_learning_rate: float, start_pref_e: float = 0.02, limit_pref_e: float = 1.0, start_pref_f: float = 1000, limit_pref_f: float = 1.0, start_pref_v: float = 0.0, limit_pref_v: float = 0.0, start_pref_ae: float = 0.0, limit_pref_ae: float = 0.0, start_pref_pf: float = 0.0, limit_pref_pf: float = 0.0, relative_f: Optional[float] = None, enable_atom_ener_coeff: bool = False, start_pref_gf: float = 0.0, limit_pref_gf: float = 0.0, numb_generalized_coord: int = 0, **kwargs)[source]

Bases: Loss

Standard loss function for DP models.

Parameters
starter_learning_ratefloat

The learning rate at the start of the training.

start_pref_efloat

The prefactor of energy loss at the start of the training.

limit_pref_efloat

The prefactor of energy loss at the end of the training.

start_pref_ffloat

The prefactor of force loss at the start of the training.

limit_pref_ffloat

The prefactor of force loss at the end of the training.

start_pref_vfloat

The prefactor of virial loss at the start of the training.

limit_pref_vfloat

The prefactor of virial loss at the end of the training.

start_pref_aefloat

The prefactor of atomic energy loss at the start of the training.

limit_pref_aefloat

The prefactor of atomic energy loss at the end of the training.

start_pref_pffloat

The prefactor of atomic prefactor force loss at the start of the training.

limit_pref_pffloat

The prefactor of atomic prefactor force loss at the end of the training.

relative_ffloat

If provided, relative force error will be used in the loss. The difference of force will be normalized by the magnitude of the force in the label with a shift given by relative_f

enable_atom_ener_coeffbool

if true, the energy will be computed as sum_i c_i E_i

start_pref_gffloat

The prefactor of generalized force loss at the start of the training.

limit_pref_gffloat

The prefactor of generalized force loss at the end of the training.

numb_generalized_coordint

The dimension of generalized coordinates.

**kwargs

Other keyword arguments.

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

deepmd.loss.loss module
class deepmd.loss.loss.Loss[source]

Bases: object

The abstract class for the loss function.

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

abstract build(learning_rate: Tensor, natoms: Tensor, model_dict: Dict[str, Tensor], label_dict: Dict[str, Tensor], suffix: str) Tuple[Tensor, Dict[str, Tensor]][source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

abstract eval(sess: Session, feed_dict: Dict[placeholder, Tensor], natoms: Tensor) dict[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

deepmd.loss.tensor module
class deepmd.loss.tensor.TensorLoss(jdata, **kwarg)[source]

Bases: Loss

Loss function for tensorial properties.

Methods

build(learning_rate, natoms, model_dict, ...)

Build the loss function graph.

eval(sess, feed_dict, natoms)

Eval the loss function.

build(learning_rate, natoms, model_dict, label_dict, suffix)[source]

Build the loss function graph.

Parameters
learning_ratetf.Tensor

learning rate

natomstf.Tensor

number of atoms

model_dictdict[str, tf.Tensor]

A dictionary that maps model keys to tensors

label_dictdict[str, tf.Tensor]

A dictionary that maps label keys to tensors

suffixstr

suffix

Returns
tf.Tensor

the total squared loss

dict[str, tf.Tensor]

A dictionary that maps loss keys to more loss tensors

eval(sess, feed_dict, natoms)[source]

Eval the loss function.

Parameters
sesstf.Session

TensorFlow session

feed_dictdict[tf.placeholder, tf.Tensor]

A dictionary that maps graph elements to values

natomstf.Tensor

number of atoms

Returns
dict

A dictionary that maps keys to values. It should contain key natoms

deepmd.model package
class deepmd.model.DOSModel(*args, **kwargs)[source]

Bases: StandardModel

DOS model.

Parameters
descriptor

Descriptor

fitting_net

Fitting net

type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_stat_protect

Protect parameter for atomic energy regression

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix='', reuse=None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

data_stat(data)[source]

Data staticis.

get_ntypes()[source]

Get the number of types.

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_dos()[source]

Get the number of gridpoints in energy space.

get_numb_fparam() int[source]

Get the number of frame parameters.

get_rcut()[source]

Get cutoff radius of the model.

get_type_map()[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

model_type = 'dos'
class deepmd.model.DipoleModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

class deepmd.model.EnerModel(*args, **kwargs)[source]

Bases: StandardModel

Energy model.

Parameters
descriptor

Descriptor

fitting_net

Fitting net

type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_stat_protect

Protect parameter for atomic energy regression

use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when use_srtab is provided.

sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

sw_rmin

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

srtab_add_biasbool

Whether add energy bias from the statistics of the data to short-range tabulated atomic energy. It only takes effect when use_srtab is provided.

spin

spin

data_stat_nsample

The number of training samples in a system to compute and change the energy bias.

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

natoms_match

natoms_not_match

build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix='', reuse=None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

change_energy_bias(data: DeepmdDataSystem, frozen_model: str, origin_type_map: list, full_type_map: str, bias_shift: str = 'delta') None[source]

Change the energy bias according to the input data and the pretrained model.

Parameters
dataDeepmdDataSystem

The training data.

frozen_modelstr

The path file of frozen model.

origin_type_maplist

The original type_map in dataset, they are targets to change the energy bias.

full_type_mapstr

The full type_map in pretrained model

bias_shiftstr

The mode for changing energy bias : [‘delta’, ‘statistic’] ‘delta’ : perform predictions on energies of target dataset,

and do least sqaure on the errors to obtain the target shift as bias.

‘statistic’ : directly use the statistic energy bias in the target dataset.

data_stat(data)[source]

Data staticis.

get_ntypes()[source]

Get the number of types.

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_fparam() int[source]

Get the number of frame parameters.

get_rcut()[source]

Get cutoff radius of the model.

get_type_map()[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

model_type = 'ener'
natoms_match(force, natoms)[source]
natoms_not_match(force, natoms, atype)[source]
class deepmd.model.GlobalPolarModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

class deepmd.model.MultiModel(*args, **kwargs)[source]

Bases: Model

Multi-task model.

Parameters
descriptor

Descriptor

fitting_net_dict

Dictionary of fitting nets

fitting_type_dict

deprecated argument

type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_stat_protect

Protect parameter for atomic energy regression

use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when use_srtab is provided.

sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

sw_rmin

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix='', reuse=None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

data_stat(data)[source]

Data staticis.

enable_mixed_precision(mixed_prec: dict)[source]

Enable mixed precision for the model.

Parameters
mixed_precdict

The mixed precision config

get_fitting() dict[source]

Get the fitting(s).

get_loss(loss: dict, lr: dict) Dict[str, Loss][source]

Get the loss function(s).

get_ntypes()[source]

Get the number of types.

get_numb_aparam() dict[source]

Get the number of atomic parameters.

get_numb_dos() dict[source]

Get the number of gridpoints in energy space.

get_numb_fparam() dict[source]

Get the number of frame parameters.

get_rcut()[source]

Get cutoff radius of the model.

get_type_map()[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

model_type = 'multi_task'
class deepmd.model.PolarModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

class deepmd.model.WFCModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

Submodules
deepmd.model.dos module
class deepmd.model.dos.DOSModel(*args, **kwargs)[source]

Bases: StandardModel

DOS model.

Parameters
descriptor

Descriptor

fitting_net

Fitting net

type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_stat_protect

Protect parameter for atomic energy regression

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix='', reuse=None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

data_stat(data)[source]

Data staticis.

get_ntypes()[source]

Get the number of types.

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_dos()[source]

Get the number of gridpoints in energy space.

get_numb_fparam() int[source]

Get the number of frame parameters.

get_rcut()[source]

Get cutoff radius of the model.

get_type_map()[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

model_type = 'dos'
deepmd.model.ener module
class deepmd.model.ener.EnerModel(*args, **kwargs)[source]

Bases: StandardModel

Energy model.

Parameters
descriptor

Descriptor

fitting_net

Fitting net

type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_stat_protect

Protect parameter for atomic energy regression

use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when use_srtab is provided.

sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

sw_rmin

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

srtab_add_biasbool

Whether add energy bias from the statistics of the data to short-range tabulated atomic energy. It only takes effect when use_srtab is provided.

spin

spin

data_stat_nsample

The number of training samples in a system to compute and change the energy bias.

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

natoms_match

natoms_not_match

build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix='', reuse=None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

change_energy_bias(data: DeepmdDataSystem, frozen_model: str, origin_type_map: list, full_type_map: str, bias_shift: str = 'delta') None[source]

Change the energy bias according to the input data and the pretrained model.

Parameters
dataDeepmdDataSystem

The training data.

frozen_modelstr

The path file of frozen model.

origin_type_maplist

The original type_map in dataset, they are targets to change the energy bias.

full_type_mapstr

The full type_map in pretrained model

bias_shiftstr

The mode for changing energy bias : [‘delta’, ‘statistic’] ‘delta’ : perform predictions on energies of target dataset,

and do least sqaure on the errors to obtain the target shift as bias.

‘statistic’ : directly use the statistic energy bias in the target dataset.

data_stat(data)[source]

Data staticis.

get_ntypes()[source]

Get the number of types.

get_numb_aparam() int[source]

Get the number of atomic parameters.

get_numb_fparam() int[source]

Get the number of frame parameters.

get_rcut()[source]

Get cutoff radius of the model.

get_type_map()[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

model_type = 'ener'
natoms_match(force, natoms)[source]
natoms_not_match(force, natoms, atype)[source]
deepmd.model.model module
class deepmd.model.model.Model(*args, **kwargs)[source]

Bases: ABC

Abstract base model.

Parameters
type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_bias_nsample

The number of training samples in a system to compute and change the energy bias.

data_stat_protect

Protect parameter for atomic energy regression

use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when use_srtab is provided.

sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

sw_rmin

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

srtab_add_biasbool

Whether add energy bias from the statistics of the data to short-range tabulated atomic energy. It only takes effect when use_srtab is provided.

spin

spin

compress

Compression information for internal use

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

abstract build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box: Tensor, mesh: Tensor, input_dict: dict, frz_model: Optional[str] = None, ckpt_meta: Optional[str] = None, suffix: str = '', reuse: Optional[Union[bool, Enum]] = None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

build_descrpt(coord_: Tensor, atype_: Tensor, natoms: Tensor, box: Tensor, mesh: Tensor, input_dict: dict, frz_model: Optional[str] = None, ckpt_meta: Optional[str] = None, suffix: str = '', reuse: Optional[Union[bool, Enum]] = None)[source]

Build the descriptor part of the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
tf.Tensor

The descriptor tensor

change_energy_bias(data: DeepmdDataSystem, frozen_model: str, origin_type_map: list, full_type_map: str, bias_shift: str = 'delta') None[source]

Change the energy bias according to the input data and the pretrained model.

Parameters
dataDeepmdDataSystem

The training data.

frozen_modelstr

The path file of frozen model.

origin_type_maplist

The original type_map in dataset, they are targets to change the energy bias.

full_type_mapstr

The full type_map in pretrained model

bias_shiftstr

The mode for changing energy bias : [‘delta’, ‘statistic’] ‘delta’ : perform predictions on energies of target dataset,

and do least sqaure on the errors to obtain the target shift as bias.

‘statistic’ : directly use the statistic energy bias in the target dataset.

abstract data_stat(data: dict)[source]

Data staticis.

enable_compression(suffix: str = '')[source]

Enable compression.

Parameters
suffixstr

suffix to name scope

enable_mixed_precision(mixed_prec: dict)[source]

Enable mixed precision for the model.

Parameters
mixed_precdict

The mixed precision config

get_feed_dict(coord_: Tensor, atype_: Tensor, natoms: Tensor, box: Tensor, mesh: Tensor, **kwargs) Dict[str, Tensor][source]

Generate the feed_dict for current descriptor.

Parameters
coord_tf.Tensor

The coordinate of atoms

atype_tf.Tensor

The type of atoms

natomstf.Tensor

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

boxtf.Tensor

The box. Can be generated by deepmd.model.make_stat_input

meshtf.Tensor

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

**kwargsdict

The additional arguments

Returns
feed_dictdict[str, tf.Tensor]

The output feed_dict of current descriptor

abstract get_fitting() Union[str, dict][source]

Get the fitting(s).

abstract get_loss(loss: dict, lr) Union[Loss, dict][source]

Get the loss function(s).

abstract get_ntypes() int[source]

Get the number of types.

get_numb_aparam() Union[int, dict][source]

Get the number of atomic parameters.

get_numb_dos() Union[int, dict][source]

Get the number of gridpoints in energy space.

get_numb_fparam() Union[int, dict][source]

Get the number of frame parameters.

abstract get_rcut() float[source]

Get cutoff radius of the model.

get_type_map() list[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

class deepmd.model.model.StandardModel(*args, **kwargs)[source]

Bases: Model

Standard model, which must contain a descriptor and a fitting.

Parameters
descriptorUnion[dict, Descriptor]

The descriptor

fitting_netUnion[dict, Fitting]

The fitting network

type_embeddingdict, optional

The type embedding

type_maplist of dict, optional

The type map

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

enable_compression(suffix: str = '')[source]

Enable compression.

Parameters
suffixstr

suffix to name scope

enable_mixed_precision(mixed_prec: dict)[source]

Enable mixed precision for the model.

Parameters
mixed_precdict

The mixed precision config

get_fitting() Union[Fitting, dict][source]

Get the fitting(s).

get_loss(loss: dict, lr) Union[Loss, dict][source]

Get the loss function(s).

get_ntypes() int[source]

Get the number of types.

get_rcut() float[source]

Get cutoff radius of the model.

deepmd.model.model_stat module
deepmd.model.model_stat.make_stat_input(data, nbatches, merge_sys=True)[source]

Pack data for statistics.

Parameters
data

The data

nbatchesint

The number of batches

merge_sysbool (True)

Merge system data

Returns
all_stat:

A dictionary of list of list storing data for stat. if merge_sys == False data can be accessed by

all_stat[key][sys_idx][batch_idx][frame_idx]

else merge_sys == True can be accessed by

all_stat[key][batch_idx][frame_idx]

deepmd.model.model_stat.merge_sys_stat(all_stat)[source]
deepmd.model.multi module
class deepmd.model.multi.MultiModel(*args, **kwargs)[source]

Bases: Model

Multi-task model.

Parameters
descriptor

Descriptor

fitting_net_dict

Dictionary of fitting nets

fitting_type_dict

deprecated argument

type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_stat_protect

Protect parameter for atomic energy regression

use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor. This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only required when use_srtab is provided.

sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

sw_rmin

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only required when use_srtab is provided.

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix='', reuse=None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

data_stat(data)[source]

Data staticis.

enable_mixed_precision(mixed_prec: dict)[source]

Enable mixed precision for the model.

Parameters
mixed_precdict

The mixed precision config

get_fitting() dict[source]

Get the fitting(s).

get_loss(loss: dict, lr: dict) Dict[str, Loss][source]

Get the loss function(s).

get_ntypes()[source]

Get the number of types.

get_numb_aparam() dict[source]

Get the number of atomic parameters.

get_numb_dos() dict[source]

Get the number of gridpoints in energy space.

get_numb_fparam() dict[source]

Get the number of frame parameters.

get_rcut()[source]

Get cutoff radius of the model.

get_type_map()[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

model_type = 'multi_task'
deepmd.model.pairwise_dprc module
class deepmd.model.pairwise_dprc.PairwiseDPRc(*args, **kwargs)[source]

Bases: Model

Pairwise Deep Potential - Range Correction.

Methods

build(coord_, atype_, natoms, box_, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

build(coord_: Tensor, atype_: Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict: dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix: str = '', reuse: Optional[bool] = None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

data_stat(data)[source]

Data staticis.

enable_compression(suffix: str = '') None[source]

Enable compression.

Parameters
suffixstr

suffix to name scope

get_feed_dict(coord_: Tensor, atype_: Tensor, natoms: Tensor, box: Tensor, mesh: Tensor, **kwargs) Dict[str, Tensor][source]

Generate the feed_dict for current descriptor.

Parameters
coord_tf.Tensor

The coordinate of atoms

atype_tf.Tensor

The type of atoms

natomstf.Tensor

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

boxtf.Tensor

The box. Can be generated by deepmd.model.make_stat_input

meshtf.Tensor

For historical reasons, only the length of the Tensor matters. if size of mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

aparamtf.Tensor

The parameters of the descriptor

**kwargsdict

The keyword arguments

Returns
feed_dictdict[str, tf.Tensor]

The output feed_dict of current descriptor

get_fitting() Union[str, dict][source]

Get the fitting(s).

get_loss(loss: dict, lr) Union[Loss, dict][source]

Get the loss function(s).

get_ntypes() int[source]

Get the number of types.

get_rcut()[source]

Get cutoff radius of the model.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

model_type = 'ener'
deepmd.model.pairwise_dprc.gather_placeholder(params: Tensor, indices: Tensor, placeholder: float = 0.0, **kwargs) Tensor[source]

Call tf.gather but allow indices to contain placeholders (-1).

deepmd.model.tensor module
class deepmd.model.tensor.DipoleModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

class deepmd.model.tensor.GlobalPolarModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

class deepmd.model.tensor.PolarModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

class deepmd.model.tensor.TensorModel(*args, **kwargs)[source]

Bases: StandardModel

Tensor model.

Parameters
tensor_name

Name of the tensor.

descriptor

Descriptor

fitting_net

Fitting net

type_embedding

Type embedding net

type_map

Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.

data_stat_nbatch

Number of frames used for data statistic

data_stat_protect

Protect parameter for atomic energy regression

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: Optional[str] = None, suffix='', reuse=None)[source]

Build the model.

Parameters
coord_tf.Tensor

The coordinates of atoms

atype_tf.Tensor

The atom types of atoms

natomstf.Tensor

The number of atoms

boxtf.Tensor

The box vectors

meshtf.Tensor

The mesh vectors

input_dictdict

The input dict

frz_modelstr, optional

The path to the frozen model

ckpt_metastr, optional

The path to the checkpoint and meta file

suffixstr, optional

The suffix of the scope

reusebool or tf.AUTO_REUSE, optional

Whether to reuse the variables

Returns
dict

The output dict

data_stat(data)[source]

Data staticis.

get_ntypes()[source]

Get the number of types.

get_out_size()[source]
get_rcut()[source]

Get cutoff radius of the model.

get_sel_type()[source]
get_type_map()[source]

Get the type map.

init_variables(graph: Graph, graph_def: GraphDef, model_type: str = 'original_model', suffix: str = '') None[source]

Init the embedding net variables with the given frozen model.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

model_typestr

the type of the model

suffixstr

suffix to name scope

class deepmd.model.tensor.WFCModel(*args, **kwargs)[source]

Bases: TensorModel

Methods

build(coord_, atype_, natoms, box, mesh, ...)

Build the model.

build_descrpt(coord_, atype_, natoms, box, ...)

Build the descriptor part of the model.

change_energy_bias(data, frozen_model, ...)

Change the energy bias according to the input data and the pretrained model.

data_stat(data)

Data staticis.

enable_compression([suffix])

Enable compression.

enable_mixed_precision(mixed_prec)

Enable mixed precision for the model.

get_feed_dict(coord_, atype_, natoms, box, ...)

Generate the feed_dict for current descriptor.

get_fitting()

Get the fitting(s).

get_loss(loss, lr)

Get the loss function(s).

get_ntypes()

Get the number of types.

get_numb_aparam()

Get the number of atomic parameters.

get_numb_dos()

Get the number of gridpoints in energy space.

get_numb_fparam()

Get the number of frame parameters.

get_rcut()

Get cutoff radius of the model.

get_type_map()

Get the type map.

init_variables(graph, graph_def[, ...])

Init the embedding net variables with the given frozen model.

get_out_size

get_sel_type

deepmd.nvnmd package
Subpackages
deepmd.nvnmd.data package

nvnmd.data ==========.

Provides
  1. hardware configuration

  2. default input script

  3. title and citation

Data
jdata_sys

action configuration

jdata_config

hardware configuration

dscp

descriptor configuration

fitn

fitting network configuration

size

ram capacity

ctrl

control flag, such as Time Division Multiplexing (TDM)

nbit

number of bits of fixed-point number

jdata_config_16 (disable)

difference with configure fitting size as 16

jdata_config_32 (disable)

difference with configure fitting size as 32

jdata_config_64 (disable)

difference with configure fitting size as 64

jdata_config_128 (default)

difference with configure fitting size as 128

jdata_configs

all configure of jdata_config{nfit_node}

jdata_deepmd_input

default input script for nvnmd training

NVNMD_WELCOME

nvnmd title when logging

NVNMD_CITATION

citation of nvnmd

Submodules
deepmd.nvnmd.data.data module
deepmd.nvnmd.descriptor package

nvnmd.se_a ==========.

Provides
  1. building descriptor with continuous embedding network

  2. building descriptor with quantized embedding network

Submodules
deepmd.nvnmd.descriptor.se_a module
deepmd.nvnmd.descriptor.se_a.build_davg_dstd()[source]

Get the davg and dstd from the dictionary nvnmd_cfg. The davg and dstd have been obtained by training CNN.

deepmd.nvnmd.descriptor.se_a.build_op_descriptor()[source]

Replace se_a.py/DescrptSeA/build.

deepmd.nvnmd.descriptor.se_a.check_switch_range(davg, dstd)[source]

Check the range of switch, let it in range [-2, 14].

deepmd.nvnmd.descriptor.se_a.descrpt2r4(inputs, natoms)[source]

Replace \(r_{ji} \rightarrow r'_{ji}\) where \(r_{ji} = (x_{ji}, y_{ji}, z_{ji})\) and \(r'_{ji} = (s_{ji}, \frac{s_{ji} x_{ji}}{r_{ji}}, \frac{s_{ji} y_{ji}}{r_{ji}}, \frac{s_{ji} z_{ji}}{r_{ji}})\).

deepmd.nvnmd.descriptor.se_a.filter_GR2D(xyz_scatter_1)[source]

Replace se_a.py/_filter.

deepmd.nvnmd.descriptor.se_a.filter_lower_R42GR(type_i, type_input, inputs_i, is_exclude, activation_fn, bavg, stddev, trainable, suffix, seed, seed_shift, uniform_seed, filter_neuron, filter_precision, filter_resnet_dt, embedding_net_variables)[source]

Replace se_a.py/DescrptSeA/_filter_lower.

deepmd.nvnmd.descriptor.se_atten module
deepmd.nvnmd.descriptor.se_atten.build_davg_dstd()[source]

Get the davg and dstd from the dictionary nvnmd_cfg. The davg and dstd have been obtained by training CNN.

deepmd.nvnmd.descriptor.se_atten.build_op_descriptor()[source]

Replace se_a.py/DescrptSeA/build.

deepmd.nvnmd.descriptor.se_atten.check_switch_range(davg, dstd)[source]

Check the range of switch, let it in range [-2, 14].

deepmd.nvnmd.descriptor.se_atten.descrpt2r4(inputs, atype)[source]

Replace \(r_{ji} \rightarrow r'_{ji}\) where \(r_{ji} = (x_{ji}, y_{ji}, z_{ji})\) and \(r'_{ji} = (s_{ji}, \frac{s_{ji} x_{ji}}{r_{ji}}, \frac{s_{ji} y_{ji}}{r_{ji}}, \frac{s_{ji} z_{ji}}{r_{ji}})\).

deepmd.nvnmd.descriptor.se_atten.filter_GR2D(xyz_scatter_1)[source]

Replace se_a.py/_filter.

deepmd.nvnmd.descriptor.se_atten.filter_lower_R42GR(inputs_i, atype, nei_type_vec)[source]

Replace se_a.py/DescrptSeA/_filter_lower.

deepmd.nvnmd.entrypoints package
class deepmd.nvnmd.entrypoints.MapTable(config_file: str, weight_file: str, map_file: str)[source]

Bases: object

Generate the mapping table describing the relastionship of atomic distance, cutoff function, and embedding matrix.

three mapping table will be built:

\(r^2_{ji} \rightarrow s_{ji}\)
\(r^2_{ji} \rightarrow h_{ji}\)
\(r^2_{ji} \rightarrow \mathcal{G}_{ji}\)

where \(s_{ji}\) is cut-off function, \(h_{ji} = \frac{s(r_{ji})}{r_{ji}}\), and \(\mathcal{G}_{ji}\) is embedding matrix.

The mapping funciton can be define as:

\(y = f(x) = y_{k} + (x - x_{k}) * dy_{k}\)
\(y_{k} = f(x_{k})\)
\(dy_{k} = \frac{f(x_{k+1}) - f(x_{k})}{dx}\)
\(x_{k} \leq x < x_{k+1}\)
\(x_{k} = k * dx\)

where \(dx\) is interpolation interval.

Parameters
config_file

input file name an .npy file containing the configuration information of NVNMD model

weight_file

input file name an .npy file containing the weights of NVNMD model

map_file

output file name an .npy file containing the mapping tables of NVNMD model

References

DOI: 10.1038/s41524-022-00773-z

Methods

build_grad(x, y, Nr, Nc)

: Build gradient of tensor y of x.

build_map_coef(cfgs, x, ys, grads, ...)

Build mapping table coefficient cfgs: cfg list cfg = x0, x1, dx.

build_s2g(s)

Build s->G s is switch function G is embedding net output.

build_s2g_grad()

Build gradient of G with respect to s.

build_t2g()

Build t->G t is chemical species of center atom and neighbor atom G is embedding net output of type.

build_u2s(r2)

Build tensor s, s=s(r2).

build_u2s_grad()

Build gradient of s with respect to u (r^2).

cal_coef4(cfgs, x, y, dy)

Build mapping table coefficient for one line coef4: a x^3 + b x^2 + c x + d = y: / d = y0 | c = y0' | b = (3 y1 - dx dy' - 2dx y0' - 3y0) / dx^2 a = (dx y1' - 2 y1 + dx y0' + 2 y0) / dx^3.

mapping(x, dic_map, cfgs)

Evaluate value by mapping table operation of tensorflow.

mapping2(x, dic_map, cfgs)

Evaluate value by mapping table of numpy.

plot_lines(x, dic1[, dic2])

Plot lines to see accuracy.

run_s2g()

Build s-> graph and run it to get value of mapping table.

run_t2g()

Build t-> graph and run it to get value of mapping table.

run_u2s()

Build u->s graph and run it to get value of mapping table.

build_davg_dstd

build_embedding_net

build_map

build_davg_dstd()[source]
build_embedding_net(xx, wbs, activation_fn=<function tanh>)[source]
build_grad(x, y, Nr, Nc)[source]

: Build gradient of tensor y of x.

build_map()[source]
build_map_coef(cfgs, x, ys, grads, grad_grads, Nr, Nc)[source]

Build mapping table coefficient cfgs: cfg list cfg = x0, x1, dx.

coef4: a x^3 + b x^2 + c x + d = y: / d = y0 | c = y0’ | b = (3 y1 - dx dy’ - 2dx y0’ - 3y0) / dx^2 a = (dx y1’ - 2 y1 + dx y0’ + 2 y0) / dx^3

build_s2g(s)[source]

Build s->G s is switch function G is embedding net output.

build_s2g_grad()[source]

Build gradient of G with respect to s.

build_t2g()[source]

Build t->G t is chemical species of center atom and neighbor atom G is embedding net output of type.

build_u2s(r2)[source]

Build tensor s, s=s(r2).

build_u2s_grad()[source]

Build gradient of s with respect to u (r^2).

cal_coef4(cfgs, x, y, dy)[source]

Build mapping table coefficient for one line coef4: a x^3 + b x^2 + c x + d = y: / d = y0 | c = y0’ | b = (3 y1 - dx dy’ - 2dx y0’ - 3y0) / dx^2 a = (dx y1’ - 2 y1 + dx y0’ + 2 y0) / dx^3.

mapping(x, dic_map, cfgs)[source]

Evaluate value by mapping table operation of tensorflow.

mapping2(x, dic_map, cfgs)[source]

Evaluate value by mapping table of numpy.

plot_lines(x, dic1, dic2=None)[source]

Plot lines to see accuracy.

run_s2g()[source]

Build s-> graph and run it to get value of mapping table.

run_t2g()[source]

Build t-> graph and run it to get value of mapping table.

run_u2s()[source]

Build u->s graph and run it to get value of mapping table.

class deepmd.nvnmd.entrypoints.Wrap(config_file: str, weight_file: str, map_file: str, model_file: str)[source]

Bases: object

Generate the binary model file (model.pb).

the model file can be use to run the NVNMD with lammps the pair style need set as:

pair_style nvnmd model.pb
pair_coeff * *
Parameters
config_file

input file name an .npy file containing the configuration information of NVNMD model

weight_file

input file name an .npy file containing the weights of NVNMD model

map_file

input file name an .npy file containing the mapping tables of NVNMD model

model_file

output file name an .pb file containing the model using in the NVNMD

References

DOI: 10.1038/s41524-022-00773-z

Methods

wrap_dscp()

Wrap the configuration of descriptor.

wrap_fitn()

Wrap the weights of fitting net.

wrap_head(nhs, nws)

Wrap the head information.

wrap_lut()

Wrap the LUT.

wrap_map()

Wrap the mapping table of embedding network.

wrap_weight(weight, NBIT_DISP, NBIT_WEIGHT)

weight: weights of fittingNet NBIT_DISP: nbits of exponent of weight max value NBIT_WEIGHT: nbits of mantissa of weights.

wrap

wrap_bias

wrap()[source]
wrap_bias(bias, NBIT_DATA, NBIT_DATA_FL)[source]
wrap_dscp()[source]

Wrap the configuration of descriptor.

version 0: [NBIT_IDX_S2G-1:0] SHIFT_IDX_S2G

[NBIT_NEIB*NTYPE-1:0] SELs [NBIT_FIXD*M1*NTYPE*NTYPE-1:0] GSs [NBIT_FLTE-1:0] NEXPO_DIV_NI

version 1:

[NBIT_FLTE-1:0] NEXPO_DIV_NI

wrap_fitn()[source]

Wrap the weights of fitting net.

w weight b bias

wrap_head(nhs, nws)[source]

Wrap the head information.

version nheight nweight rcut

wrap_lut()[source]

Wrap the LUT.

wrap_map()[source]

Wrap the mapping table of embedding network.

wrap_weight(weight, NBIT_DISP, NBIT_WEIGHT)[source]

weight: weights of fittingNet NBIT_DISP: nbits of exponent of weight max value NBIT_WEIGHT: nbits of mantissa of weights.

deepmd.nvnmd.entrypoints.save_weight(sess, file_name: str = 'nvnmd/weight.npy')[source]

Save the dictionary of weight to a npy file.

Submodules
deepmd.nvnmd.entrypoints.freeze module
deepmd.nvnmd.entrypoints.freeze.filter_tensorVariableList(tensorVariableList) dict[source]

Get the name of variable for NVNMD.

train_attr/min_nbor_dist
descrpt_attr/t_avg:0
descrpt_attr/t_std:0
type_embed_net/matrix_{layer l}:0
type_embed_net/bias_{layer l}:0

version 0: | filter_type_{atom i}/matrix_{layer l}_{atomj}:0

filter_type_{atom i}/bias_{layer l}_{atomj}:0
layer_{layer l}_type_{atom i}/matrix:0
layer_{layer l}_type_{atom i}/bias:0
final_layer_type_{atom i}/matrix:0
final_layer_type_{atom i}/bias:0

version 1: | filter_type_all/matrix_{layer l}:0

filter_type_all/bias_{layer l}:0
filter_type_all/matrix_{layer l}_two_side_ebd:0
filter_type_all/bias_{layer l}_two_side_ebd:0
layer_{layer l}/matrix:0
layer_{layer l}/bias:0
final_layer/matrix:0
final_layer/bias:0
deepmd.nvnmd.entrypoints.freeze.save_weight(sess, file_name: str = 'nvnmd/weight.npy')[source]

Save the dictionary of weight to a npy file.

deepmd.nvnmd.entrypoints.mapt module
class deepmd.nvnmd.entrypoints.mapt.MapTable(config_file: str, weight_file: str, map_file: str)[source]

Bases: object

Generate the mapping table describing the relastionship of atomic distance, cutoff function, and embedding matrix.

three mapping table will be built:

\(r^2_{ji} \rightarrow s_{ji}\)
\(r^2_{ji} \rightarrow h_{ji}\)
\(r^2_{ji} \rightarrow \mathcal{G}_{ji}\)

where \(s_{ji}\) is cut-off function, \(h_{ji} = \frac{s(r_{ji})}{r_{ji}}\), and \(\mathcal{G}_{ji}\) is embedding matrix.

The mapping funciton can be define as:

\(y = f(x) = y_{k} + (x - x_{k}) * dy_{k}\)
\(y_{k} = f(x_{k})\)
\(dy_{k} = \frac{f(x_{k+1}) - f(x_{k})}{dx}\)
\(x_{k} \leq x < x_{k+1}\)
\(x_{k} = k * dx\)

where \(dx\) is interpolation interval.

Parameters
config_file

input file name an .npy file containing the configuration information of NVNMD model

weight_file

input file name an .npy file containing the weights of NVNMD model

map_file

output file name an .npy file containing the mapping tables of NVNMD model

References

DOI: 10.1038/s41524-022-00773-z

Methods

build_grad(x, y, Nr, Nc)

: Build gradient of tensor y of x.

build_map_coef(cfgs, x, ys, grads, ...)

Build mapping table coefficient cfgs: cfg list cfg = x0, x1, dx.

build_s2g(s)

Build s->G s is switch function G is embedding net output.

build_s2g_grad()

Build gradient of G with respect to s.

build_t2g()

Build t->G t is chemical species of center atom and neighbor atom G is embedding net output of type.

build_u2s(r2)

Build tensor s, s=s(r2).

build_u2s_grad()

Build gradient of s with respect to u (r^2).

cal_coef4(cfgs, x, y, dy)

Build mapping table coefficient for one line coef4: a x^3 + b x^2 + c x + d = y: / d = y0 | c = y0' | b = (3 y1 - dx dy' - 2dx y0' - 3y0) / dx^2 a = (dx y1' - 2 y1 + dx y0' + 2 y0) / dx^3.

mapping(x, dic_map, cfgs)

Evaluate value by mapping table operation of tensorflow.

mapping2(x, dic_map, cfgs)

Evaluate value by mapping table of numpy.

plot_lines(x, dic1[, dic2])

Plot lines to see accuracy.

run_s2g()

Build s-> graph and run it to get value of mapping table.

run_t2g()

Build t-> graph and run it to get value of mapping table.

run_u2s()

Build u->s graph and run it to get value of mapping table.

build_davg_dstd

build_embedding_net

build_map

build_davg_dstd()[source]
build_embedding_net(xx, wbs, activation_fn=<function tanh>)[source]
build_grad(x, y, Nr, Nc)[source]

: Build gradient of tensor y of x.

build_map()[source]
build_map_coef(cfgs, x, ys, grads, grad_grads, Nr, Nc)[source]

Build mapping table coefficient cfgs: cfg list cfg = x0, x1, dx.

coef4: a x^3 + b x^2 + c x + d = y: / d = y0 | c = y0’ | b = (3 y1 - dx dy’ - 2dx y0’ - 3y0) / dx^2 a = (dx y1’ - 2 y1 + dx y0’ + 2 y0) / dx^3

build_s2g(s)[source]

Build s->G s is switch function G is embedding net output.

build_s2g_grad()[source]

Build gradient of G with respect to s.

build_t2g()[source]

Build t->G t is chemical species of center atom and neighbor atom G is embedding net output of type.

build_u2s(r2)[source]

Build tensor s, s=s(r2).

build_u2s_grad()[source]

Build gradient of s with respect to u (r^2).

cal_coef4(cfgs, x, y, dy)[source]

Build mapping table coefficient for one line coef4: a x^3 + b x^2 + c x + d = y: / d = y0 | c = y0’ | b = (3 y1 - dx dy’ - 2dx y0’ - 3y0) / dx^2 a = (dx y1’ - 2 y1 + dx y0’ + 2 y0) / dx^3.

mapping(x, dic_map, cfgs)[source]

Evaluate value by mapping table operation of tensorflow.

mapping2(x, dic_map, cfgs)[source]

Evaluate value by mapping table of numpy.

plot_lines(x, dic1, dic2=None)[source]

Plot lines to see accuracy.

run_s2g()[source]

Build s-> graph and run it to get value of mapping table.

run_t2g()[source]

Build t-> graph and run it to get value of mapping table.

run_u2s()[source]

Build u->s graph and run it to get value of mapping table.

deepmd.nvnmd.entrypoints.mapt.mapt(*, nvnmd_config: Optional[str] = 'nvnmd/config.npy', nvnmd_weight: Optional[str] = 'nvnmd/weight.npy', nvnmd_map: Optional[str] = 'nvnmd/map.npy', **kwargs)[source]
deepmd.nvnmd.entrypoints.train module
deepmd.nvnmd.entrypoints.train.normalized_input(fn, PATH_CNN, CONFIG_CNN)[source]

Normalize a input script file for continuous neural network.

deepmd.nvnmd.entrypoints.train.normalized_input_qnn(jdata, PATH_QNN, CONFIG_CNN, WEIGHT_CNN, MAP_CNN)[source]

Normalize a input script file for quantize neural network.

deepmd.nvnmd.entrypoints.train.train_nvnmd(*, INPUT: str, restart: Optional[str], step: str, skip_neighbor_stat: bool = False, **kwargs)[source]
deepmd.nvnmd.entrypoints.wrap module
class deepmd.nvnmd.entrypoints.wrap.Wrap(config_file: str, weight_file: str, map_file: str, model_file: str)[source]

Bases: object

Generate the binary model file (model.pb).

the model file can be use to run the NVNMD with lammps the pair style need set as:

pair_style nvnmd model.pb
pair_coeff * *
Parameters
config_file

input file name an .npy file containing the configuration information of NVNMD model

weight_file

input file name an .npy file containing the weights of NVNMD model

map_file

input file name an .npy file containing the mapping tables of NVNMD model

model_file

output file name an .pb file containing the model using in the NVNMD

References

DOI: 10.1038/s41524-022-00773-z

Methods

wrap_dscp()

Wrap the configuration of descriptor.

wrap_fitn()

Wrap the weights of fitting net.

wrap_head(nhs, nws)

Wrap the head information.

wrap_lut()

Wrap the LUT.

wrap_map()

Wrap the mapping table of embedding network.

wrap_weight(weight, NBIT_DISP, NBIT_WEIGHT)

weight: weights of fittingNet NBIT_DISP: nbits of exponent of weight max value NBIT_WEIGHT: nbits of mantissa of weights.

wrap

wrap_bias

wrap()[source]
wrap_bias(bias, NBIT_DATA, NBIT_DATA_FL)[source]
wrap_dscp()[source]

Wrap the configuration of descriptor.

version 0: [NBIT_IDX_S2G-1:0] SHIFT_IDX_S2G

[NBIT_NEIB*NTYPE-1:0] SELs [NBIT_FIXD*M1*NTYPE*NTYPE-1:0] GSs [NBIT_FLTE-1:0] NEXPO_DIV_NI

version 1:

[NBIT_FLTE-1:0] NEXPO_DIV_NI

wrap_fitn()[source]

Wrap the weights of fitting net.

w weight b bias

wrap_head(nhs, nws)[source]

Wrap the head information.

version nheight nweight rcut

wrap_lut()[source]

Wrap the LUT.

wrap_map()[source]

Wrap the mapping table of embedding network.

wrap_weight(weight, NBIT_DISP, NBIT_WEIGHT)[source]

weight: weights of fittingNet NBIT_DISP: nbits of exponent of weight max value NBIT_WEIGHT: nbits of mantissa of weights.

deepmd.nvnmd.entrypoints.wrap.wrap(*, nvnmd_config: Optional[str] = 'nvnmd/config.npy', nvnmd_weight: Optional[str] = 'nvnmd/weight.npy', nvnmd_map: Optional[str] = 'nvnmd/map.npy', nvnmd_model: Optional[str] = 'nvnmd/model.pb', **kwargs)[source]
deepmd.nvnmd.fit package

nvnmd.fit =========.

Provides
  1. continuous fitting network

  2. quantized fitting network

Submodules
deepmd.nvnmd.fit.ener module
deepmd.nvnmd.fit.ener.one_layer_nvnmd(inputs, outputs_size, activation_fn=<function tanh>, precision=tf.float64, stddev=1.0, bavg=0.0, name='linear', reuse=None, seed=None, use_timestep=False, trainable=True, useBN=False, uniform_seed=False, initial_variables=None, mixed_prec=None, final_layer=False)

Build one layer with continuous or quantized value. Its weight and bias can be initialed with random or constant value.

deepmd.nvnmd.utils package
class deepmd.nvnmd.utils.Encode[source]

Bases: object

Encoding value as hex, bin, and dec format.

Methods

bin2hex(data)

Convert binary string list to hex string list.

bin2hex_str(sbin)

Convert binary string to hex string.

byte2hex(bs, nbyte)

Convert byte into hex bs: low byte in the first hex: low byte in the right.

check_dec(idec, nbit[, signed, name])

Check whether the data (idec) is in the range range is \([0, 2^nbit-1]\) for unsigned range is \([-2^{nbit-1}, 2^{nbit-1}-1]\) for signed.

dec2bin(idec[, nbit, signed, name])

Convert dec array to binary string list.

extend_bin(slbin, nfull)

Extend the element of list (slbin) to the length (nfull).

extend_hex(slhex, nfull)

Extend the element of list (slhex) to the length (nfull).

extend_list(slbin, nfull)

Extend the list (slbin) to the length (nfull) the attched element of list is 0.

flt2bin(data, nbit_expo, nbit_frac)

Convert float into binary string list.

hex2bin(data)

Convert hex string list to binary string list.

hex2bin_str(shex)

Convert hex string to binary string.

merge_bin(slbin, nmerge)

Merge binary string list per nmerge value.

qc(v[, nbit])

Quantize value using ceil.

qf(v[, nbit])

Quantize value using floor.

qr(v[, nbit])

Quantize value using round.

reverse_bin(slbin, nreverse)

Reverse binary string list per nreverse value.

split_bin(sbin, nbit)

Split sbin into many segment with the length nbit.

find_max_expo

flt2bin_one

norm_expo

split_expo_mant

bin2hex(data)[source]

Convert binary string list to hex string list.

bin2hex_str(sbin)[source]

Convert binary string to hex string.

byte2hex(bs, nbyte)[source]

Convert byte into hex bs: low byte in the first hex: low byte in the right.

check_dec(idec, nbit, signed=False, name='')[source]

Check whether the data (idec) is in the range range is \([0, 2^nbit-1]\) for unsigned range is \([-2^{nbit-1}, 2^{nbit-1}-1]\) for signed.

dec2bin(idec, nbit=10, signed=False, name='')[source]

Convert dec array to binary string list.

extend_bin(slbin, nfull)[source]

Extend the element of list (slbin) to the length (nfull).

such as, when

slbin = [‘10010’,’10100’],
nfull = 6

extent to

[‘010010’,’010100’]

extend_hex(slhex, nfull)[source]

Extend the element of list (slhex) to the length (nfull).

extend_list(slbin, nfull)[source]

Extend the list (slbin) to the length (nfull) the attched element of list is 0.

such as, when

slbin = [‘10010’,’10100’],
nfull = 4

extent it to

[‘10010’,’10100’,’00000’,’00000]

find_max_expo(v, expo_min=-1000)[source]
flt2bin(data, nbit_expo, nbit_frac)[source]

Convert float into binary string list.

flt2bin_one(v, nbit_expo, nbit_frac)[source]
hex2bin(data)[source]

Convert hex string list to binary string list.

hex2bin_str(shex)[source]

Convert hex string to binary string.

merge_bin(slbin, nmerge)[source]

Merge binary string list per nmerge value.

norm_expo(v, nbit_frac=20, expo_min=-1000)[source]
qc(v, nbit: int = 14)[source]

Quantize value using ceil.

qf(v, nbit: int = 14)[source]

Quantize value using floor.

qr(v, nbit: int = 14)[source]

Quantize value using round.

reverse_bin(slbin, nreverse)[source]

Reverse binary string list per nreverse value.

split_bin(sbin, nbit: int)[source]

Split sbin into many segment with the length nbit.

split_expo_mant(v, min=-1000)[source]
class deepmd.nvnmd.utils.FioBin[source]

Bases: object

Input and output for binary file.

Methods

load([file_name, default_value])

Load binary file into bytes value.

save(file_name, data)

Save hex string into binary file.

load(file_name='', default_value='')[source]

Load binary file into bytes value.

save(file_name: str, data: List[str])[source]

Save hex string into binary file.

class deepmd.nvnmd.utils.FioDic[source]

Bases: object

Input and output for dict class data the file can be .json or .npy file containing a dictionary.

Methods

update(jdata, jdata_o)

Update key-value pair is key in jdata_o.keys().

get

load

save

get(jdata, key, default_value)[source]
load(file_name='', default_value={})[source]
save(file_name='', dic={})[source]
update(jdata, jdata_o)[source]

Update key-value pair is key in jdata_o.keys().

Parameters
jdata

new jdata

jdata_o

origin jdata

class deepmd.nvnmd.utils.FioTxt[source]

Bases: object

Input and output for .txt file with string.

Methods

load([file_name, default_value])

Load .txt file into string list.

save([file_name, data])

Save string list into .txt file.

load(file_name='', default_value=[])[source]

Load .txt file into string list.

save(file_name: str = '', data: list = [])[source]

Save string list into .txt file.

deepmd.nvnmd.utils.get_filter_weight(weights: int, spe_j: int, layer_l: int)[source]

Get weight and bias of embedding network.

Parameters
weightsdict

weights

spe_jint

special order of neighbor atom j 0~ntype-1

layer_l

layer order in embedding network 1~nlayer

deepmd.nvnmd.utils.get_fitnet_weight(weights: dict, spe_i: int, layer_l: int, nlayer: int = 10)[source]

Get weight and bias of fitting network.

Parameters
weightsdict

weights

spe_iint

special order of central atom i 0~ntype-1

layer_lint

layer order in embedding network 0~nlayer-1

nlayerint

number of layers

deepmd.nvnmd.utils.map_nvnmd(x, map_y, map_dy, prec, nbit=None)[source]

Mapping function implemented by numpy.

deepmd.nvnmd.utils.nvnmd_args()[source]
deepmd.nvnmd.utils.one_layer(inputs, outputs_size, activation_fn=<function tanh>, precision=tf.float64, stddev=1.0, bavg=0.0, name='linear', reuse=None, seed=None, use_timestep=False, trainable=True, useBN=False, uniform_seed=False, initial_variables=None, mixed_prec=None, final_layer=False)[source]

Build one layer with continuous or quantized value. Its weight and bias can be initialed with random or constant value.

Submodules
deepmd.nvnmd.utils.argcheck module
deepmd.nvnmd.utils.argcheck.nvnmd_args()[source]
deepmd.nvnmd.utils.config module
class deepmd.nvnmd.utils.config.NvnmdConfig(jdata: dict)[source]

Bases: object

Configuration for NVNMD record the message of model such as size, using nvnmd or not.

Parameters
jdata

a dictionary of input script

References

DOI: 10.1038/s41524-022-00773-z

Methods

disp_message()

Display the log of NVNMD.

get_deepmd_jdata()

Generate input script with member element one by one.

get_dp_init_weights()

Build the weight dict for initialization of net.

get_dscp_jdata()

Generate model/descriptor in input script.

get_fitn_jdata()

Generate model/fitting_net in input script.

get_learning_rate_jdata()

Generate learning_rate in input script.

get_loss_jdata()

Generate loss in input script.

get_model_jdata()

Generate model in input script.

get_nvnmd_jdata()

Generate nvnmd in input script.

get_s_range(davg, dstd)

Get the range of switch function.

get_training_jdata()

Generate training in input script.

init_config_by_version(version)

Initialize version-dependent parameters.

init_ctrl(jdata[, jdata_parent])

Initialize members about control signal.

init_dpin(jdata[, jdata_parent])

Initialize members about other deepmd input.

init_dscp(jdata[, jdata_parent])

Initialize members about descriptor.

init_fitn(jdata[, jdata_parent])

Initialize members about fitting network.

init_from_config(jdata)

Initialize member element one by one.

init_from_deepmd_input(jdata)

Initialize members with input script of deepmd.

init_from_jdata([jdata])

Initialize this class with jdata loaded from input script.

init_nbit(jdata[, jdata_parent])

Initialize members about quantification precision.

init_net_size()

Initialize net_size.

init_size(jdata[, jdata_parent])

Initialize members about ram capacity.

init_train_mode([mod])

Configure for taining cnn or qnn.

init_value()

Initialize member with dict.

save([file_name])

Save all configuration to file.

set_ntype(ntype)

Set the number of type.

update_config()

Update config from dict.

disp_message()[source]

Display the log of NVNMD.

get_deepmd_jdata()[source]

Generate input script with member element one by one.

get_dp_init_weights()[source]

Build the weight dict for initialization of net.

get_dscp_jdata()[source]

Generate model/descriptor in input script.

get_fitn_jdata()[source]

Generate model/fitting_net in input script.

get_learning_rate_jdata()[source]

Generate learning_rate in input script.

get_loss_jdata()[source]

Generate loss in input script.

get_model_jdata()[source]

Generate model in input script.

get_nvnmd_jdata()[source]

Generate nvnmd in input script.

get_s_range(davg, dstd)[source]

Get the range of switch function.

get_training_jdata()[source]

Generate training in input script.

init_config_by_version(version)[source]

Initialize version-dependent parameters.

init_ctrl(jdata: dict, jdata_parent: dict = {}) dict[source]

Initialize members about control signal.

init_dpin(jdata: dict, jdata_parent: dict = {}) dict[source]

Initialize members about other deepmd input.

init_dscp(jdata: dict, jdata_parent: dict = {}) dict[source]

Initialize members about descriptor.

init_fitn(jdata: dict, jdata_parent: dict = {}) dict[source]

Initialize members about fitting network.

init_from_config(jdata)[source]

Initialize member element one by one.

init_from_deepmd_input(jdata)[source]

Initialize members with input script of deepmd.

init_from_jdata(jdata: dict = {})[source]

Initialize this class with jdata loaded from input script.

init_nbit(jdata: dict, jdata_parent: dict = {}) dict[source]

Initialize members about quantification precision.

init_net_size()[source]

Initialize net_size.

init_size(jdata: dict, jdata_parent: dict = {}) dict[source]

Initialize members about ram capacity.

init_train_mode(mod='cnn')[source]

Configure for taining cnn or qnn.

init_value()[source]

Initialize member with dict.

save(file_name=None)[source]

Save all configuration to file.

set_ntype(ntype)[source]

Set the number of type.

update_config()[source]

Update config from dict.

deepmd.nvnmd.utils.encode module
class deepmd.nvnmd.utils.encode.Encode[source]

Bases: object

Encoding value as hex, bin, and dec format.

Methods

bin2hex(data)

Convert binary string list to hex string list.

bin2hex_str(sbin)

Convert binary string to hex string.

byte2hex(bs, nbyte)

Convert byte into hex bs: low byte in the first hex: low byte in the right.

check_dec(idec, nbit[, signed, name])

Check whether the data (idec) is in the range range is \([0, 2^nbit-1]\) for unsigned range is \([-2^{nbit-1}, 2^{nbit-1}-1]\) for signed.

dec2bin(idec[, nbit, signed, name])

Convert dec array to binary string list.

extend_bin(slbin, nfull)

Extend the element of list (slbin) to the length (nfull).

extend_hex(slhex, nfull)

Extend the element of list (slhex) to the length (nfull).

extend_list(slbin, nfull)

Extend the list (slbin) to the length (nfull) the attched element of list is 0.

flt2bin(data, nbit_expo, nbit_frac)

Convert float into binary string list.

hex2bin(data)

Convert hex string list to binary string list.

hex2bin_str(shex)

Convert hex string to binary string.

merge_bin(slbin, nmerge)

Merge binary string list per nmerge value.

qc(v[, nbit])

Quantize value using ceil.

qf(v[, nbit])

Quantize value using floor.

qr(v[, nbit])

Quantize value using round.

reverse_bin(slbin, nreverse)

Reverse binary string list per nreverse value.

split_bin(sbin, nbit)

Split sbin into many segment with the length nbit.

find_max_expo

flt2bin_one

norm_expo

split_expo_mant

bin2hex(data)[source]

Convert binary string list to hex string list.

bin2hex_str(sbin)[source]

Convert binary string to hex string.

byte2hex(bs, nbyte)[source]

Convert byte into hex bs: low byte in the first hex: low byte in the right.

check_dec(idec, nbit, signed=False, name='')[source]

Check whether the data (idec) is in the range range is \([0, 2^nbit-1]\) for unsigned range is \([-2^{nbit-1}, 2^{nbit-1}-1]\) for signed.

dec2bin(idec, nbit=10, signed=False, name='')[source]

Convert dec array to binary string list.

extend_bin(slbin, nfull)[source]

Extend the element of list (slbin) to the length (nfull).

such as, when

slbin = [‘10010’,’10100’],
nfull = 6

extent to

[‘010010’,’010100’]

extend_hex(slhex, nfull)[source]

Extend the element of list (slhex) to the length (nfull).

extend_list(slbin, nfull)[source]

Extend the list (slbin) to the length (nfull) the attched element of list is 0.

such as, when

slbin = [‘10010’,’10100’],
nfull = 4

extent it to

[‘10010’,’10100’,’00000’,’00000]

find_max_expo(v, expo_min=-1000)[source]
flt2bin(data, nbit_expo, nbit_frac)[source]

Convert float into binary string list.

flt2bin_one(v, nbit_expo, nbit_frac)[source]
hex2bin(data)[source]

Convert hex string list to binary string list.

hex2bin_str(shex)[source]

Convert hex string to binary string.

merge_bin(slbin, nmerge)[source]

Merge binary string list per nmerge value.

norm_expo(v, nbit_frac=20, expo_min=-1000)[source]
qc(v, nbit: int = 14)[source]

Quantize value using ceil.

qf(v, nbit: int = 14)[source]

Quantize value using floor.

qr(v, nbit: int = 14)[source]

Quantize value using round.

reverse_bin(slbin, nreverse)[source]

Reverse binary string list per nreverse value.

split_bin(sbin, nbit: int)[source]

Split sbin into many segment with the length nbit.

split_expo_mant(v, min=-1000)[source]
deepmd.nvnmd.utils.fio module
class deepmd.nvnmd.utils.fio.Fio[source]

Bases: object

Basic class for FIO.

Methods

create_file_path

exits

get_file_list

is_file

is_path

mkdir

create_file_path(file_name='')[source]
exits(file_name='')[source]
get_file_list(path) list[source]
is_file(file_name)[source]
is_path(path)[source]
mkdir(path_name='')[source]
class deepmd.nvnmd.utils.fio.FioBin[source]

Bases: object

Input and output for binary file.

Methods

load([file_name, default_value])

Load binary file into bytes value.

save(file_name, data)

Save hex string into binary file.

load(file_name='', default_value='')[source]

Load binary file into bytes value.

save(file_name: str, data: List[str])[source]

Save hex string into binary file.

class deepmd.nvnmd.utils.fio.FioDic[source]

Bases: object

Input and output for dict class data the file can be .json or .npy file containing a dictionary.

Methods

update(jdata, jdata_o)

Update key-value pair is key in jdata_o.keys().

get

load

save

get(jdata, key, default_value)[source]
load(file_name='', default_value={})[source]
save(file_name='', dic={})[source]
update(jdata, jdata_o)[source]

Update key-value pair is key in jdata_o.keys().

Parameters
jdata

new jdata

jdata_o

origin jdata

class deepmd.nvnmd.utils.fio.FioJsonDic[source]

Bases: object

Input and output for .json file containing dictionary.

Methods

load([file_name, default_value])

Load .json file into dict.

save([file_name, dic])

Save dict into .json file.

load(file_name='', default_value={})[source]

Load .json file into dict.

save(file_name='', dic={})[source]

Save dict into .json file.

class deepmd.nvnmd.utils.fio.FioNpyDic[source]

Bases: object

Input and output for .npy file containing dictionary.

Methods

load

save

load(file_name='', default_value={})[source]
save(file_name='', dic={})[source]
class deepmd.nvnmd.utils.fio.FioTxt[source]

Bases: object

Input and output for .txt file with string.

Methods

load([file_name, default_value])

Load .txt file into string list.

save([file_name, data])

Save string list into .txt file.

load(file_name='', default_value=[])[source]

Load .txt file into string list.

save(file_name: str = '', data: list = [])[source]

Save string list into .txt file.

deepmd.nvnmd.utils.network module
deepmd.nvnmd.utils.network.get_sess()[source]
deepmd.nvnmd.utils.network.matmul2_qq(a, b, nbit)[source]

Quantized matmul operation for 2d tensor. a and b is input tensor, nbit represent quantification precision.

deepmd.nvnmd.utils.network.matmul3_qq(a, b, nbit)[source]

Quantized matmul operation for 3d tensor. a and b is input tensor, nbit represent quantification precision.

deepmd.nvnmd.utils.network.one_layer(inputs, outputs_size, activation_fn=<function tanh>, precision=tf.float64, stddev=1.0, bavg=0.0, name='linear', reuse=None, seed=None, use_timestep=False, trainable=True, useBN=False, uniform_seed=False, initial_variables=None, mixed_prec=None, final_layer=False)[source]

Build one layer with continuous or quantized value. Its weight and bias can be initialed with random or constant value.

deepmd.nvnmd.utils.network.one_layer_t(shape, outputs_size, bavg, stddev, precision, trainable, initial_variables, seed, uniform_seed, name)[source]
deepmd.nvnmd.utils.network.one_layer_wb(shape, outputs_size, bavg, stddev, precision, trainable, initial_variables, seed, uniform_seed, name)[source]
deepmd.nvnmd.utils.network.qf(x, nbit)[source]

Quantize and floor tensor x with quantification precision nbit.

deepmd.nvnmd.utils.network.qr(x, nbit)[source]

Quantize and round tensor x with quantification precision nbit.

deepmd.nvnmd.utils.network.tanh4(x)[source]
deepmd.nvnmd.utils.op module
deepmd.nvnmd.utils.op.map_nvnmd(x, map_y, map_dy, prec, nbit=None)[source]

Mapping function implemented by numpy.

deepmd.nvnmd.utils.op.r2s(r, rmin, rmax)[source]
deepmd.nvnmd.utils.weight module
deepmd.nvnmd.utils.weight.get_constant_initializer(weights, name)[source]

Get initial value by name and create a initializer.

deepmd.nvnmd.utils.weight.get_filter_type_weight(weights: dict, layer_l: int)[source]

Get weight and bias of two_side_type_embedding network.

Parameters
weightsdict

weights

layer_l

layer order in embedding network 1~nlayer

deepmd.nvnmd.utils.weight.get_filter_weight(weights: int, spe_j: int, layer_l: int)[source]

Get weight and bias of embedding network.

Parameters
weightsdict

weights

spe_jint

special order of neighbor atom j 0~ntype-1

layer_l

layer order in embedding network 1~nlayer

deepmd.nvnmd.utils.weight.get_fitnet_weight(weights: dict, spe_i: int, layer_l: int, nlayer: int = 10)[source]

Get weight and bias of fitting network.

Parameters
weightsdict

weights

spe_iint

special order of central atom i 0~ntype-1

layer_lint

layer order in embedding network 0~nlayer-1

nlayerint

number of layers

deepmd.nvnmd.utils.weight.get_normalize(weights: dict)[source]

Get normalize parameter (avg and std) of \(s_{ji}\).

deepmd.nvnmd.utils.weight.get_type_embedding_weight(weights: dict, layer_l: int)[source]

Get weight and bias of type_embedding network.

Parameters
weightsdict

weights

layer_l

layer order in embedding network 1~nlayer

deepmd.nvnmd.utils.weight.get_type_weight(weights: dict, layer_l: int)[source]

Get weight and bias of fitting network.

Parameters
weightsdict

weights

layer_lint

layer order in embedding network 0~nlayer-1

deepmd.nvnmd.utils.weight.get_weight(weights, key)[source]

Get weight value according to key.

deepmd.op package

This module will house cust Tf OPs after CMake installation.

deepmd.op.import_ops()[source]

Import all custom TF ops that are present in this submodule.

Notes

Initialy this subdir is unpopulated. CMake will install all the op module python files and shared libs.

deepmd.train package
Submodules
deepmd.train.run_options module

Module taking care of important package constants.

class deepmd.train.run_options.RunOptions(init_model: Optional[str] = None, init_frz_model: Optional[str] = None, finetune: Optional[str] = None, restart: Optional[str] = None, log_path: Optional[str] = None, log_level: int = 0, mpi_log: str = 'master')[source]

Bases: object

Class with info on how to run training (cluster, MPI and GPU config).

Attributes
gpus: Optional[List[int]]

list of GPUs if any are present else None

is_chief: bool

in distribured training it is true for tha main MPI process in serail it is always true

world_size: int

total worker count

my_rank: int

index of the MPI task

nodename: str

name of the node

node_list_List[str]

the list of nodes of the current mpirun

my_device: str

deviice type - gpu or cpu

Methods

print_resource_summary()

Print build and current running cluster configuration summary.

gpus: Optional[List[int]]
property is_chief

Whether my rank is 0.

my_device: str
my_rank: int
nodelist: List[int]
nodename: str
print_resource_summary()[source]

Print build and current running cluster configuration summary.

world_size: int
deepmd.train.trainer module
class deepmd.train.trainer.DPTrainer(jdata, run_opt, is_compress=False)[source]

Bases: object

Methods

save_compressed()

Save the compressed graph.

build

eval_single_list

get_evaluation_results

get_feed_dict

get_global_step

print_header

print_on_training

save_checkpoint

train

valid_on_the_fly

build(data=None, stop_batch=0, origin_type_map=None, suffix='')[source]
static eval_single_list(single_batch_list, loss, sess, get_feed_dict_func, prefix='')[source]
get_evaluation_results(batch_list)[source]
get_feed_dict(batch, is_training)[source]
get_global_step()[source]
static print_header(fp, train_results, valid_results, multi_task_mode=False)[source]
static print_on_training(fp, train_results, valid_results, cur_batch, cur_lr, multi_task_mode=False, cur_lr_dict=None)[source]
save_checkpoint(cur_batch: int)[source]
save_compressed()[source]

Save the compressed graph.

train(train_data=None, valid_data=None)[source]
valid_on_the_fly(fp, train_batches, valid_batches, print_header=False, fitting_key=None)[source]
class deepmd.train.trainer.DatasetLoader(train_data: DeepmdDataSystem)[source]

Bases: object

Generate an OP that loads the training data from the given DeepmdDataSystem.

It can be used to load the training data in the training process, so there is no waiting time between training steps.

Parameters
train_dataDeepmdDataSystem

The training data.

Examples

>>> loader = DatasetLoader(train_data)
>>> data_op = loader.build()
>>> with tf.Session() as sess:
>>>     data_list = sess.run(data_op)
>>> data_dict = loader.get_data_dict(data_list)

Methods

build()

Build the OP that loads the training data.

get_data_dict(batch_list)

Generate a dict of the loaded data.

build() List[Tensor][source]

Build the OP that loads the training data.

Returns
List[tf.Tensor]

Tensor of the loaded data.

get_data_dict(batch_list: List[ndarray]) Dict[str, ndarray][source]

Generate a dict of the loaded data.

Parameters
batch_listList[np.ndarray]

The loaded data.

Returns
Dict[str, np.ndarray]

The dict of the loaded data.

deepmd.utils package
class deepmd.utils.DeepmdData(sys_path: str, set_prefix: str = 'set', shuffle_test: bool = True, type_map: Optional[List[str]] = None, optional_type_map: bool = True, modifier=None, trn_all_set: bool = False)[source]

Bases: object

Class for a data system.

It loads data from hard disk, and mantains the data as a data_dict

Parameters
sys_path

Path to the data system

set_prefix

Prefix for the directories of different sets

shuffle_test

If the test data are shuffled

type_map

Gives the name of different atom types

optional_type_map

If the type_map.raw in each system is optional

modifier

Data modifier that has the method modify_data

trn_all_set

Use all sets as training dataset. Otherwise, if the number of sets is more than 1, the last set is left for test.

Methods

add(key, ndof[, atomic, must, high_prec, ...])

Add a data item that to be loaded.

avg(key)

Return the average value of an item.

check_batch_size(batch_size)

Check if the system can get a batch of data with batch_size frames.

check_test_size(test_size)

Check if the system can get a test dataset with test_size frames.

get_atom_type()

Get atom types.

get_batch(batch_size)

Get a batch of data with batch_size frames.

get_data_dict()

Get the data_dict.

get_natoms()

Get number of atoms.

get_natoms_vec(ntypes)

Get number of atoms and number of atoms in different types.

get_ntypes()

Number of atom types in the system.

get_numb_batch(batch_size, set_idx)

Get the number of batches in a set.

get_numb_set()

Get number of training sets.

get_sys_numb_batch(batch_size)

Get the number of batches in the data system.

get_test([ntests])

Get the test data with ntests frames.

get_type_map()

Get the type map.

reduce(key_out, key_in)

Generate a new item from the reduction of another atom.

reset_get_batch

add(key: str, ndof: int, atomic: bool = False, must: bool = False, high_prec: bool = False, type_sel: Optional[List[int]] = None, repeat: int = 1, default: float = 0.0, dtype: Optional[dtype] = None)[source]

Add a data item that to be loaded.

Parameters
key

The key of the item. The corresponding data is stored in sys_path/set.*/key.npy

ndof

The number of dof

atomic

The item is an atomic property. If False, the size of the data should be nframes x ndof If True, the size of data should be nframes x natoms x ndof

must

The data file sys_path/set.*/key.npy must exist. If must is False and the data file does not exist, the data_dict[find_key] is set to 0.0

high_prec

Load the data and store in float64, otherwise in float32

type_sel

Select certain type of atoms

repeat

The data will be repeated repeat times.

defaultfloat, default=0.

default value of data

dtypenp.dtype, optional

the dtype of data, overwrites high_prec if provided

avg(key)[source]

Return the average value of an item.

check_batch_size(batch_size)[source]

Check if the system can get a batch of data with batch_size frames.

check_test_size(test_size)[source]

Check if the system can get a test dataset with test_size frames.

get_atom_type() List[int][source]

Get atom types.

get_batch(batch_size: int) dict[source]

Get a batch of data with batch_size frames. The frames are randomly picked from the data system.

Parameters
batch_size

size of the batch

get_data_dict() dict[source]

Get the data_dict.

get_natoms()[source]

Get number of atoms.

get_natoms_vec(ntypes: int)[source]

Get number of atoms and number of atoms in different types.

Parameters
ntypes

Number of types (may be larger than the actual number of types in the system).

Returns
natoms

natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

get_ntypes() int[source]

Number of atom types in the system.

get_numb_batch(batch_size: int, set_idx: int) int[source]

Get the number of batches in a set.

get_numb_set() int[source]

Get number of training sets.

get_sys_numb_batch(batch_size: int) int[source]

Get the number of batches in the data system.

get_test(ntests: int = -1) dict[source]

Get the test data with ntests frames.

Parameters
ntests

Size of the test data set. If ntests is -1, all test data will be get.

get_type_map() List[str][source]

Get the type map.

reduce(key_out: str, key_in: str)[source]

Generate a new item from the reduction of another atom.

Parameters
key_out

The name of the reduced item

key_in

The name of the data item to be reduced

reset_get_batch()[source]
class deepmd.utils.DeepmdDataSystem(systems: List[str], batch_size: int, test_size: int, rcut: float, set_prefix: str = 'set', shuffle_test: bool = True, type_map: Optional[List[str]] = None, optional_type_map: bool = True, modifier=None, trn_all_set=False, sys_probs=None, auto_prob_style='prob_sys_size')[source]

Bases: object

Class for manipulating many data systems.

It is implemented with the help of DeepmdData

Attributes
default_mesh

Mesh for each system.

Methods

add(key, ndof[, atomic, must, high_prec, ...])

Add a data item that to be loaded.

add_dict(adict)

Add items to the data system by a dict.

get_batch([sys_idx])

Get a batch of data from the data systems.

get_batch_mixed()

Get a batch of data from the data systems in the mixed way.

get_batch_size()

Get the batch size.

get_batch_standard([sys_idx])

Get a batch of data from the data systems in the standard way.

get_nbatches()

Get the total number of batches.

get_nsystems()

Get the number of data systems.

get_ntypes()

Get the number of types.

get_sys(idx)

Get a certain data system.

get_sys_ntest([sys_idx])

Get number of tests for the currently selected system, or one defined by sys_idx.

get_test([sys_idx, n_test])

Get test data from the the data systems.

get_type_map()

Get the type map.

reduce(key_out, key_in)

Generate a new item from the reduction of another atom.

compute_energy_shift

get_data_dict

print_summary

set_sys_probs

add(key: str, ndof: int, atomic: bool = False, must: bool = False, high_prec: bool = False, type_sel: Optional[List[int]] = None, repeat: int = 1, default: float = 0.0)[source]

Add a data item that to be loaded.

Parameters
key

The key of the item. The corresponding data is stored in sys_path/set.*/key.npy

ndof

The number of dof

atomic

The item is an atomic property. If False, the size of the data should be nframes x ndof If True, the size of data should be nframes x natoms x ndof

must

The data file sys_path/set.*/key.npy must exist. If must is False and the data file does not exist, the data_dict[find_key] is set to 0.0

high_prec

Load the data and store in float64, otherwise in float32

type_sel

Select certain type of atoms

repeat

The data will be repeated repeat times.

default, default=0.

Default value of data

add_dict(adict: dict) None[source]

Add items to the data system by a dict. adict should have items like .. code-block:: python.

adict[key] = {

“ndof”: ndof, “atomic”: atomic, “must”: must, “high_prec”: high_prec, “type_sel”: type_sel, “repeat”: repeat,

}

For the explaination of the keys see add

compute_energy_shift(rcond=None, key='energy')[source]
property default_mesh: List[ndarray]

Mesh for each system.

get_batch(sys_idx: Optional[int] = None) dict[source]

Get a batch of data from the data systems.

Parameters
sys_idxint

The index of system from which the batch is get. If sys_idx is not None, sys_probs and auto_prob_style are ignored If sys_idx is None, automatically determine the system according to sys_probs or auto_prob_style, see the following. This option does not work for mixed systems.

Returns
dict

The batch data

get_batch_mixed() dict[source]

Get a batch of data from the data systems in the mixed way.

Returns
dict

The batch data

get_batch_size() int[source]

Get the batch size.

get_batch_standard(sys_idx: Optional[int] = None) dict[source]

Get a batch of data from the data systems in the standard way.

Parameters
sys_idxint

The index of system from which the batch is get. If sys_idx is not None, sys_probs and auto_prob_style are ignored If sys_idx is None, automatically determine the system according to sys_probs or auto_prob_style, see the following.

Returns
dict

The batch data

get_data_dict(ii: int = 0) dict[source]
get_nbatches() int[source]

Get the total number of batches.

get_nsystems() int[source]

Get the number of data systems.

get_ntypes() int[source]

Get the number of types.

get_sys(idx: int) DeepmdData[source]

Get a certain data system.

get_sys_ntest(sys_idx=None)[source]

Get number of tests for the currently selected system, or one defined by sys_idx.

get_test(sys_idx: Optional[int] = None, n_test: int = -1)[source]

Get test data from the the data systems.

Parameters
sys_idx

The test dat of system with index sys_idx will be returned. If is None, the currently selected system will be returned.

n_test

Number of test data. If set to -1 all test data will be get.

get_type_map() List[str][source]

Get the type map.

print_summary(name)[source]
reduce(key_out, key_in)[source]

Generate a new item from the reduction of another atom.

Parameters
key_out

The name of the reduced item

key_in

The name of the data item to be reduced

set_sys_probs(sys_probs=None, auto_prob_style: str = 'prob_sys_size')[source]
class deepmd.utils.LearningRateExp(start_lr: float, stop_lr: float = 5e-08, decay_steps: int = 5000, decay_rate: float = 0.95)[source]

Bases: object

The exponentially decaying learning rate.

The learning rate at step \(t\) is given by

\[\alpha(t) = \alpha_0 \lambda ^ { t / \tau }\]

where \(\alpha\) is the learning rate, \(\alpha_0\) is the starting learning rate, \(\lambda\) is the decay rate, and \(\tau\) is the decay steps.

Parameters
start_lr

Starting learning rate \(\alpha_0\)

stop_lr

Stop learning rate \(\alpha_1\)

decay_steps

Learning rate decay every this number of steps \(\tau\)

decay_rate

The decay rate \(\lambda\). If stop_step is provided in build, then it will be determined automatically and overwritten.

Methods

build(global_step[, stop_step])

Build the learning rate.

start_lr()

Get the start lr.

value(step)

Get the lr at a certain step.

build(global_step: Tensor, stop_step: Optional[int] = None) Tensor[source]

Build the learning rate.

Parameters
global_step

The tf Tensor prividing the global training step

stop_step

The stop step. If provided, the decay_rate will be determined automatically and overwritten.

Returns
learning_rate

The learning rate

start_lr() float[source]

Get the start lr.

value(step: int) float[source]

Get the lr at a certain step.

class deepmd.utils.PairTab(filename: str)[source]

Bases: object

Pairwise tabulated potential.

Parameters
filename

File name for the short-range tabulated potential. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

Methods

get()

Get the serialized table.

reinit(filename)

Initialize the tabulated interaction.

get() Tuple[array, array][source]

Get the serialized table.

reinit(filename: str) None[source]

Initialize the tabulated interaction.

Parameters
filename

File name for the short-range tabulated potential. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

class deepmd.utils.Plugin[source]

Bases: object

A class to register and restore plugins.

Examples

>>> plugin = Plugin()
>>> @plugin.register("xx")
    def xxx():
        pass
>>> print(plugin.plugins['xx'])
Attributes
pluginsDict[str, object]

plugins

Methods

get_plugin(key)

Visit a plugin by key.

register(key)

Register a plugin.

get_plugin(key) object[source]

Visit a plugin by key.

Parameters
keystr

key of the plugin

Returns
object

the plugin

register(key: str) Callable[[object], object][source]

Register a plugin.

Parameters
keystr

key of the plugin

Returns
Callable[[object], object]

decorator

class deepmd.utils.PluginVariant(*args, **kwargs)[source]

Bases: object

A class to remove type from input arguments.

Submodules
deepmd.utils.argcheck module
class deepmd.utils.argcheck.ArgsPlugin[source]

Bases: object

Methods

get_all_argument([exclude_hybrid])

Get all arguments.

register(name[, alias])

Register a descriptor argument plugin.

get_all_argument(exclude_hybrid: bool = False) List[Argument][source]

Get all arguments.

Parameters
exclude_hybridbool

exclude hybrid descriptor to prevent circular calls

Returns
List[Argument]

all arguments

register(name: str, alias: Optional[List[str]] = None) Callable[[], List[Argument]][source]

Register a descriptor argument plugin.

Parameters
namestr

the name of a descriptor

aliasList[str], optional

the list of aliases of this descriptor

Returns
Callable[[], List[Argument]]

the registered descriptor argument method

Examples

>>> some_plugin = ArgsPlugin()
>>> @some_plugin.register("some_descrpt")
    def descrpt_some_descrpt_args():
        return []
deepmd.utils.argcheck.descrpt_hybrid_args()[source]
deepmd.utils.argcheck.descrpt_local_frame_args()[source]
deepmd.utils.argcheck.descrpt_se_a_args()[source]
deepmd.utils.argcheck.descrpt_se_a_mask_args()[source]
deepmd.utils.argcheck.descrpt_se_a_tpe_args()[source]
deepmd.utils.argcheck.descrpt_se_atten_args()[source]
deepmd.utils.argcheck.descrpt_se_r_args()[source]
deepmd.utils.argcheck.descrpt_se_t_args()[source]
deepmd.utils.argcheck.descrpt_variant_type_args(exclude_hybrid: bool = False) Variant[source]
deepmd.utils.argcheck.fitting_dipole()[source]
deepmd.utils.argcheck.fitting_dos()[source]
deepmd.utils.argcheck.fitting_ener()[source]
deepmd.utils.argcheck.fitting_polar()[source]
deepmd.utils.argcheck.fitting_variant_type_args()[source]
deepmd.utils.argcheck.gen_args(**kwargs) List[Argument][source]
deepmd.utils.argcheck.gen_doc(*, make_anchor=True, make_link=True, **kwargs)[source]
deepmd.utils.argcheck.gen_json(**kwargs)[source]
deepmd.utils.argcheck.learning_rate_args()[source]
deepmd.utils.argcheck.learning_rate_dict_args()[source]
deepmd.utils.argcheck.learning_rate_exp()[source]
deepmd.utils.argcheck.learning_rate_variant_type_args()[source]
deepmd.utils.argcheck.limit_pref(item)[source]
deepmd.utils.argcheck.list_to_doc(xx)[source]
deepmd.utils.argcheck.loss_args()[source]
deepmd.utils.argcheck.loss_dict_args()[source]
deepmd.utils.argcheck.loss_dos()[source]
deepmd.utils.argcheck.loss_ener()[source]
deepmd.utils.argcheck.loss_ener_spin()[source]
deepmd.utils.argcheck.loss_tensor()[source]
deepmd.utils.argcheck.loss_variant_type_args()[source]
deepmd.utils.argcheck.make_index(keys)[source]
deepmd.utils.argcheck.mixed_precision_args()[source]
deepmd.utils.argcheck.model_args(exclude_hybrid=False)[source]
deepmd.utils.argcheck.model_compression()[source]
deepmd.utils.argcheck.model_compression_type_args()[source]
deepmd.utils.argcheck.modifier_dipole_charge()[source]
deepmd.utils.argcheck.modifier_variant_type_args()[source]
deepmd.utils.argcheck.multi_model_args() Argument[source]
deepmd.utils.argcheck.normalize(data)[source]
deepmd.utils.argcheck.normalize_data_dict(data_dict)[source]
deepmd.utils.argcheck.normalize_fitting_net_dict(fitting_net_dict)[source]
deepmd.utils.argcheck.normalize_fitting_weight(fitting_keys, data_keys, fitting_weight=None)[source]
deepmd.utils.argcheck.normalize_learning_rate_dict(fitting_keys, learning_rate_dict)[source]
deepmd.utils.argcheck.normalize_learning_rate_dict_with_single_learning_rate(fitting_keys, learning_rate)[source]
deepmd.utils.argcheck.normalize_loss_dict(fitting_keys, loss_dict)[source]
deepmd.utils.argcheck.normalize_multi_task(data)[source]
deepmd.utils.argcheck.pairwise_dprc() Argument[source]
deepmd.utils.argcheck.spin_args()[source]
deepmd.utils.argcheck.standard_model_args() Argument[source]
deepmd.utils.argcheck.start_pref(item, label=None, abbr=None)[source]
deepmd.utils.argcheck.training_args()[source]
deepmd.utils.argcheck.training_data_args()[source]
deepmd.utils.argcheck.type_embedding_args()[source]
deepmd.utils.argcheck.validation_data_args()[source]
deepmd.utils.batch_size module
class deepmd.utils.batch_size.AutoBatchSize(initial_batch_size: int = 1024, factor: float = 2.0)[source]

Bases: object

This class allows DeePMD-kit to automatically decide the maximum batch size that will not cause an OOM error.

Parameters
initial_batch_sizeint, default: 1024

initial batch size (number of total atoms) when DP_INFER_BATCH_SIZE is not set

factorfloat, default: 2.

increased factor

Notes

In some CPU environments, the program may be directly killed when OOM. In this case, by default the batch size will not be increased for CPUs. The environment variable DP_INFER_BATCH_SIZE can be set as the batch size.

In other cases, we assume all OOM error will raise OutOfMemoryError.

Attributes
current_batch_sizeint

current batch size (number of total atoms)

maximum_working_batch_sizeint

maximum working batch size

minimal_not_working_batch_sizeint

minimal not working batch size

Methods

execute(callable, start_index, natoms)

Excuate a method with given batch size.

execute_all(callable, total_size, natoms, ...)

Excuate a method with all given data.

execute(callable: Callable, start_index: int, natoms: int) Tuple[int, tuple][source]

Excuate a method with given batch size.

Parameters
callableCallable

The method should accept the batch size and start_index as parameters, and returns executed batch size and data.

start_indexint

start index

natomsint

natoms

Returns
int

executed batch size * number of atoms

tuple

result from callable, None if failing to execute

Raises
OutOfMemoryError

OOM when batch size is 1

execute_all(callable: Callable, total_size: int, natoms: int, *args, **kwargs) Tuple[ndarray][source]

Excuate a method with all given data.

Parameters
callableCallable

The method should accept *args and **kwargs as input and return the similiar array.

total_sizeint

Total size

natomsint

The number of atoms

*args

Variable length argument list.

**kwargs

If 2D np.ndarray, assume the first axis is batch; otherwise do nothing.

deepmd.utils.compat module

Module providing compatibility between 0.x.x and 1.x.x input versions.

deepmd.utils.compat.convert_input_v0_v1(jdata: Dict[str, Any], warning: bool = True, dump: Optional[Union[str, Path]] = None) Dict[str, Any][source]

Convert input from v0 format to v1.

Parameters
jdataDict[str, Any]

loaded json/yaml file

warningbool, optional

whether to show deprecation warning, by default True

dumpOptional[Union[str, Path]], optional

whether to dump converted file, by default None

Returns
Dict[str, Any]

converted output

deepmd.utils.compat.convert_input_v1_v2(jdata: Dict[str, Any], warning: bool = True, dump: Optional[Union[str, Path]] = None) Dict[str, Any][source]
deepmd.utils.compat.deprecate_numb_test(jdata: Dict[str, Any], warning: bool = True, dump: Optional[Union[str, Path]] = None) Dict[str, Any][source]

Deprecate numb_test since v2.1. It has taken no effect since v2.0.

See #1243.

Parameters
jdataDict[str, Any]

loaded json/yaml file

warningbool, optional

whether to show deprecation warning, by default True

dumpOptional[Union[str, Path]], optional

whether to dump converted file, by default None

Returns
Dict[str, Any]

converted output

deepmd.utils.compat.remove_decay_rate(jdata: Dict[str, Any])[source]

Convert decay_rate to stop_lr.

Parameters
jdataDict[str, Any]

input data

deepmd.utils.compat.update_deepmd_input(jdata: Dict[str, Any], warning: bool = True, dump: Optional[Union[str, Path]] = None) Dict[str, Any][source]
deepmd.utils.convert module
deepmd.utils.convert.convert_012_to_21(input_model: str, output_model: str)[source]

Convert DP 0.12 graph to 2.1 graph.

Parameters
input_modelstr

filename of the input graph

output_modelstr

filename of the output graph

deepmd.utils.convert.convert_10_to_21(input_model: str, output_model: str)[source]

Convert DP 1.0 graph to 2.1 graph.

Parameters
input_modelstr

filename of the input graph

output_modelstr

filename of the output graph

deepmd.utils.convert.convert_12_to_21(input_model: str, output_model: str)[source]

Convert DP 1.2 graph to 2.1 graph.

Parameters
input_modelstr

filename of the input graph

output_modelstr

filename of the output graph

deepmd.utils.convert.convert_13_to_21(input_model: str, output_model: str)[source]

Convert DP 1.3 graph to 2.1 graph.

Parameters
input_modelstr

filename of the input graph

output_modelstr

filename of the output graph

deepmd.utils.convert.convert_20_to_21(input_model: str, output_model: str)[source]

Convert DP 2.0 graph to 2.1 graph.

Parameters
input_modelstr

filename of the input graph

output_modelstr

filename of the output graph

deepmd.utils.convert.convert_dp012_to_dp10(file: str)[source]

Convert DP 0.12 graph text to 1.0 graph text.

Parameters
filestr

filename of the graph text

deepmd.utils.convert.convert_dp10_to_dp11(file: str)[source]

Convert DP 1.0 graph text to 1.1 graph text.

Parameters
filestr

filename of the graph text

deepmd.utils.convert.convert_dp12_to_dp13(file: str)[source]

Convert DP 1.2 graph text to 1.3 graph text.

Parameters
filestr

filename of the graph text

deepmd.utils.convert.convert_dp13_to_dp20(fname: str)[source]

Convert DP 1.3 graph text to 2.0 graph text.

Parameters
fnamestr

filename of the graph text

deepmd.utils.convert.convert_dp20_to_dp21(fname: str)[source]
deepmd.utils.convert.convert_pb_to_pbtxt(pbfile: str, pbtxtfile: str)[source]

Convert DP graph to graph text.

Parameters
pbfilestr

filename of the input graph

pbtxtfilestr

filename of the output graph text

deepmd.utils.convert.convert_pbtxt_to_pb(pbtxtfile: str, pbfile: str)[source]

Convert DP graph text to graph.

Parameters
pbtxtfilestr

filename of the input graph text

pbfilestr

filename of the output graph

deepmd.utils.convert.convert_to_21(input_model: str, output_model: str)[source]

Convert DP graph to 2.1 graph.

Parameters
input_modelstr

filename of the input graph

output_modelstr

filename of the output graph

deepmd.utils.convert.detect_model_version(input_model: str)[source]

Detect DP graph version.

Parameters
input_modelstr

filename of the input graph

deepmd.utils.data module
class deepmd.utils.data.DeepmdData(sys_path: str, set_prefix: str = 'set', shuffle_test: bool = True, type_map: Optional[List[str]] = None, optional_type_map: bool = True, modifier=None, trn_all_set: bool = False)[source]

Bases: object

Class for a data system.

It loads data from hard disk, and mantains the data as a data_dict

Parameters
sys_path

Path to the data system

set_prefix

Prefix for the directories of different sets

shuffle_test

If the test data are shuffled

type_map

Gives the name of different atom types

optional_type_map

If the type_map.raw in each system is optional

modifier

Data modifier that has the method modify_data

trn_all_set

Use all sets as training dataset. Otherwise, if the number of sets is more than 1, the last set is left for test.

Methods

add(key, ndof[, atomic, must, high_prec, ...])

Add a data item that to be loaded.

avg(key)

Return the average value of an item.

check_batch_size(batch_size)

Check if the system can get a batch of data with batch_size frames.

check_test_size(test_size)

Check if the system can get a test dataset with test_size frames.

get_atom_type()

Get atom types.

get_batch(batch_size)

Get a batch of data with batch_size frames.

get_data_dict()

Get the data_dict.

get_natoms()

Get number of atoms.

get_natoms_vec(ntypes)

Get number of atoms and number of atoms in different types.

get_ntypes()

Number of atom types in the system.

get_numb_batch(batch_size, set_idx)

Get the number of batches in a set.

get_numb_set()

Get number of training sets.

get_sys_numb_batch(batch_size)

Get the number of batches in the data system.

get_test([ntests])

Get the test data with ntests frames.

get_type_map()

Get the type map.

reduce(key_out, key_in)

Generate a new item from the reduction of another atom.

reset_get_batch

add(key: str, ndof: int, atomic: bool = False, must: bool = False, high_prec: bool = False, type_sel: Optional[List[int]] = None, repeat: int = 1, default: float = 0.0, dtype: Optional[dtype] = None)[source]

Add a data item that to be loaded.

Parameters
key

The key of the item. The corresponding data is stored in sys_path/set.*/key.npy

ndof

The number of dof

atomic

The item is an atomic property. If False, the size of the data should be nframes x ndof If True, the size of data should be nframes x natoms x ndof

must

The data file sys_path/set.*/key.npy must exist. If must is False and the data file does not exist, the data_dict[find_key] is set to 0.0

high_prec

Load the data and store in float64, otherwise in float32

type_sel

Select certain type of atoms

repeat

The data will be repeated repeat times.

defaultfloat, default=0.

default value of data

dtypenp.dtype, optional

the dtype of data, overwrites high_prec if provided

avg(key)[source]

Return the average value of an item.

check_batch_size(batch_size)[source]

Check if the system can get a batch of data with batch_size frames.

check_test_size(test_size)[source]

Check if the system can get a test dataset with test_size frames.

get_atom_type() List[int][source]

Get atom types.

get_batch(batch_size: int) dict[source]

Get a batch of data with batch_size frames. The frames are randomly picked from the data system.

Parameters
batch_size

size of the batch

get_data_dict() dict[source]

Get the data_dict.

get_natoms()[source]

Get number of atoms.

get_natoms_vec(ntypes: int)[source]

Get number of atoms and number of atoms in different types.

Parameters
ntypes

Number of types (may be larger than the actual number of types in the system).

Returns
natoms

natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

get_ntypes() int[source]

Number of atom types in the system.

get_numb_batch(batch_size: int, set_idx: int) int[source]

Get the number of batches in a set.

get_numb_set() int[source]

Get number of training sets.

get_sys_numb_batch(batch_size: int) int[source]

Get the number of batches in the data system.

get_test(ntests: int = -1) dict[source]

Get the test data with ntests frames.

Parameters
ntests

Size of the test data set. If ntests is -1, all test data will be get.

get_type_map() List[str][source]

Get the type map.

reduce(key_out: str, key_in: str)[source]

Generate a new item from the reduction of another atom.

Parameters
key_out

The name of the reduced item

key_in

The name of the data item to be reduced

reset_get_batch()[source]
deepmd.utils.data_system module
class deepmd.utils.data_system.DeepmdDataSystem(systems: List[str], batch_size: int, test_size: int, rcut: float, set_prefix: str = 'set', shuffle_test: bool = True, type_map: Optional[List[str]] = None, optional_type_map: bool = True, modifier=None, trn_all_set=False, sys_probs=None, auto_prob_style='prob_sys_size')[source]

Bases: object

Class for manipulating many data systems.

It is implemented with the help of DeepmdData

Attributes
default_mesh

Mesh for each system.

Methods

add(key, ndof[, atomic, must, high_prec, ...])

Add a data item that to be loaded.

add_dict(adict)

Add items to the data system by a dict.

get_batch([sys_idx])

Get a batch of data from the data systems.

get_batch_mixed()

Get a batch of data from the data systems in the mixed way.

get_batch_size()

Get the batch size.

get_batch_standard([sys_idx])

Get a batch of data from the data systems in the standard way.

get_nbatches()

Get the total number of batches.

get_nsystems()

Get the number of data systems.

get_ntypes()

Get the number of types.

get_sys(idx)

Get a certain data system.

get_sys_ntest([sys_idx])

Get number of tests for the currently selected system, or one defined by sys_idx.

get_test([sys_idx, n_test])

Get test data from the the data systems.

get_type_map()

Get the type map.

reduce(key_out, key_in)

Generate a new item from the reduction of another atom.

compute_energy_shift

get_data_dict

print_summary

set_sys_probs

add(key: str, ndof: int, atomic: bool = False, must: bool = False, high_prec: bool = False, type_sel: Optional[List[int]] = None, repeat: int = 1, default: float = 0.0)[source]

Add a data item that to be loaded.

Parameters
key

The key of the item. The corresponding data is stored in sys_path/set.*/key.npy

ndof

The number of dof

atomic

The item is an atomic property. If False, the size of the data should be nframes x ndof If True, the size of data should be nframes x natoms x ndof

must

The data file sys_path/set.*/key.npy must exist. If must is False and the data file does not exist, the data_dict[find_key] is set to 0.0

high_prec

Load the data and store in float64, otherwise in float32

type_sel

Select certain type of atoms

repeat

The data will be repeated repeat times.

default, default=0.

Default value of data

add_dict(adict: dict) None[source]

Add items to the data system by a dict. adict should have items like .. code-block:: python.

adict[key] = {

“ndof”: ndof, “atomic”: atomic, “must”: must, “high_prec”: high_prec, “type_sel”: type_sel, “repeat”: repeat,

}

For the explaination of the keys see add

compute_energy_shift(rcond=None, key='energy')[source]
property default_mesh: List[ndarray]

Mesh for each system.

get_batch(sys_idx: Optional[int] = None) dict[source]

Get a batch of data from the data systems.

Parameters
sys_idxint

The index of system from which the batch is get. If sys_idx is not None, sys_probs and auto_prob_style are ignored If sys_idx is None, automatically determine the system according to sys_probs or auto_prob_style, see the following. This option does not work for mixed systems.

Returns
dict

The batch data

get_batch_mixed() dict[source]

Get a batch of data from the data systems in the mixed way.

Returns
dict

The batch data

get_batch_size() int[source]

Get the batch size.

get_batch_standard(sys_idx: Optional[int] = None) dict[source]

Get a batch of data from the data systems in the standard way.

Parameters
sys_idxint

The index of system from which the batch is get. If sys_idx is not None, sys_probs and auto_prob_style are ignored If sys_idx is None, automatically determine the system according to sys_probs or auto_prob_style, see the following.

Returns
dict

The batch data

get_data_dict(ii: int = 0) dict[source]
get_nbatches() int[source]

Get the total number of batches.

get_nsystems() int[source]

Get the number of data systems.

get_ntypes() int[source]

Get the number of types.

get_sys(idx: int) DeepmdData[source]

Get a certain data system.

get_sys_ntest(sys_idx=None)[source]

Get number of tests for the currently selected system, or one defined by sys_idx.

get_test(sys_idx: Optional[int] = None, n_test: int = -1)[source]

Get test data from the the data systems.

Parameters
sys_idx

The test dat of system with index sys_idx will be returned. If is None, the currently selected system will be returned.

n_test

Number of test data. If set to -1 all test data will be get.

get_type_map() List[str][source]

Get the type map.

print_summary(name)[source]
reduce(key_out, key_in)[source]

Generate a new item from the reduction of another atom.

Parameters
key_out

The name of the reduced item

key_in

The name of the data item to be reduced

set_sys_probs(sys_probs=None, auto_prob_style: str = 'prob_sys_size')[source]
deepmd.utils.errors module
exception deepmd.utils.errors.GraphTooLargeError[source]

Bases: Exception

The graph is too large, exceeding protobuf’s hard limit of 2GB.

exception deepmd.utils.errors.GraphWithoutTensorError[source]

Bases: Exception

exception deepmd.utils.errors.OutOfMemoryError[source]

Bases: Exception

This error is caused by out-of-memory (OOM).

deepmd.utils.finetune module
deepmd.utils.finetune.replace_model_params_with_pretrained_model(jdata: Dict[str, Any], pretrained_model: str)[source]

Replace the model params in input script according to pretrained model.

Parameters
jdataDict[str, Any]

input script

pretrained_modelstr

filename of the pretrained model

deepmd.utils.graph module
deepmd.utils.graph.get_attention_layer_nodes_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the attention layer nodes with the given tf.GraphDef object.

Parameters
graph_def

The input tf.GraphDef object

suffixstr, optional

The scope suffix

Returns
Dict

The attention layer nodes within the given tf.GraphDef object

deepmd.utils.graph.get_attention_layer_variables_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the attention layer variables with the given tf.GraphDef object.

Parameters
graph_deftf.GraphDef

The input tf.GraphDef object

suffixstr, optional

The suffix of the scope

Returns
Dict

The attention layer variables within the given tf.GraphDef object

deepmd.utils.graph.get_embedding_net_nodes(model_file: str, suffix: str = '') Dict[source]

Get the embedding net nodes with the given frozen model(model_file).

Parameters
model_file

The input frozen model path

suffixstr, optional

The suffix of the scope

Returns
Dict

The embedding net nodes with the given frozen model

deepmd.utils.graph.get_embedding_net_nodes_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the embedding net nodes with the given tf.GraphDef object.

Parameters
graph_def

The input tf.GraphDef object

suffixstr, optional

The scope suffix

Returns
Dict

The embedding net nodes within the given tf.GraphDef object

deepmd.utils.graph.get_embedding_net_variables(model_file: str, suffix: str = '') Dict[source]

Get the embedding net variables with the given frozen model(model_file).

Parameters
model_file

The input frozen model path

suffixstr, optional

The suffix of the scope

Returns
Dict

The embedding net variables within the given frozen model

deepmd.utils.graph.get_embedding_net_variables_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the embedding net variables with the given tf.GraphDef object.

Parameters
graph_def

The input tf.GraphDef object

suffixstr, optional

The suffix of the scope

Returns
Dict

The embedding net variables within the given tf.GraphDef object

deepmd.utils.graph.get_fitting_net_nodes(model_file: str) Dict[source]

Get the fitting net nodes with the given frozen model(model_file).

Parameters
model_file

The input frozen model path

Returns
Dict

The fitting net nodes with the given frozen model

deepmd.utils.graph.get_fitting_net_nodes_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the fitting net nodes with the given tf.GraphDef object.

Parameters
graph_def

The input tf.GraphDef object

suffix

suffix of the scope

Returns
Dict

The fitting net nodes within the given tf.GraphDef object

deepmd.utils.graph.get_fitting_net_variables(model_file: str, suffix: str = '') Dict[source]

Get the fitting net variables with the given frozen model(model_file).

Parameters
model_file

The input frozen model path

suffix

suffix of the scope

Returns
Dict

The fitting net variables within the given frozen model

deepmd.utils.graph.get_fitting_net_variables_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the fitting net variables with the given tf.GraphDef object.

Parameters
graph_def

The input tf.GraphDef object

suffix

suffix of the scope

Returns
Dict

The fitting net variables within the given tf.GraphDef object

deepmd.utils.graph.get_pattern_nodes_from_graph_def(graph_def: GraphDef, pattern: str) Dict[source]

Get the pattern nodes with the given tf.GraphDef object.

Parameters
graph_def

The input tf.GraphDef object

pattern

The node pattern within the graph_def

Returns
Dict

The fitting net nodes within the given tf.GraphDef object

deepmd.utils.graph.get_tensor_by_name(model_file: str, tensor_name: str) Tensor[source]

Load tensor value from the frozen model(model_file).

Parameters
model_filestr

The input frozen model path

tensor_namestr

Indicates which tensor which will be loaded from the frozen model

Returns
tf.Tensor

The tensor which was loaded from the frozen model

Raises
GraphWithoutTensorError

Whether the tensor_name is within the frozen model

deepmd.utils.graph.get_tensor_by_name_from_graph(graph: Graph, tensor_name: str) Tensor[source]

Load tensor value from the given tf.Graph object.

Parameters
graphtf.Graph

The input TensorFlow graph

tensor_namestr

Indicates which tensor which will be loaded from the frozen model

Returns
tf.Tensor

The tensor which was loaded from the frozen model

Raises
GraphWithoutTensorError

Whether the tensor_name is within the frozen model

deepmd.utils.graph.get_tensor_by_type(node, data_type: dtype) Tensor[source]

Get the tensor value within the given node according to the input data_type.

Parameters
node

The given tensorflow graph node

data_type

The data type of the node

Returns
tf.Tensor

The tensor value of the given node

deepmd.utils.graph.get_type_embedding_net_nodes_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the type embedding net nodes with the given tf.GraphDef object.

Parameters
graph_def

The input tf.GraphDef object

suffixstr, optional

The scope suffix

Returns
Dict

The type embedding net nodes within the given tf.GraphDef object

deepmd.utils.graph.get_type_embedding_net_variables_from_graph_def(graph_def: GraphDef, suffix: str = '') Dict[source]

Get the type embedding net variables with the given tf.GraphDef object.

Parameters
graph_deftf.GraphDef

The input tf.GraphDef object

suffixstr, optional

The suffix of the scope

Returns
Dict

The embedding net variables within the given tf.GraphDef object

deepmd.utils.graph.load_graph_def(model_file: str) Tuple[Graph, GraphDef][source]

Load graph as well as the graph_def from the frozen model(model_file).

Parameters
model_filestr

The input frozen model path

Returns
tf.Graph

The graph loaded from the frozen model

tf.GraphDef

The graph_def loaded from the frozen model

deepmd.utils.learning_rate module
class deepmd.utils.learning_rate.LearningRateExp(start_lr: float, stop_lr: float = 5e-08, decay_steps: int = 5000, decay_rate: float = 0.95)[source]

Bases: object

The exponentially decaying learning rate.

The learning rate at step \(t\) is given by

\[\alpha(t) = \alpha_0 \lambda ^ { t / \tau }\]

where \(\alpha\) is the learning rate, \(\alpha_0\) is the starting learning rate, \(\lambda\) is the decay rate, and \(\tau\) is the decay steps.

Parameters
start_lr

Starting learning rate \(\alpha_0\)

stop_lr

Stop learning rate \(\alpha_1\)

decay_steps

Learning rate decay every this number of steps \(\tau\)

decay_rate

The decay rate \(\lambda\). If stop_step is provided in build, then it will be determined automatically and overwritten.

Methods

build(global_step[, stop_step])

Build the learning rate.

start_lr()

Get the start lr.

value(step)

Get the lr at a certain step.

build(global_step: Tensor, stop_step: Optional[int] = None) Tensor[source]

Build the learning rate.

Parameters
global_step

The tf Tensor prividing the global training step

stop_step

The stop step. If provided, the decay_rate will be determined automatically and overwritten.

Returns
learning_rate

The learning rate

start_lr() float[source]

Get the start lr.

value(step: int) float[source]

Get the lr at a certain step.

deepmd.utils.multi_init module
deepmd.utils.multi_init.replace_model_params_with_frz_multi_model(jdata: Dict[str, Any], pretrained_model: str)[source]

Replace the model params in input script according to pretrained frozen multi-task united model.

Parameters
jdataDict[str, Any]

input script

pretrained_modelstr

filename of the pretrained frozen multi-task united model

deepmd.utils.neighbor_stat module
class deepmd.utils.neighbor_stat.NeighborStat(ntypes: int, rcut: float, one_type: bool = False)[source]

Bases: object

Class for getting training data information.

It loads data from DeepmdData object, and measures the data info, including neareest nbor distance between atoms, max nbor size of atoms and the output data range of the environment matrix.

Parameters
ntypes

The num of atom types

rcut

The cut-off radius

one_typebool, optional, default=False

Treat all types as a single type.

Methods

get_stat(data)

Get the data statistics of the training data, including nearest nbor distance between atoms, max nbor size of atoms.

get_stat(data: DeepmdDataSystem) Tuple[float, List[int]][source]

Get the data statistics of the training data, including nearest nbor distance between atoms, max nbor size of atoms.

Parameters
data

Class for manipulating many data systems. It is implemented with the help of DeepmdData.

Returns
min_nbor_dist

The nearest distance between neighbor atoms

max_nbor_size

A list with ntypes integers, denotes the actual achieved max sel

deepmd.utils.network module
deepmd.utils.network.embedding_net(xx, network_size, precision, activation_fn=<function tanh>, resnet_dt=False, name_suffix='', stddev=1.0, bavg=0.0, seed=None, trainable=True, uniform_seed=False, initial_variables=None, mixed_prec=None)[source]

The embedding network.

The embedding network function \(\mathcal{N}\) is constructed by is the composition of multiple layers \(\mathcal{L}^{(i)}\):

\[\mathcal{N} = \mathcal{L}^{(n)} \circ \mathcal{L}^{(n-1)} \circ \cdots \circ \mathcal{L}^{(1)}\]

A layer \(\mathcal{L}\) is given by one of the following forms, depending on the number of nodes: [1]

\[\begin{split}\mathbf{y}=\mathcal{L}(\mathbf{x};\mathbf{w},\mathbf{b})= \begin{cases} \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b}) + \mathbf{x}, & N_2=N_1 \\ \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b}) + (\mathbf{x}, \mathbf{x}), & N_2 = 2N_1\\ \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b}), & \text{otherwise} \\ \end{cases}\end{split}\]

where \(\mathbf{x} \in \mathbb{R}^{N_1}\) is the input vector and \(\mathbf{y} \in \mathbb{R}^{N_2}\) is the output vector. \(\mathbf{w} \in \mathbb{R}^{N_1 \times N_2}\) and \(\mathbf{b} \in \mathbb{R}^{N_2}\) are weights and biases, respectively, both of which are trainable if trainable is True. \(\boldsymbol{\phi}\) is the activation function.

Parameters
xxTensor

Input tensor \(\mathbf{x}\) of shape [-1,1]

network_sizelist of int

Size of the embedding network. For example [16,32,64]

precision:

Precision of network weights. For example, tf.float64

activation_fn:

Activation function \(\boldsymbol{\phi}\)

resnet_dtbool

Using time-step in the ResNet construction

name_suffixstr

The name suffix append to each variable.

stddevfloat

Standard deviation of initializing network parameters

bavgfloat

Mean of network intial bias

seedint

Random seed for initializing network parameters

trainablebool

If the network is trainable

uniform_seedbool

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

initial_variablesdict

The input dict which stores the embedding net variables

mixed_prec

The input dict which stores the mixed precision setting for the embedding net

References

1(1,2)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identitymappings in deep residual networks. InComputer Vision – ECCV 2016,pages 630–645. Springer International Publishing, 2016.

deepmd.utils.network.embedding_net_rand_seed_shift(network_size)[source]
deepmd.utils.network.one_layer(inputs, outputs_size, activation_fn=<function tanh>, precision=tf.float64, stddev=1.0, bavg=0.0, name='linear', scope='', reuse=None, seed=None, use_timestep=False, trainable=True, useBN=False, uniform_seed=False, initial_variables=None, mixed_prec=None, final_layer=False)[source]
deepmd.utils.network.one_layer_rand_seed_shift()[source]
deepmd.utils.network.variable_summaries(var: VariableV1, name: str)[source]

Attach a lot of summaries to a Tensor (for TensorBoard visualization).

Parameters
vartf.Variable

[description]

namestr

variable name

deepmd.utils.pair_tab module
class deepmd.utils.pair_tab.PairTab(filename: str)[source]

Bases: object

Pairwise tabulated potential.

Parameters
filename

File name for the short-range tabulated potential. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

Methods

get()

Get the serialized table.

reinit(filename)

Initialize the tabulated interaction.

get() Tuple[array, array][source]

Get the serialized table.

reinit(filename: str) None[source]

Initialize the tabulated interaction.

Parameters
filename

File name for the short-range tabulated potential. The table is a text data file with (N_t + 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from 2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

deepmd.utils.parallel_op module
class deepmd.utils.parallel_op.ParallelOp(builder: Callable[[...], Tuple[Dict[str, Tensor], Tuple[Tensor]]], nthreads: Optional[int] = None, config: Optional[ConfigProto] = None)[source]

Bases: object

Run an op with data parallelism.

Parameters
builderCallable[…, Tuple[Dict[str, tf.Tensor], Tuple[tf.Tensor]]]

returns two objects: a dict which stores placeholders by key, and a tuple with the final op(s)

nthreadsint, optional

the number of threads

configtf.ConfigProto, optional

tf.ConfigProto

Examples

>>> from deepmd.env import tf
>>> from deepmd.utils.parallel_op import ParallelOp
>>> def builder():
...     x = tf.placeholder(tf.int32, [1])
...     return {"x": x}, (x + 1)
...
>>> p = ParallelOp(builder, nthreads=4)
>>> def feed():
...     for ii in range(10):
...         yield {"x": [ii]}
...
>>> print(*p.generate(tf.Session(), feed()))
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Methods

generate(sess, feed)

Returns a generator.

generate(sess: Session, feed: Generator[Dict[str, Any], None, None]) Generator[Tuple, None, None][source]

Returns a generator.

Parameters
sesstf.Session

TensorFlow session

feedGenerator[dict, None, None]

generator which yields feed_dict

Yields
Generator[Tuple, None, None]

generator which yields session returns

deepmd.utils.path module
class deepmd.utils.path.DPH5Path(path: str)[source]

Bases: DPPath

The path class to data system (DeepmdData) for HDF5 files.

Parameters
pathstr

path

Notes

OS - HDF5 relationship:

directory - Group file - Dataset

Methods

glob(pattern)

Search path using the glob pattern.

is_dir()

Check if self is directory.

is_file()

Check if self is file.

load_numpy()

Load NumPy array.

load_txt([dtype])

Load NumPy array from text.

rglob(pattern)

This is like calling DPPath.glob() with **/ added in front of the given relative pattern.

glob(pattern: str) List[DPPath][source]

Search path using the glob pattern.

Parameters
patternstr

glob pattern

Returns
List[DPPath]

list of paths

is_dir() bool[source]

Check if self is directory.

is_file() bool[source]

Check if self is file.

load_numpy() ndarray[source]

Load NumPy array.

Returns
np.ndarray

loaded NumPy array

load_txt(dtype: Optional[dtype] = None, **kwargs) ndarray[source]

Load NumPy array from text.

Returns
np.ndarray

loaded NumPy array

rglob(pattern: str) List[DPPath][source]

This is like calling DPPath.glob() with **/ added in front of the given relative pattern.

Parameters
patternstr

glob pattern

Returns
List[DPPath]

list of paths

class deepmd.utils.path.DPOSPath(path: str)[source]

Bases: DPPath

The OS path class to data system (DeepmdData) for real directories.

Parameters
pathstr

path

Methods

glob(pattern)

Search path using the glob pattern.

is_dir()

Check if self is directory.

is_file()

Check if self is file.

load_numpy()

Load NumPy array.

load_txt(**kwargs)

Load NumPy array from text.

rglob(pattern)

This is like calling DPPath.glob() with **/ added in front of the given relative pattern.

glob(pattern: str) List[DPPath][source]

Search path using the glob pattern.

Parameters
patternstr

glob pattern

Returns
List[DPPath]

list of paths

is_dir() bool[source]

Check if self is directory.

is_file() bool[source]

Check if self is file.

load_numpy() ndarray[source]

Load NumPy array.

Returns
np.ndarray

loaded NumPy array

load_txt(**kwargs) ndarray[source]

Load NumPy array from text.

Returns
np.ndarray

loaded NumPy array

rglob(pattern: str) List[DPPath][source]

This is like calling DPPath.glob() with **/ added in front of the given relative pattern.

Parameters
patternstr

glob pattern

Returns
List[DPPath]

list of paths

class deepmd.utils.path.DPPath(path: str)[source]

Bases: ABC

The path class to data system (DeepmdData).

Parameters
pathstr

path

Methods

glob(pattern)

Search path using the glob pattern.

is_dir()

Check if self is directory.

is_file()

Check if self is file.

load_numpy()

Load NumPy array.

load_txt(**kwargs)

Load NumPy array from text.

rglob(pattern)

This is like calling DPPath.glob() with **/ added in front of the given relative pattern.

abstract glob(pattern: str) List[DPPath][source]

Search path using the glob pattern.

Parameters
patternstr

glob pattern

Returns
List[DPPath]

list of paths

abstract is_dir() bool[source]

Check if self is directory.

abstract is_file() bool[source]

Check if self is file.

abstract load_numpy() ndarray[source]

Load NumPy array.

Returns
np.ndarray

loaded NumPy array

abstract load_txt(**kwargs) ndarray[source]

Load NumPy array from text.

Returns
np.ndarray

loaded NumPy array

abstract rglob(pattern: str) List[DPPath][source]

This is like calling DPPath.glob() with **/ added in front of the given relative pattern.

Parameters
patternstr

glob pattern

Returns
List[DPPath]

list of paths

deepmd.utils.plugin module

Base of plugin systems.

class deepmd.utils.plugin.Plugin[source]

Bases: object

A class to register and restore plugins.

Examples

>>> plugin = Plugin()
>>> @plugin.register("xx")
    def xxx():
        pass
>>> print(plugin.plugins['xx'])
Attributes
pluginsDict[str, object]

plugins

Methods

get_plugin(key)

Visit a plugin by key.

register(key)

Register a plugin.

get_plugin(key) object[source]

Visit a plugin by key.

Parameters
keystr

key of the plugin

Returns
object

the plugin

register(key: str) Callable[[object], object][source]

Register a plugin.

Parameters
keystr

key of the plugin

Returns
Callable[[object], object]

decorator

class deepmd.utils.plugin.PluginVariant(*args, **kwargs)[source]

Bases: object

A class to remove type from input arguments.

class deepmd.utils.plugin.VariantABCMeta(name, bases, namespace, **kwargs)[source]

Bases: VariantMeta, ABCMeta

Methods

__call__(*args, **kwargs)

Remove type and keys that starts with underline.

mro(/)

Return a type's method resolution order.

register(subclass)

Register a virtual subclass of an ABC.

class deepmd.utils.plugin.VariantMeta[source]

Bases: object

Methods

__call__(*args, **kwargs)

Remove type and keys that starts with underline.

deepmd.utils.random module
deepmd.utils.random.choice(a: ndarray, p: Optional[ndarray] = None)[source]

Generates a random sample from a given 1-D array.

Parameters
anp.ndarray

A random sample is generated from its elements.

pnp.ndarray

The probabilities associated with each entry in a.

Returns
np.ndarray

arrays with results and their shapes

deepmd.utils.random.random(size=None)[source]

Return random floats in the half-open interval [0.0, 1.0).

Parameters
size

Output shape.

Returns
np.ndarray

Arrays with results and their shapes.

deepmd.utils.random.seed(val: Optional[int] = None)[source]

Seed the generator.

Parameters
valint

Seed.

deepmd.utils.random.shuffle(x: ndarray)[source]

Modify a sequence in-place by shuffling its contents.

Parameters
xnp.ndarray

The array or list to be shuffled.

deepmd.utils.sess module
deepmd.utils.sess.run_sess(sess: Session, *args, **kwargs)[source]

Run session with erorrs caught.

Parameters
sesstf.Session

TensorFlow Session

*args

Variable length argument list.

**kwargs

Arbitrary keyword arguments.

Returns
Any

the result of sess.run()

deepmd.utils.spin module
class deepmd.utils.spin.Spin(use_spin: Optional[List[bool]] = None, spin_norm: Optional[List[float]] = None, virtual_len: Optional[List[float]] = None)[source]

Bases: object

Class for spin.

Parameters
use_spin

Whether to use atomic spin model for each atom type

spin_norm

The magnitude of atomic spin for each atom type with spin

virtual_len

The distance between virtual atom representing spin and its corresponding real atom for each atom type with spin

Methods

build([reuse, suffix])

Build the computational graph for the spin.

get_ntypes_spin()

Returns the number of atom types which contain spin.

get_spin_norm()

Returns the list of magnitude of atomic spin for each atom type.

get_use_spin()

Returns the list of whether to use spin for each atom type.

get_virtual_len()

Returns the list of distance between real atom and virtual atom for each atom type.

build(reuse=None, suffix='')[source]

Build the computational graph for the spin.

Parameters
reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
embedded_types

The computational graph for embedded types

get_ntypes_spin() int[source]

Returns the number of atom types which contain spin.

get_spin_norm() List[float][source]

Returns the list of magnitude of atomic spin for each atom type.

get_use_spin() List[bool][source]

Returns the list of whether to use spin for each atom type.

get_virtual_len() List[float][source]

Returns the list of distance between real atom and virtual atom for each atom type.

deepmd.utils.tabulate module
class deepmd.utils.tabulate.DPTabulate(descrpt: ~deepmd.descriptor.descriptor.Descriptor, neuron: ~typing.List[int], graph: ~tensorflow.python.framework.ops.Graph, graph_def: ~tensorflow.core.framework.graph_pb2.GraphDef, type_one_side: bool = False, exclude_types: ~typing.List[~typing.List[int]] = [], activation_fn: ~typing.Callable[[~tensorflow.python.framework.ops.Tensor], ~tensorflow.python.framework.ops.Tensor] = <function tanh>, suffix: str = '')[source]

Bases: object

Class for tabulation.

Compress a model, which including tabulating the embedding-net. The table is composed of fifth-order polynomial coefficients and is assembled from two sub-tables. The first table takes the stride(parameter) as it’s uniform stride, while the second table takes 10 * stride as it’s uniform stride The range of the first table is automatically detected by deepmd-kit, while the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter) * upper.

Parameters
descrpt

Descriptor of the original model

neuron

Number of neurons in each hidden layers of the embedding net \(\\mathcal{N}\)

graphtf.Graph

The graph of the original model

graph_deftf.GraphDef

The graph_def of the original model

type_one_side

Try to build N_types tables. Otherwise, building N_types^2 tables

exclude_typesList[List[int]]

The excluded pairs of types which have no interaction with each other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function

The activation function in the embedding net. Supported options are {“tanh”,”gelu”} in common.ACTIVATION_FN_DICT.

suffixstr, optional

The suffix of the scope

Methods

build(min_nbor_dist, extrapolate, stride0, ...)

Build the tables for model compression.

build(min_nbor_dist: float, extrapolate: float, stride0: float, stride1: float) Tuple[Dict[str, int], Dict[str, int]][source]

Build the tables for model compression.

Parameters
min_nbor_dist

The nearest distance between neighbor atoms

extrapolate

The scale of model extrapolation

stride0

The uniform stride of the first table

stride1

The uniform stride of the second table

Returns
lowerdict[str, int]

The lower boundary of environment matrix by net

upperdict[str, int]

The upper boundary of environment matrix by net

deepmd.utils.type_embed module
class deepmd.utils.type_embed.TypeEmbedNet(neuron: List[int] = [], resnet_dt: bool = False, activation_function: Optional[str] = 'tanh', precision: str = 'default', trainable: bool = True, seed: Optional[int] = None, uniform_seed: bool = False, padding: bool = False, **kwargs)[source]

Bases: object

Type embedding network.

Parameters
neuronlist[int]

Number of neurons in each hidden layers of the embedding net

resnet_dt

Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision

The precision of the embedding net parameters. Supported options are “default”, “float16”, “float32”, “float64”, “bfloat16”.

trainable

If the weights of embedding net are trainable.

seed

Random seed for initializing the network parameters.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed

padding

Concat the zero padding to the output, as the default embedding of empty type.

Methods

build(ntypes[, reuse, suffix])

Build the computational graph for the descriptor.

init_variables(graph, graph_def[, suffix, ...])

Init the type embedding net variables with the given dict.

build(ntypes: int, reuse=None, suffix='')[source]

Build the computational graph for the descriptor.

Parameters
ntypes

Number of atom types.

reuse

The weights in the networks should be reused when get the variable.

suffix

Name suffix to identify this descriptor

Returns
embedded_types

The computational graph for embedded types

init_variables(graph: Graph, graph_def: GraphDef, suffix='', model_type='original_model') None[source]

Init the type embedding net variables with the given dict.

Parameters
graphtf.Graph

The input frozen model graph

graph_deftf.GraphDef

The input frozen model graph_def

suffix

Name suffix to identify this descriptor

model_type

Indicator of whether this model is a compressed model

deepmd.utils.type_embed.embed_atom_type(ntypes: int, natoms: Tensor, type_embedding: Tensor)[source]

Make the embedded type for the atoms in system. The atoms are assumed to be sorted according to the type, thus their types are described by a tf.Tensor natoms, see explanation below.

Parameters
ntypes:

Number of types.

natoms:

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

type_embedding:

The type embedding. It has the shape of [ntypes, embedding_dim]

Returns
atom_embedding

The embedded type of each atom. It has the shape of [numb_atoms, embedding_dim]

deepmd.utils.weight_avg module
deepmd.utils.weight_avg.weighted_average(errors: List[Dict[str, Tuple[float, float]]]) Dict[source]

Compute wighted average of prediction errors (MAE or RMSE) for model.

Parameters
errorsList[Dict[str, Tuple[float, float]]]

List: the error of systems Dict: the error of quantities, name given by the key str: the name of the quantity, must starts with ‘mae’ or ‘rmse’ Tuple: (error, weight)

Returns
Dict

weighted averages

Submodules

deepmd.calculator module

ASE calculator interface module.

class deepmd.calculator.DP(model: Union[str, Path], label: str = 'DP', type_dict: Optional[Dict[str, int]] = None, **kwargs)[source]

Bases: Calculator

Implementation of ASE deepmd calculator.

Implemented propertie are energy, forces and stress

Parameters
modelUnion[str, Path]

path to the model

labelstr, optional

calculator label, by default “DP”

type_dictDict[str, int], optional

mapping of element types and their numbers, best left None and the calculator will infer this information from model, by default None

Examples

Compute potential energy

>>> from ase import Atoms
>>> from deepmd.calculator import DP
>>> water = Atoms('H2O',
>>>             positions=[(0.7601, 1.9270, 1),
>>>                        (1.9575, 1, 1),
>>>                        (1., 1., 1.)],
>>>             cell=[100, 100, 100],
>>>             calculator=DP(model="frozen_model.pb"))
>>> print(water.get_potential_energy())
>>> print(water.get_forces())

Run BFGS structure optimization

>>> from ase.optimize import BFGS
>>> dyn = BFGS(water)
>>> dyn.run(fmax=1e-6)
>>> print(water.get_positions())
Attributes
directory
label

Methods

band_structure()

Create band-structure object for plotting.

calculate([atoms, properties, system_changes])

Run calculation with deepmd model.

calculate_numerical_forces(atoms[, d])

Calculate numerical forces using finite difference.

calculate_numerical_stress(atoms[, d, voigt])

Calculate numerical stress using finite difference.

calculate_properties(atoms, properties)

This method is experimental; currently for internal use.

check_state(atoms[, tol])

Check for any system changes since last calculation.

get_magnetic_moments([atoms])

Calculate magnetic moments projected onto atoms.

get_property(name[, atoms, allow_calculation])

Get the named property.

get_stresses([atoms])

the calculator should return intensive stresses, i.e., such that stresses.sum(axis=0) == stress

read(label)

Read atoms, parameters and calculated properties from output file.

reset()

Clear all information from old calculation.

set(**kwargs)

Set parameters like set(key1=value1, key2=value2, ...).

set_label(label)

Set label and convert label to directory and prefix.

calculation_required

export_properties

get_atoms

get_charges

get_default_parameters

get_dipole_moment

get_forces

get_magnetic_moment

get_potential_energies

get_potential_energy

get_stress

read_atoms

todict

calculate(atoms: Optional[Atoms] = None, properties: List[str] = ['energy', 'forces', 'virial'], system_changes: List[str] = ['positions', 'numbers', 'cell', 'pbc', 'initial_charges', 'initial_magmoms'])[source]

Run calculation with deepmd model.

Parameters
atomsOptional[Atoms], optional

atoms object to run the calculation on, by default None

propertiesList[str], optional

unused, only for function signature compatibility, by default [“energy”, “forces”, “stress”]

system_changesList[str], optional

unused, only for function signature compatibility, by default all_changes

implemented_properties: List[str] = ['energy', 'free_energy', 'forces', 'virial', 'stress']

Properties calculator can handle (energy, forces, …)

name = 'DP'

deepmd.common module

Collection of functions and classes used throughout the whole package.

deepmd.common.add_data_requirement(key: str, ndof: int, atomic: bool = False, must: bool = False, high_prec: bool = False, type_sel: Optional[bool] = None, repeat: int = 1, default: float = 0.0, dtype: Optional[dtype] = None)[source]

Specify data requirements for training.

Parameters
keystr

type of data stored in corresponding *.npy file e.g. forces or energy

ndofint

number of the degrees of freedom, this is tied to atomic parameter e.g. forces have atomic=True and ndof=3

atomicbool, optional

specifies whwther the ndof keyworrd applies to per atom quantity or not, by default False

mustbool, optional

specifi if the *.npy data file must exist, by default False

high_precbool, optional

if true load data to np.float64 else np.float32, by default False

type_selbool, optional

select only certain type of atoms, by default None

repeatint, optional

if specify repaeat data repeat times, by default 1

defaultfloat, optional, default=0.

default value of data

dtypenp.dtype, optional

the dtype of data, overwrites high_prec if provided

deepmd.common.cast_precision(func: Callable) Callable[source]

A decorator that casts and casts back the input and output tensor of a method.

The decorator should be used in a classmethod.

The decorator will do the following thing: (1) It casts input Tensors from GLOBAL_TF_FLOAT_PRECISION to precision defined by property precision. (2) It casts output Tensors from precision to GLOBAL_TF_FLOAT_PRECISION. (3) It checks inputs and outputs and only casts when input or output is a Tensor and its dtype matches GLOBAL_TF_FLOAT_PRECISION and precision, respectively. If it does not match (e.g. it is an integer), the decorator will do nothing on it.

Returns
Callable

a decorator that casts and casts back the input and output tensor of a method

Examples

>>> class A:
...   @property
...   def precision(self):
...     return tf.float32
...
...   @cast_precision
...   def f(x: tf.Tensor, y: tf.Tensor) -> tf.Tensor:
...     return x ** 2 + y
deepmd.common.clear_session()[source]

Reset all state generated by DeePMD-kit.

deepmd.common.expand_sys_str(root_dir: Union[str, Path]) List[str][source]

Recursively iterate over directories taking those that contain type.raw file.

Parameters
root_dirUnion[str, Path]

starting directory

Returns
List[str]

list of string pointing to system directories

deepmd.common.gelu(x: Tensor) Tensor[source]

Gaussian Error Linear Unit.

This is a smoother version of the RELU, implemented by custom operator.

Parameters
xtf.Tensor

float Tensor to perform activation

Returns
tf.Tensor

x with the GELU activation applied

References

Original paper https://arxiv.org/abs/1606.08415

deepmd.common.gelu_tf(x: Tensor) Tensor[source]

Gaussian Error Linear Unit.

This is a smoother version of the RELU, implemented by TF.

Parameters
xtf.Tensor

float Tensor to perform activation

Returns
tf.Tensor

x with the GELU activation applied

References

Original paper https://arxiv.org/abs/1606.08415

deepmd.common.get_activation_func(activation_fn: Optional[_ACTIVATION]) Optional[Callable[[Tensor], Tensor]][source]

Get activation function callable based on string name.

Parameters
activation_fn_ACTIVATION

one of the defined activation functions

Returns
Callable[[tf.Tensor], tf.Tensor]

correspondingg TF callable

Raises
RuntimeError

if unknown activation function is specified

deepmd.common.get_np_precision(precision: _PRECISION) dtype[source]

Get numpy precision constant from string.

Parameters
precision_PRECISION

string name of numpy constant or default

Returns
np.dtype

numpy presicion constant

Raises
RuntimeError

if string is invalid

deepmd.common.get_precision(precision: _PRECISION) Any[source]

Convert str to TF DType constant.

Parameters
precision_PRECISION

one of the allowed precisions

Returns
tf.python.framework.dtypes.DType

appropriate TF constant

Raises
RuntimeError

if supplied precision string does not have acorresponding TF constant

deepmd.common.j_loader(filename: Union[str, Path]) Dict[str, Any][source]

Load yaml or json settings file.

Parameters
filenameUnion[str, Path]

path to file

Returns
Dict[str, Any]

loaded dictionary

Raises
TypeError

if the supplied file is of unsupported type

deepmd.common.j_must_have(jdata: Dict[str, _DICT_VAL], key: str, deprecated_key: List[str] = []) _DICT_VAL[source]

Assert that supplied dictionary conaines specified key.

Returns
_DICT_VAL

value that was store unde supplied key

Raises
RuntimeError

if the key is not present

deepmd.common.make_default_mesh(pbc: bool, mixed_type: bool) ndarray[source]

Make mesh.

Only the size of mesh matters, not the values: * 6 for PBC, no mixed types * 0 for no PBC, no mixed types * 7 for PBC, mixed types * 1 for no PBC, mixed types

Parameters
pbcbool

if True, the mesh will be made for periodic boundary conditions

mixed_typebool

if True, the mesh will be made for mixed types

Returns
np.ndarray

mesh

deepmd.common.safe_cast_tensor(input: Tensor, from_precision: DType, to_precision: DType) Tensor[source]

Convert a Tensor from a precision to another precision.

If input is not a Tensor or without the specific precision, the method will not cast it.

Parameters
inputtf.Tensor

input tensor

from_precisiontf.DType

Tensor data type that is casted from

to_precisiontf.DType

Tensor data type that casts to

Returns
tf.Tensor

casted Tensor

deepmd.common.select_idx_map(atom_types: ndarray, select_types: ndarray) ndarray[source]

Build map of indices for element supplied element types from all atoms list.

Parameters
atom_typesnp.ndarray

array specifing type for each atoms as integer

select_typesnp.ndarray

types of atoms you want to find indices for

Returns
np.ndarray

indices of types of atoms defined by select_types in atom_types array

Warning

select_types array will be sorted before finding indices in atom_types

deepmd.env module

Module that sets tensorflow working environment and exports inportant constants.

deepmd.env.GLOBAL_ENER_FLOAT_PRECISION

alias of float64

deepmd.env.GLOBAL_NP_FLOAT_PRECISION

alias of float64

deepmd.env.global_cvt_2_ener_float(xx: Tensor) Tensor[source]

Cast tensor to globally set energy precision.

Parameters
xxtf.Tensor

input tensor

Returns
tf.Tensor

output tensor cast to GLOBAL_ENER_FLOAT_PRECISION

deepmd.env.global_cvt_2_tf_float(xx: Tensor) Tensor[source]

Cast tensor to globally set TF precision.

Parameters
xxtf.Tensor

input tensor

Returns
tf.Tensor

output tensor cast to GLOBAL_TF_FLOAT_PRECISION

deepmd.env.reset_default_tf_session_config(cpu_only: bool)[source]

Limit tensorflow session to CPU or not.

Parameters
cpu_onlybool

If enabled, no GPU device is visible to the TensorFlow Session.

deepmd.lmp module

Register entry points for lammps-wheel.

deepmd.lmp.get_env(paths: List[Optional[str]]) str[source]

Get the environment variable from given paths.

deepmd.lmp.get_library_path(module: str) List[str][source]

Get library path from a module.

Parameters
modulestr

The module name.

Returns
list[str]

The library path.

deepmd.lmp.get_op_dir() str[source]

Get the directory of the deepmd-kit OP library.

OP API

op_module

Python wrappers around TensorFlow ops.

This file is MACHINE GENERATED! Do not edit.

deepmd.env.op_module.AddFltNvnmd(x, w, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.CopyFltNvnmd(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (y1, y2).

y1: A Tensor. Has the same type as x. y2: A Tensor. Has the same type as x.

deepmd.env.op_module.Descrpt(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, sel_a, sel_r, axis_rule, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • axis_rule – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist, axis, rot_mat).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32. axis: A Tensor of type int32. rot_mat: A Tensor. Has the same type as coord.

deepmd.env.op_module.DescrptNorot(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.DescrptSeA(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.DescrptSeAEf(coord, type, natoms, box, mesh, ef, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • ef – A Tensor. Must have the same type as coord.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.DescrptSeAEfPara(coord, type, natoms, box, mesh, ef, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • ef – A Tensor. Must have the same type as coord.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.DescrptSeAEfVert(coord, type, natoms, box, mesh, ef, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • ef – A Tensor. Must have the same type as coord.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.DescrptSeAMask(coord, type, mask, box, natoms, mesh, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • mask – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • natoms – A Tensor of type int32.

  • mesh – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.DescrptSeR(coord, type, natoms, box, mesh, davg, dstd, rcut, rcut_smth, sel, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut – A float.

  • rcut_smth – A float.

  • sel – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.DotmulFltNvnmd(x, w, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.DprcPairwiseIdx(idxs, natoms, name=None)

TODO: add doc.

Parameters
  • idxs – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (forward_qm_map, backward_qm_map, forward_qmmm_map, backward_qmmm_map, natoms_qm, natoms_qmmm, qmmm_frame_idx).

forward_qm_map: A Tensor of type int32. backward_qm_map: A Tensor of type int32. forward_qmmm_map: A Tensor of type int32. backward_qmmm_map: A Tensor of type int32. natoms_qm: A Tensor of type int32. natoms_qmmm: A Tensor of type int32. qmmm_frame_idx: A Tensor of type int32.

deepmd.env.op_module.EwaldRecp(coord, charge, natoms, box, ewald_beta, ewald_h, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • charge – A Tensor. Must have the same type as coord.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • ewald_beta – A float.

  • ewald_h – A float.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (energy, force, virial).

energy: A Tensor. Has the same type as coord. force: A Tensor. Has the same type as coord. virial: A Tensor. Has the same type as coord.

deepmd.env.op_module.FltNvnmd(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.Gelu(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.GeluCustom(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.GeluGrad(dy, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.GeluGradCustom(dy, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.GeluGradGrad(dy, dy_, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • dy – A Tensor. Must have the same type as dy.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.GeluGradGradCustom(dy, dy_, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • dy – A Tensor. Must have the same type as dy.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.MapAparam(aparam, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • aparam – A Tensor. Must be one of the following types: float32, float64.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as aparam.

deepmd.env.op_module.MapFltNvnmd(x, table, table_grad, table_info, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • table – A Tensor. Must have the same type as x.

  • table_grad – A Tensor. Must have the same type as x.

  • table_info – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.MatmulFitnetNvnmd(x, w, nbitx, nbitw, normw, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • nbitx – An int.

  • nbitw – An int.

  • normw – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.MatmulFlt2fixNvnmd(x, w, nbit, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • nbit – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.MatmulFltNvnmd(x, w, normx, normw, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • normx – An int.

  • normw – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.MulFltNvnmd(x, w, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.NeighborStat(coord, type, natoms, box, mesh, rcut, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • rcut – A float.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (max_nbor_size, min_nbor_dist).

max_nbor_size: A Tensor of type int32. min_nbor_dist: A Tensor. Has the same type as coord.

deepmd.env.op_module.PairTab(table_info, table_data, type, rij, nlist, natoms, scale, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • table_info – A Tensor of type float64.

  • table_data – A Tensor of type float64.

  • type – A Tensor of type int32.

  • rij – A Tensor. Must be one of the following types: float32, float64.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • scale – A Tensor. Must have the same type as rij.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (atom_energy, force, atom_virial).

atom_energy: A Tensor. Has the same type as rij. force: A Tensor. Has the same type as rij. atom_virial: A Tensor. Has the same type as rij.

deepmd.env.op_module.ParallelProdForceSeA(net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, parallel=False, start_frac=0, end_frac=1, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • parallel – An optional bool. Defaults to False.

  • start_frac – An optional float. Defaults to 0.

  • end_frac – An optional float. Defaults to 1.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdEnvMatA(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

Compute the environment matrix for descriptor se_e2_a.

Each row of the environment matrix \(\mathcal{R}^i\) can be constructed as follows

\[(\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ]\]

In the above equation, \(\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})\) is the relative coordinate and \(r_{ji}=\lVert \mathbf{R}_{ji} \lVert\) is its norm. The switching function \(s(r)\) is defined as:

\[\begin{split}s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases}\end{split}\]

Note that the environment matrix is normalized by davg and dstd.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64. The coordinates of atoms.

  • type – A Tensor of type int32. The types of atoms.

  • natoms – A Tensor of type int32. The number of atoms. This tensor has the length of Ntypes + 2. natoms[0]: number of local atoms. natoms[1]: total number of atoms held by this processor. natoms[i]: 2 <= i < Ntypes+2, number of type i atoms.

  • box – A Tensor. Must have the same type as coord. The box of frames.

  • mesh – A Tensor of type int32. Gor historical reasons, only the length of the Tensor matters. If size of mesh == 6, pbc is assumed. If size of mesh == 0, no-pbc is assumed.

  • davg – A Tensor. Must have the same type as coord. Average value of the environment matrix for normalization.

  • dstd – A Tensor. Must have the same type as coord. Standard deviation of the environment matrix for normalization.

  • rcut_a – A float. This argument is not used.

  • rcut_r – A float. The cutoff radius for the environment matrix.

  • rcut_r_smth – A float. From where the environment matrix should be smoothed.

  • sel_a – A list of ints. sel_a[i] specifies the maxmum number of type i atoms in the cut-off radius.

  • sel_r – A list of ints. This argument is not used.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. The environment matrix. descrpt_deriv: A Tensor. Has the same type as coord. The derivative of the environment matrix. rij: A Tensor. Has the same type as coord. The distance between the atoms. nlist: A Tensor of type int32. The neighbor list of each atom.

deepmd.env.op_module.ProdEnvMatAMix(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

Compute the environment matrix mixing the atom types.

The sorting of neighbor atoms depends not on atom types, but on the distance and index. The atoms in nlist matrix will gather forward and thus save space for gaps of types in ProdEnvMatA, resulting in optimized and relative small sel_a.

The additional outputs are listed as following:

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist, ntype, nmask).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32. ntype: A Tensor of type int32. The corresponding atom types in nlist. nmask: A Tensor of type bool. The atom mask in nlist.

deepmd.env.op_module.ProdEnvMatAMixNvnmdQuantize(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist, ntype, nmask).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32. ntype: A Tensor of type int32. nmask: A Tensor of type bool.

deepmd.env.op_module.ProdEnvMatANvnmdQuantize(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.ProdEnvMatR(coord, type, natoms, box, mesh, davg, dstd, rcut, rcut_smth, sel, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut – A float.

  • rcut_smth – A float.

  • sel – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.ProdForce(net_deriv, in_deriv, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdForceNorot(net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdForceSeA(net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdForceSeAMask(net_deriv, in_deriv, mask, nlist, total_atom_num, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • mask – A Tensor of type int32.

  • nlist – A Tensor of type int32.

  • total_atom_num – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdForceSeR(net_deriv, in_deriv, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdVirial(net_deriv, in_deriv, rij, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdVirialNorot(net_deriv, in_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdVirialSeA(net_deriv, in_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.ProdVirialSeR(net_deriv, in_deriv, rij, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.QuantizeNvnmd(x, isround, nbit1, nbit2, nbit3, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • isround – An int.

  • nbit1 – An int.

  • nbit2 – An int.

  • nbit3 – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.SoftMinForce(du, sw_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • du – A Tensor. Must be one of the following types: float32, float64.

  • sw_deriv – A Tensor. Must have the same type as du.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as du.

deepmd.env.op_module.SoftMinSwitch(type, rij, nlist, natoms, sel_a, sel_r, alpha, rmin, rmax, name=None)

TODO: add doc.

Parameters
  • type – A Tensor of type int32.

  • rij – A Tensor. Must be one of the following types: float32, float64.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • alpha – A float.

  • rmin – A float.

  • rmax – A float.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (sw_value, sw_deriv).

sw_value: A Tensor. Has the same type as rij. sw_deriv: A Tensor. Has the same type as rij.

deepmd.env.op_module.SoftMinVirial(du, sw_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • du – A Tensor. Must be one of the following types: float32, float64.

  • sw_deriv – A Tensor. Must have the same type as du.

  • rij – A Tensor. Must have the same type as du.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as du. atom_virial: A Tensor. Has the same type as du.

deepmd.env.op_module.TabulateFusion(table, table_info, em_x, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionGrad(table, table_info, em_x, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionGradGrad(table, table_info, em_x, em, dz_dy_dem_x, dz_dy_dem, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem_x – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeA(table, table_info, em_x, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeAGrad(table, table_info, em_x, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeAGradGrad(table, table_info, em_x, em, dz_dy_dem_x, dz_dy_dem, descriptor, is_sorted=True, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem_x – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • is_sorted – An optional bool. Defaults to True.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeAtten(table, table_info, em_x, em, two_embed, last_layer_size, is_sorted=True, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • two_embed – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • is_sorted – An optional bool. Defaults to True.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeAttenGrad(table, table_info, em_x, em, two_embed, dy, descriptor, is_sorted=True, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • two_embed – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • is_sorted – An optional bool. Defaults to True.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem, dy_dtwo).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table. dy_dtwo: A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeR(table, table_info, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeRGrad(table, table_info, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeRGradGrad(table, table_info, em, dz_dy_dem, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeT(table, table_info, em_x, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeTGrad(table, table_info, em_x, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table.

deepmd.env.op_module.TabulateFusionSeTGradGrad(table, table_info, em_x, em, dz_dy_dem_x, dz_dy_dem, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem_x – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.Tanh4FltNvnmd(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.UnaggregatedDy2Dx(z, w, dy_dx, dy2_dx, ybar, functype, name=None)

TODO: add doc.

Parameters
  • z – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as z.

  • dy_dx – A Tensor. Must have the same type as z.

  • dy2_dx – A Tensor. Must have the same type as z.

  • ybar – A Tensor. Must have the same type as z.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as z.

deepmd.env.op_module.UnaggregatedDy2DxS(y, dy, w, xbar, functype, name=None)

TODO: add doc.

Parameters
  • y – A Tensor. Must be one of the following types: float32, float64.

  • dy – A Tensor. Must have the same type as y.

  • w – A Tensor. Must have the same type as y.

  • xbar – A Tensor. Must have the same type as y.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as y.

deepmd.env.op_module.UnaggregatedDyDx(z, w, dy_dx, ybar, functype, name=None)

TODO: add doc.

Parameters
  • z – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as z.

  • dy_dx – A Tensor. Must have the same type as z.

  • ybar – A Tensor. Must have the same type as z.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as z.

deepmd.env.op_module.UnaggregatedDyDxS(y, w, xbar, functype, name=None)

TODO: add doc.

Parameters
  • y – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as y.

  • xbar – A Tensor. Must have the same type as y.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as y.

deepmd.env.op_module.add_flt_nvnmd(x, w, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.copy_flt_nvnmd(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (y1, y2).

y1: A Tensor. Has the same type as x. y2: A Tensor. Has the same type as x.

deepmd.env.op_module.descrpt(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, sel_a, sel_r, axis_rule, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • axis_rule – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist, axis, rot_mat).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32. axis: A Tensor of type int32. rot_mat: A Tensor. Has the same type as coord.

deepmd.env.op_module.descrpt_norot(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.descrpt_se_a(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.descrpt_se_a_ef(coord, type, natoms, box, mesh, ef, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • ef – A Tensor. Must have the same type as coord.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.descrpt_se_a_ef_para(coord, type, natoms, box, mesh, ef, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • ef – A Tensor. Must have the same type as coord.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.descrpt_se_a_ef_vert(coord, type, natoms, box, mesh, ef, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • ef – A Tensor. Must have the same type as coord.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.descrpt_se_a_mask(coord, type, mask, box, natoms, mesh, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • mask – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • natoms – A Tensor of type int32.

  • mesh – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.descrpt_se_r(coord, type, natoms, box, mesh, davg, dstd, rcut, rcut_smth, sel, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut – A float.

  • rcut_smth – A float.

  • sel – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.dotmul_flt_nvnmd(x, w, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.dprc_pairwise_idx(idxs, natoms, name=None)

TODO: add doc.

Parameters
  • idxs – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (forward_qm_map, backward_qm_map, forward_qmmm_map, backward_qmmm_map, natoms_qm, natoms_qmmm, qmmm_frame_idx).

forward_qm_map: A Tensor of type int32. backward_qm_map: A Tensor of type int32. forward_qmmm_map: A Tensor of type int32. backward_qmmm_map: A Tensor of type int32. natoms_qm: A Tensor of type int32. natoms_qmmm: A Tensor of type int32. qmmm_frame_idx: A Tensor of type int32.

deepmd.env.op_module.ewald_recp(coord, charge, natoms, box, ewald_beta, ewald_h, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • charge – A Tensor. Must have the same type as coord.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • ewald_beta – A float.

  • ewald_h – A float.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (energy, force, virial).

energy: A Tensor. Has the same type as coord. force: A Tensor. Has the same type as coord. virial: A Tensor. Has the same type as coord.

deepmd.env.op_module.flt_nvnmd(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.gelu(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.gelu_custom(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.gelu_grad(dy, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.gelu_grad_custom(dy, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.gelu_grad_grad(dy, dy_, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • dy – A Tensor. Must have the same type as dy.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.gelu_grad_grad_custom(dy, dy_, x, name=None)

TODO: add doc.

Parameters
  • dy – A Tensor. Must be one of the following types: float32, float64.

  • dy – A Tensor. Must have the same type as dy.

  • x – A Tensor. Must have the same type as dy.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as dy.

deepmd.env.op_module.map_aparam(aparam, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • aparam – A Tensor. Must be one of the following types: float32, float64.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as aparam.

deepmd.env.op_module.map_flt_nvnmd(x, table, table_grad, table_info, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • table – A Tensor. Must have the same type as x.

  • table_grad – A Tensor. Must have the same type as x.

  • table_info – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.matmul_fitnet_nvnmd(x, w, nbitx, nbitw, normw, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • nbitx – An int.

  • nbitw – An int.

  • normw – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.matmul_flt2fix_nvnmd(x, w, nbit, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • nbit – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.matmul_flt_nvnmd(x, w, normx, normw, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • normx – An int.

  • normw – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.mul_flt_nvnmd(x, w, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as x.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.neighbor_stat(coord, type, natoms, box, mesh, rcut, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • rcut – A float.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (max_nbor_size, min_nbor_dist).

max_nbor_size: A Tensor of type int32. min_nbor_dist: A Tensor. Has the same type as coord.

deepmd.env.op_module.pair_tab(table_info, table_data, type, rij, nlist, natoms, scale, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • table_info – A Tensor of type float64.

  • table_data – A Tensor of type float64.

  • type – A Tensor of type int32.

  • rij – A Tensor. Must be one of the following types: float32, float64.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • scale – A Tensor. Must have the same type as rij.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (atom_energy, force, atom_virial).

atom_energy: A Tensor. Has the same type as rij. force: A Tensor. Has the same type as rij. atom_virial: A Tensor. Has the same type as rij.

deepmd.env.op_module.parallel_prod_force_se_a(net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, parallel=False, start_frac=0, end_frac=1, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • parallel – An optional bool. Defaults to False.

  • start_frac – An optional float. Defaults to 0.

  • end_frac – An optional float. Defaults to 1.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_env_mat_a(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

Compute the environment matrix for descriptor se_e2_a.

Each row of the environment matrix \(\mathcal{R}^i\) can be constructed as follows

\[(\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ]\]

In the above equation, \(\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})\) is the relative coordinate and \(r_{ji}=\lVert \mathbf{R}_{ji} \lVert\) is its norm. The switching function \(s(r)\) is defined as:

\[\begin{split}s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases}\end{split}\]

Note that the environment matrix is normalized by davg and dstd.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64. The coordinates of atoms.

  • type – A Tensor of type int32. The types of atoms.

  • natoms – A Tensor of type int32. The number of atoms. This tensor has the length of Ntypes + 2. natoms[0]: number of local atoms. natoms[1]: total number of atoms held by this processor. natoms[i]: 2 <= i < Ntypes+2, number of type i atoms.

  • box – A Tensor. Must have the same type as coord. The box of frames.

  • mesh – A Tensor of type int32. Gor historical reasons, only the length of the Tensor matters. If size of mesh == 6, pbc is assumed. If size of mesh == 0, no-pbc is assumed.

  • davg – A Tensor. Must have the same type as coord. Average value of the environment matrix for normalization.

  • dstd – A Tensor. Must have the same type as coord. Standard deviation of the environment matrix for normalization.

  • rcut_a – A float. This argument is not used.

  • rcut_r – A float. The cutoff radius for the environment matrix.

  • rcut_r_smth – A float. From where the environment matrix should be smoothed.

  • sel_a – A list of ints. sel_a[i] specifies the maxmum number of type i atoms in the cut-off radius.

  • sel_r – A list of ints. This argument is not used.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. The environment matrix. descrpt_deriv: A Tensor. Has the same type as coord. The derivative of the environment matrix. rij: A Tensor. Has the same type as coord. The distance between the atoms. nlist: A Tensor of type int32. The neighbor list of each atom.

deepmd.env.op_module.prod_env_mat_a_mix(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

Compute the environment matrix mixing the atom types.

The sorting of neighbor atoms depends not on atom types, but on the distance and index. The atoms in nlist matrix will gather forward and thus save space for gaps of types in ProdEnvMatA, resulting in optimized and relative small sel_a.

The additional outputs are listed as following:

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist, ntype, nmask).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32. ntype: A Tensor of type int32. The corresponding atom types in nlist. nmask: A Tensor of type bool. The atom mask in nlist.

deepmd.env.op_module.prod_env_mat_a_mix_nvnmd_quantize(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist, ntype, nmask).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32. ntype: A Tensor of type int32. nmask: A Tensor of type bool.

deepmd.env.op_module.prod_env_mat_a_nvnmd_quantize(coord, type, natoms, box, mesh, davg, dstd, rcut_a, rcut_r, rcut_r_smth, sel_a, sel_r, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut_a – A float.

  • rcut_r – A float.

  • rcut_r_smth – A float.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.prod_env_mat_r(coord, type, natoms, box, mesh, davg, dstd, rcut, rcut_smth, sel, name=None)

TODO: add doc.

Parameters
  • coord – A Tensor. Must be one of the following types: float32, float64.

  • type – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • box – A Tensor. Must have the same type as coord.

  • mesh – A Tensor of type int32.

  • davg – A Tensor. Must have the same type as coord.

  • dstd – A Tensor. Must have the same type as coord.

  • rcut – A float.

  • rcut_smth – A float.

  • sel – A list of ints.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (descrpt, descrpt_deriv, rij, nlist).

descrpt: A Tensor. Has the same type as coord. descrpt_deriv: A Tensor. Has the same type as coord. rij: A Tensor. Has the same type as coord. nlist: A Tensor of type int32.

deepmd.env.op_module.prod_force(net_deriv, in_deriv, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_force_norot(net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_force_se_a(net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_force_se_a_mask(net_deriv, in_deriv, mask, nlist, total_atom_num, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • mask – A Tensor of type int32.

  • nlist – A Tensor of type int32.

  • total_atom_num – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_force_se_r(net_deriv, in_deriv, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_virial(net_deriv, in_deriv, rij, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_virial_norot(net_deriv, in_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_virial_se_a(net_deriv, in_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.prod_virial_se_r(net_deriv, in_deriv, rij, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • net_deriv – A Tensor. Must be one of the following types: float32, float64.

  • in_deriv – A Tensor. Must have the same type as net_deriv.

  • rij – A Tensor. Must have the same type as net_deriv.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as net_deriv. atom_virial: A Tensor. Has the same type as net_deriv.

deepmd.env.op_module.quantize_nvnmd(x, isround, nbit1, nbit2, nbit3, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • isround – An int.

  • nbit1 – An int.

  • nbit2 – An int.

  • nbit3 – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.soft_min_force(du, sw_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • du – A Tensor. Must be one of the following types: float32, float64.

  • sw_deriv – A Tensor. Must have the same type as du.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as du.

deepmd.env.op_module.soft_min_switch(type, rij, nlist, natoms, sel_a, sel_r, alpha, rmin, rmax, name=None)

TODO: add doc.

Parameters
  • type – A Tensor of type int32.

  • rij – A Tensor. Must be one of the following types: float32, float64.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • sel_a – A list of ints.

  • sel_r – A list of ints.

  • alpha – A float.

  • rmin – A float.

  • rmax – A float.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (sw_value, sw_deriv).

sw_value: A Tensor. Has the same type as rij. sw_deriv: A Tensor. Has the same type as rij.

deepmd.env.op_module.soft_min_virial(du, sw_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • du – A Tensor. Must be one of the following types: float32, float64.

  • sw_deriv – A Tensor. Must have the same type as du.

  • rij – A Tensor. Must have the same type as du.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (virial, atom_virial).

virial: A Tensor. Has the same type as du. atom_virial: A Tensor. Has the same type as du.

deepmd.env.op_module.tabulate_fusion(table, table_info, em_x, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_grad(table, table_info, em_x, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_grad_grad(table, table_info, em_x, em, dz_dy_dem_x, dz_dy_dem, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem_x – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_a(table, table_info, em_x, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_a_grad(table, table_info, em_x, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_a_grad_grad(table, table_info, em_x, em, dz_dy_dem_x, dz_dy_dem, descriptor, is_sorted=True, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem_x – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • is_sorted – An optional bool. Defaults to True.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_atten(table, table_info, em_x, em, two_embed, last_layer_size, is_sorted=True, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • two_embed – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • is_sorted – An optional bool. Defaults to True.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_atten_grad(table, table_info, em_x, em, two_embed, dy, descriptor, is_sorted=True, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • two_embed – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • is_sorted – An optional bool. Defaults to True.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem, dy_dtwo).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table. dy_dtwo: A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_r(table, table_info, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_r_grad(table, table_info, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_r_grad_grad(table, table_info, em, dz_dy_dem, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_t(table, table_info, em_x, em, last_layer_size, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • last_layer_size – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_t_grad(table, table_info, em_x, em, dy, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dy – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A tuple of Tensor objects (dy_dem_x, dy_dem).

dy_dem_x: A Tensor. Has the same type as table. dy_dem: A Tensor. Has the same type as table.

deepmd.env.op_module.tabulate_fusion_se_t_grad_grad(table, table_info, em_x, em, dz_dy_dem_x, dz_dy_dem, descriptor, name=None)

TODO: add doc.

Parameters
  • table – A Tensor. Must be one of the following types: float32, float64.

  • table_info – A Tensor. Must have the same type as table.

  • em_x – A Tensor. Must have the same type as table.

  • em – A Tensor. Must have the same type as table.

  • dz_dy_dem_x – A Tensor. Must have the same type as table.

  • dz_dy_dem – A Tensor. Must have the same type as table.

  • descriptor – A Tensor. Must have the same type as table.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as table.

deepmd.env.op_module.tanh4_flt_nvnmd(x, name=None)

TODO: add doc.

Parameters
  • x – A Tensor. Must be one of the following types: float32, float64.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as x.

deepmd.env.op_module.unaggregated_dy2_dx(z, w, dy_dx, dy2_dx, ybar, functype, name=None)

TODO: add doc.

Parameters
  • z – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as z.

  • dy_dx – A Tensor. Must have the same type as z.

  • dy2_dx – A Tensor. Must have the same type as z.

  • ybar – A Tensor. Must have the same type as z.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as z.

deepmd.env.op_module.unaggregated_dy2_dx_s(y, dy, w, xbar, functype, name=None)

TODO: add doc.

Parameters
  • y – A Tensor. Must be one of the following types: float32, float64.

  • dy – A Tensor. Must have the same type as y.

  • w – A Tensor. Must have the same type as y.

  • xbar – A Tensor. Must have the same type as y.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as y.

deepmd.env.op_module.unaggregated_dy_dx(z, w, dy_dx, ybar, functype, name=None)

TODO: add doc.

Parameters
  • z – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as z.

  • dy_dx – A Tensor. Must have the same type as z.

  • ybar – A Tensor. Must have the same type as z.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as z.

deepmd.env.op_module.unaggregated_dy_dx_s(y, w, xbar, functype, name=None)

TODO: add doc.

Parameters
  • y – A Tensor. Must be one of the following types: float32, float64.

  • w – A Tensor. Must have the same type as y.

  • xbar – A Tensor. Must have the same type as y.

  • functype – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as y.

op_grads_module

Python wrappers around TensorFlow ops.

This file is MACHINE GENERATED! Do not edit.

deepmd.env.op_grads_module.ProdForceGrad(grad, net_deriv, in_deriv, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.ProdForceSeAGrad(grad, net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.ProdForceSeAMaskGrad(grad, net_deriv, in_deriv, mask, nlist, total_atom_num, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • mask – A Tensor of type int32.

  • nlist – A Tensor of type int32.

  • total_atom_num – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.ProdForceSeRGrad(grad, net_deriv, in_deriv, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.ProdVirialGrad(grad, net_deriv, in_deriv, rij, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.ProdVirialSeAGrad(grad, net_deriv, in_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.ProdVirialSeRGrad(grad, net_deriv, in_deriv, rij, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.SoftMinForceGrad(grad, du, sw_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • du – A Tensor. Must have the same type as grad.

  • sw_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.SoftMinVirialGrad(grad, du, sw_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • du – A Tensor. Must have the same type as grad.

  • sw_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.prod_force_grad(grad, net_deriv, in_deriv, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.prod_force_se_a_grad(grad, net_deriv, in_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.prod_force_se_a_mask_grad(grad, net_deriv, in_deriv, mask, nlist, total_atom_num, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • mask – A Tensor of type int32.

  • nlist – A Tensor of type int32.

  • total_atom_num – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.prod_force_se_r_grad(grad, net_deriv, in_deriv, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.prod_virial_grad(grad, net_deriv, in_deriv, rij, nlist, axis, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • axis – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.prod_virial_se_a_grad(grad, net_deriv, in_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.prod_virial_se_r_grad(grad, net_deriv, in_deriv, rij, nlist, natoms, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • net_deriv – A Tensor. Must have the same type as grad.

  • in_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.soft_min_force_grad(grad, du, sw_deriv, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • du – A Tensor. Must have the same type as grad.

  • sw_deriv – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

deepmd.env.op_grads_module.soft_min_virial_grad(grad, du, sw_deriv, rij, nlist, natoms, n_a_sel, n_r_sel, name=None)

TODO: add doc.

Parameters
  • grad – A Tensor. Must be one of the following types: float32, float64.

  • du – A Tensor. Must have the same type as grad.

  • sw_deriv – A Tensor. Must have the same type as grad.

  • rij – A Tensor. Must have the same type as grad.

  • nlist – A Tensor of type int32.

  • natoms – A Tensor of type int32.

  • n_a_sel – An int.

  • n_r_sel – An int.

  • name – A name for the operation (optional).

Returns

A Tensor. Has the same type as grad.

C++ API

Class Hierarchy

File Hierarchy

Full API

Namespaces

Namespace deepmd
Classes
Functions
Typedefs
Namespace tensorflow

Classes and Structs

Struct deepmd_exception
Inheritance Relationships
Derived Type
Struct Documentation
struct deepmd_exception

Subclassed by deepmd::tf_exception

Struct NeighborListData
Struct Documentation
struct NeighborListData

Public Functions

void copy_from_nlist(const InputNlist &inlist)
void shuffle(const std::vector<int> &fwd_map)
void shuffle(const deepmd::AtomMap &map)
void shuffle_exclude_empty(const std::vector<int> &fwd_map)
void make_inlist(InputNlist &inlist)

Public Members

std::vector<int> ilist

Array stores the core region atom’s index.

std::vector<std::vector<int>> jlist

Array stores the core region atom’s neighbor index.

std::vector<int> numneigh

Array stores the number of neighbors of core region atoms.

std::vector<int*> firstneigh

Array stores the the location of the first neighbor of core region atoms.

Struct tf_exception
Inheritance Relationships
Base Type
Struct Documentation
struct tf_exception : public deepmd_exception

Throw exception if TensorFlow doesn’t work.

Public Functions

inline tf_exception()
inline tf_exception(const std::string &msg)
Class AtomMap
Class Documentation
class AtomMap

Public Functions

AtomMap()
AtomMap(const std::vector<int>::const_iterator in_begin, const std::vector<int>::const_iterator in_end)
template<typename VALUETYPE>
void forward(typename std::vector<VALUETYPE>::iterator out, const typename std::vector<VALUETYPE>::const_iterator in, const int stride = 1, const int nframes = 1, const int nall = 0) const
template<typename VALUETYPE>
void backward(typename std::vector<VALUETYPE>::iterator out, const typename std::vector<VALUETYPE>::const_iterator in, const int stride = 1, const int nframes = 1, const int nall = 0) const
inline const std::vector<int> &get_type() const
inline const std::vector<int> &get_fwd_map() const
inline const std::vector<int> &get_bkw_map() const
Class DeepPot
Class Documentation
class DeepPot

Deep Potential.

Public Functions

DeepPot()

DP constructor without initialization.

~DeepPot()
DeepPot(const std::string &model, const int &gpu_rank = 0, const std::string &file_content = "")

DP constructor with initialization.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank. Default is 0.

  • file_content[in] The content of the model file. If it is not empty, DP will read from the string instead of the file.

void init(const std::string &model, const int &gpu_rank = 0, const std::string &file_content = "")

Initialize the DP.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank. Default is 0.

  • file_content[in] The content of the model file. If it is not empty, DP will read from the string instead of the file.

void print_summary(const std::string &pre) const

Print the DP summary to the screen.

Parameters

pre[in] The prefix to each line.

template<typename VALUETYPE, typename ENERGYVTYPE>
void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force and virial by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &inlist, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force and virial by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • nghost[in] The number of ghost atoms.

  • inlist[in] The input neighbour list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_energy, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, virial, atomic energy, and atomic virial by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_energy[out] The atomic energy.

  • atom_virial[out] The atomic virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_energy, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, virial, atomic energy, and atomic virial by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_energy[out] The atomic energy.

  • atom_virial[out] The atomic virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • nghost[in] The number of ghost atoms.

  • lmp_list[in] The input neighbour list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
void compute_mixed_type(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const int &nframes, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, and virial with the mixed type by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • nframes[in] The number of frames.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The array should be of size nframes x natoms.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
void compute_mixed_type(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_energy, std::vector<VALUETYPE> &atom_virial, const int &nframes, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, and virial with the mixed type by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_energy[out] The atomic energy.

  • atom_virial[out] The atomic virial.

  • nframes[in] The number of frames.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The array should be of size nframes x natoms.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

inline double cutoff() const

Get the cutoff radius.

Returns

The cutoff radius.

inline int numb_types() const

Get the number of types.

Returns

The number of types.

inline int numb_types_spin() const

Get the number of types with spin.

Returns

The number of types with spin.

inline int dim_fparam() const

Get the dimension of the frame parameter.

Returns

The dimension of the frame parameter.

inline int dim_aparam() const

Get the dimension of the atomic parameter.

Returns

The dimension of the atomic parameter.

void get_type_map(std::string &type_map)

Get the type map (element name of the atom types) of this model.

Parameters

type_map[out] The type map of this model.

Class DeepPotModelDevi
Class Documentation
class DeepPotModelDevi

Public Functions

DeepPotModelDevi()

DP model deviation constructor without initialization.

~DeepPotModelDevi()
DeepPotModelDevi(const std::vector<std::string> &models, const int &gpu_rank = 0, const std::vector<std::string> &file_contents = std::vector<std::string>())

DP model deviation constructor with initialization.

Parameters
  • models[in] The names of the frozen model files.

  • gpu_rank[in] The GPU rank. Default is 0.

  • file_contents[in] The contents of the model files. If it is not empty, DP will read from the strings instead of the files.

void init(const std::vector<std::string> &models, const int &gpu_rank = 0, const std::vector<std::string> &file_contents = std::vector<std::string>())

Initialize the DP model deviation contrcutor.

Parameters
  • models[in] The names of the frozen model files.

  • gpu_rank[in] The GPU rank. Default is 0.

  • file_contents[in] The contents of the model files. If it is not empty, DP will read from the strings instead of the files.

template<typename VALUETYPE>
void compute(std::vector<ENERGYTYPE> &all_ener, std::vector<std::vector<VALUETYPE>> &all_force, std::vector<std::vector<VALUETYPE>> &all_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force and virial by using these DP models.

Parameters
  • all_ener[out] The system energies of all models.

  • all_force[out] The forces on each atom of all models.

  • all_virial[out] The virials of all models.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • nghost[in] The number of ghost atoms.

  • lmp_list[in] The input neighbour list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. dim_aparam. Then all frames and atoms are provided with the same aparam.

template<typename VALUETYPE>
void compute(std::vector<ENERGYTYPE> &all_ener, std::vector<std::vector<VALUETYPE>> &all_force, std::vector<std::vector<VALUETYPE>> &all_virial, std::vector<std::vector<VALUETYPE>> &all_atom_energy, std::vector<std::vector<VALUETYPE>> &all_atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, virial, atomic energy, and atomic virial by using these DP models.

Parameters
  • all_ener[out] The system energies of all models.

  • all_force[out] The forces on each atom of all models.

  • all_virial[out] The virials of all models.

  • all_atom_energy[out] The atomic energies of all models.

  • all_atom_virial[out] The atomic virials of all models.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9.

  • nghost[in] The number of ghost atoms.

  • lmp_list[in] The input neighbour list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. dim_aparam. Then all frames and atoms are provided with the same aparam.

inline double cutoff() const

Get the cutoff radius.

Returns

The cutoff radius.

inline int numb_types() const

Get the number of types.

Returns

The number of types.

inline int numb_types_spin() const

Get the number of types with spin.

Returns

The number of types with spin.

inline int dim_fparam() const

Get the dimension of the frame parameter.

Returns

The dimension of the frame parameter.

inline int dim_aparam() const

Get the dimension of the atomic parameter.

Returns

The dimension of the atomic parameter.

template<typename VALUETYPE>
void compute_avg(VALUETYPE &dener, const std::vector<VALUETYPE> &all_energy)

Compute the average energy.

Parameters
  • dener[out] The average energy.

  • all_energy[in] The energies of all models.

template<typename VALUETYPE>
void compute_avg(std::vector<VALUETYPE> &avg, const std::vector<std::vector<VALUETYPE>> &xx)

Compute the average of vectors.

Parameters
  • avg[out] The average of vectors.

  • xx[in] The vectors of all models.

template<typename VALUETYPE>
void compute_std(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const std::vector<std::vector<VALUETYPE>> &xx, const int &stride)

Compute the standard deviation of vectors.

Parameters
  • std[out] The standard deviation of vectors.

  • avg[in] The average of vectors.

  • xx[in] The vectors of all models.

  • stride[in] The stride to compute the deviation.

template<typename VALUETYPE>
void compute_relative_std(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const VALUETYPE eps, const int &stride)

Compute the relative standard deviation of vectors.

Parameters
  • std[out] The standard deviation of vectors.

  • avg[in] The average of vectors.

  • eps[in] The level parameter for computing the deviation.

  • stride[in] The stride to compute the deviation.

template<typename VALUETYPE>
void compute_std_e(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const std::vector<std::vector<VALUETYPE>> &xx)

Compute the standard deviation of atomic energies.

Parameters
  • std[out] The standard deviation of atomic energies.

  • avg[in] The average of atomic energies.

  • xx[in] The vectors of all atomic energies.

template<typename VALUETYPE>
void compute_std_f(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const std::vector<std::vector<VALUETYPE>> &xx)

Compute the standard deviation of forces.

Parameters
  • std[out] The standard deviation of forces.

  • avg[in] The average of forces.

  • xx[in] The vectors of all forces.

template<typename VALUETYPE>
void compute_relative_std_f(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const VALUETYPE eps)

Compute the relative standard deviation of forces.

Parameters
  • std[out] The relative standard deviation of forces.

  • avg[in] The relative average of forces.

  • eps[in] The level parameter for computing the deviation.

Class DeepTensor
Class Documentation
class DeepTensor

Deep Tensor.

Public Functions

DeepTensor()

Deep Tensor constructor without initialization.

~DeepTensor()
DeepTensor(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

Deep Tensor constructor with initialization..

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank. Default is 0.

  • name_scope[in] Name scopes of operations.

void init(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

Initialize the Deep Tensor.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank. Default is 0.

  • name_scope[in] Name scopes of operations.

void print_summary(const std::string &pre) const

Print the DP summary to the screen.

Parameters

pre[in] The prefix to each line.

template<typename VALUETYPE>
void compute(std::vector<VALUETYPE> &value, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box)

Evaluate the value by using this model.

Parameters
  • value[out] The value to evalute, usually would be the atomic tensor.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9.

template<typename VALUETYPE>
void compute(std::vector<VALUETYPE> &value, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &inlist)

Evaluate the value by using this model.

Parameters
  • value[out] The value to evalute, usually would be the atomic tensor.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9.

  • nghost[in] The number of ghost atoms.

  • inlist[in] The input neighbour list.

template<typename VALUETYPE>
void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box)

Evaluate the global tensor and component-wise force and virial.

Parameters
  • global_tensor[out] The global tensor to evalute.

  • force[out] The component-wise force of the global tensor, size odim x natoms x 3.

  • virial[out] The component-wise virial of the global tensor, size odim x 9.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9.

template<typename VALUETYPE>
void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &inlist)

Evaluate the global tensor and component-wise force and virial.

Parameters
  • global_tensor[out] The global tensor to evalute.

  • force[out] The component-wise force of the global tensor, size odim x natoms x 3.

  • virial[out] The component-wise virial of the global tensor, size odim x 9.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9.

  • nghost[in] The number of ghost atoms.

  • inlist[in] The input neighbour list.

template<typename VALUETYPE>
void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_tensor, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box)

Evaluate the global tensor and component-wise force and virial.

Parameters
  • global_tensor[out] The global tensor to evalute.

  • force[out] The component-wise force of the global tensor, size odim x natoms x 3.

  • virial[out] The component-wise virial of the global tensor, size odim x 9.

  • atom_tensor[out] The atomic tensor value of the model, size natoms x odim.

  • atom_virial[out] The component-wise atomic virial of the global tensor, size odim x natoms x 9.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9.

template<typename VALUETYPE>
void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_tensor, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &inlist)

Evaluate the global tensor and component-wise force and virial.

Parameters
  • global_tensor[out] The global tensor to evalute.

  • force[out] The component-wise force of the global tensor, size odim x natoms x 3.

  • virial[out] The component-wise virial of the global tensor, size odim x 9.

  • atom_tensor[out] The atomic tensor value of the model, size natoms x odim.

  • atom_virial[out] The component-wise atomic virial of the global tensor, size odim x natoms x 9.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9.

  • nghost[in] The number of ghost atoms.

  • inlist[in] The input neighbour list.

inline double cutoff() const

Get the cutoff radius.

Returns

The cutoff radius.

inline int numb_types() const

Get the number of types.

Returns

The number of types.

inline int output_dim() const

Get the output dimension.

Returns

The output dimension.

inline const std::vector<int> &sel_types() const

Get the list of sel types.

Returns

The list of sel types.

Class DipoleChargeModifier
Class Documentation
class DipoleChargeModifier

Dipole charge modifier.

Public Functions

DipoleChargeModifier()

Dipole charge modifier without initialization.

DipoleChargeModifier(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

Dipole charge modifier without initialization.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank. Default is 0.

  • name_scope[in] The name scope.

~DipoleChargeModifier()
void init(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

Initialize the dipole charge modifier.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank. Default is 0.

  • name_scope[in] The name scope.

void print_summary(const std::string &pre) const

Print the DP summary to the screen.

Parameters

pre[in] The prefix to each line.

template<typename VALUETYPE>
void compute(std::vector<VALUETYPE> &dfcorr_, std::vector<VALUETYPE> &dvcorr_, const std::vector<VALUETYPE> &dcoord_, const std::vector<int> &datype_, const std::vector<VALUETYPE> &dbox, const std::vector<std::pair<int, int>> &pairs, const std::vector<VALUETYPE> &delef_, const int nghost, const InputNlist &lmp_list)

Evaluate the force and virial correction by using this dipole charge modifier.

Parameters
  • dfcorr_[out] The force correction on each atom.

  • dvcorr_[out] The virial correction.

  • dcoord_[in] The coordinates of atoms. The array should be of size natoms x 3.

  • datype_[in] The atom types. The list should contain natoms ints.

  • dbox[in] The cell of the region. The array should be of size 9.

  • pairs[in] The pairs of atoms. The list should contain npairs pairs of ints.

  • delef_[in] The electric field on each atom. The array should be of size natoms x 3.

  • nghost[in] The number of ghost atoms.

  • lmp_list[in] The neighbor list.

inline double cutoff() const

Get cutoff radius.

Returns

double cutoff radius.

inline int numb_types() const

Get the number of atom types.

Returns

int number of atom types.

inline std::vector<int> sel_types() const

Get the list of sel types.

Returns

The list of sel types.

Functions

Function deepmd::check_status
Function Documentation
void deepmd::check_status(const tensorflow::Status &status)

Check TensorFlow status. Exit if not OK.

Parameters

status[in] TensorFlow status.

Function deepmd::convert_pbtxt_to_pb
Function Documentation
void deepmd::convert_pbtxt_to_pb(std::string fn_pb_txt, std::string fn_pb)

Convert pbtxt to pb.

Parameters
  • fn_pb_txt[in] Filename of the pb txt file.

  • fn_pb[in] Filename of the pb file.

Function deepmd::get_env_nthreads
Function Documentation
void deepmd::get_env_nthreads(int &num_intra_nthreads, int &num_inter_nthreads)

Get the number of threads from the environment variable.

A warning will be thrown if environmental variables are not set.

Parameters
  • num_intra_nthreads[out] The number of intra threads. Read from TF_INTRA_OP_PARALLELISM_THREADS.

  • num_inter_nthreads[out] The number of inter threads. Read from TF_INTER_OP_PARALLELISM_THREADS.

Function deepmd::load_op_library
Function Documentation
void deepmd::load_op_library()

Dynamically load OP library. This should be called before loading graphs.

Function deepmd::model_compatable
Function Documentation
bool deepmd::model_compatable(std::string &model_version)

Check if the model version is supported.

Parameters

model_version[in] The model version.

Returns

Whether the model is supported (true or false).

Function deepmd::name_prefix
Function Documentation
std::string deepmd::name_prefix(const std::string &name_scope)
Function deepmd::print_summary
Function Documentation
void deepmd::print_summary(const std::string &pre)

Print the summary of DeePMD-kit, including the version and the build information.

Parameters

pre[in] The prefix to each line.

Function deepmd::read_file_to_string
Function Documentation
void deepmd::read_file_to_string(std::string model, std::string &file_content)

Read model file to a string.

Parameters
  • model[in] Path to the model.

  • file_content[out] Content of the model file.

Template Function deepmd::select_by_type
Function Documentation
template<typename VALUETYPE>
void deepmd::select_by_type(std::vector<int> &fwd_map, std::vector<int> &bkw_map, int &nghost_real, const std::vector<VALUETYPE> &dcoord_, const std::vector<int> &datype_, const int &nghost, const std::vector<int> &sel_type_)

Get forward and backward map of selected atoms by atom types.

Parameters
  • fwd_map[out] The forward map with size natoms.

  • bkw_map[out] The backward map with size nreal.

  • nghost_real[out] The number of selected ghost atoms.

  • dcoord_[in] The coordinates of all atoms. Reserved for compatibility.

  • datype_[in] The atom types of all atoms.

  • nghost[in] The number of ghost atoms.

  • sel_type_[in] The selected atom types.

Template Function deepmd::select_map(std::vector<VT>&, const std::vector<VT>&, const std::vector<int>&, const int&, const int&, const int&, const int&)
Function Documentation
template<typename VT>
void deepmd::select_map(std::vector<VT> &out, const std::vector<VT> &in, const std::vector<int> &fwd_map, const int &stride, const int &nframes = 1, const int &nall1 = 0, const int &nall2 = 0)

Apply the given map to a vector.

Parameters
  • out[out] The output vector.

  • in[in] The input vector.

  • fwd_map[in] The map.

  • stride[in] The stride of the input vector.

  • nframes[in] The number of frames.

  • nall1[in] The number of atoms in the input vector.

  • nall2[in] The number of atoms in the output vector.

Template Function deepmd::select_map(typename std::vector<VT>::iterator, const typename std::vector<VT>::const_iterator, const std::vector<int>&, const int&, const int&, const int&, const int&)
Function Documentation
template<typename VT>
void deepmd::select_map(typename std::vector<VT>::iterator out, const typename std::vector<VT>::const_iterator in, const std::vector<int> &fwd_map, const int &stride, const int &nframes = 1, const int &nall1 = 0, const int &nall2 = 0)

Apply the given map to a vector.

Parameters
  • out[out] The output vector.

  • in[in] The input vector.

  • fwd_map[in] The map.

  • stride[in] The stride of the input vector.

  • nframes[in] The number of frames.

  • nall1[in] The number of atoms in the input vector.

  • nall2[in] The number of atoms in the output vector.

Template Function deepmd::select_map_inv(std::vector<VT>&, const std::vector<VT>&, const std::vector<int>&, const int&)
Function Documentation
template<typename VT>
void deepmd::select_map_inv(std::vector<VT> &out, const std::vector<VT> &in, const std::vector<int> &fwd_map, const int &stride)
Template Function deepmd::select_map_inv(typename std::vector<VT>::iterator, const typename std::vector<VT>::const_iterator, const std::vector<int>&, const int&)
Function Documentation
template<typename VT>
void deepmd::select_map_inv(typename std::vector<VT>::iterator out, const typename std::vector<VT>::const_iterator in, const std::vector<int> &fwd_map, const int &stride)
Template Function deepmd::select_real_atoms
Function Documentation
template<typename VALUETYPE>
void deepmd::select_real_atoms(std::vector<int> &fwd_map, std::vector<int> &bkw_map, int &nghost_real, const std::vector<VALUETYPE> &dcoord_, const std::vector<int> &datype_, const int &nghost, const int &ntypes)
Template Function deepmd::select_real_atoms_coord
Function Documentation
template<typename VALUETYPE>
void deepmd::select_real_atoms_coord(std::vector<VALUETYPE> &dcoord, std::vector<int> &datype, std::vector<VALUETYPE> &aparam, int &nghost_real, std::vector<int> &fwd_map, std::vector<int> &bkw_map, int &nall_real, int &nloc_real, const std::vector<VALUETYPE> &dcoord_, const std::vector<int> &datype_, const std::vector<VALUETYPE> &aparam_, const int &nghost, const int &ntypes, const int &nframes, const int &daparam, const int &nall)
Function deepmd::session_get_dtype
Function Documentation
int deepmd::session_get_dtype(tensorflow::Session *session, const std::string name, const std::string scope = "")

Get the type of a tensor.

Parameters
  • session[in] TensorFlow session.

  • name[in] The name of the tensor.

  • scope[in] The scope of the tensor.

Returns

The type of the tensor as int.

Template Function deepmd::session_get_scalar
Function Documentation
template<typename VT>
VT deepmd::session_get_scalar(tensorflow::Session *session, const std::string name, const std::string scope = "")

Get the value of a tensor.

Parameters
  • session[in] TensorFlow session.

  • name[in] The name of the tensor.

  • scope[in] The scope of the tensor.

Returns

The value of the tensor.

Template Function deepmd::session_get_vector
Function Documentation
template<typename VT>
void deepmd::session_get_vector(std::vector<VT> &o_vec, tensorflow::Session *session, const std::string name_, const std::string scope = "")

Get the vector of a tensor.

Parameters
  • o_vec[out] The output vector.

  • session[in] TensorFlow session.

  • name[in] The name of the tensor.

  • scope[in] The scope of the tensor.

Template Function deepmd::session_input_tensors(std::vector<std::pair<std::string, tensorflow::Tensor>>&, const std::vector<VALUETYPE>&, const int&, const std::vector<int>&, const std::vector<VALUETYPE>&, const double&, const std::vector<VALUETYPE>&, const std::vector<VALUETYPE>&, const deepmd::AtomMap&, const std::string)
Function Documentation
template<typename MODELTYPE, typename VALUETYPE>
int deepmd::session_input_tensors(std::vector<std::pair<std::string, tensorflow::Tensor>> &input_tensors, const std::vector<VALUETYPE> &dcoord_, const int &ntypes, const std::vector<int> &datype_, const std::vector<VALUETYPE> &dbox, const double &cell_size, const std::vector<VALUETYPE> &fparam_, const std::vector<VALUETYPE> &aparam_, const deepmd::AtomMap &atommap, const std::string scope = "")

Get input tensors.

Parameters
  • input_tensors[out] Input tensors.

  • dcoord_[in] Coordinates of atoms.

  • ntypes[in] Number of atom types.

  • datype_[in] Atom types.

  • dbox[in] Box matrix.

  • cell_size[in] Cell size.

  • fparam_[in] Frame parameters.

  • aparam_[in] Atom parameters.

  • atommap[in] Atom map.

  • scope[in] The scope of the tensors.

Template Function deepmd::session_input_tensors(std::vector<std::pair<std::string, tensorflow::Tensor>>&, const std::vector<VALUETYPE>&, const int&, const std::vector<int>&, const std::vector<VALUETYPE>&, InputNlist&, const std::vector<VALUETYPE>&, const std::vector<VALUETYPE>&, const deepmd::AtomMap&, const int, const int, const std::string)
Function Documentation
template<typename MODELTYPE, typename VALUETYPE>
int deepmd::session_input_tensors(std::vector<std::pair<std::string, tensorflow::Tensor>> &input_tensors, const std::vector<VALUETYPE> &dcoord_, const int &ntypes, const std::vector<int> &datype_, const std::vector<VALUETYPE> &dbox, InputNlist &dlist, const std::vector<VALUETYPE> &fparam_, const std::vector<VALUETYPE> &aparam_, const deepmd::AtomMap &atommap, const int nghost, const int ago, const std::string scope = "")

Get input tensors.

Parameters
  • input_tensors[out] Input tensors.

  • dcoord_[in] Coordinates of atoms.

  • ntypes[in] Number of atom types.

  • datype_[in] Atom types.

  • dlist[in] Neighbor list.

  • fparam_[in] Frame parameters.

  • aparam_[in] Atom parameters.

  • atommap[in] Atom map.

  • nghost[in] Number of ghost atoms.

  • ago[in] Update the internal neighbour list if ago is 0.

  • scope[in] The scope of the tensors.

Template Function deepmd::session_input_tensors_mixed_type
Function Documentation
template<typename MODELTYPE, typename VALUETYPE>
int deepmd::session_input_tensors_mixed_type(std::vector<std::pair<std::string, tensorflow::Tensor>> &input_tensors, const int &nframes, const std::vector<VALUETYPE> &dcoord_, const int &ntypes, const std::vector<int> &datype_, const std::vector<VALUETYPE> &dbox, const double &cell_size, const std::vector<VALUETYPE> &fparam_, const std::vector<VALUETYPE> &aparam_, const deepmd::AtomMap &atommap, const std::string scope = "")

Get input tensors for mixed type.

Parameters
  • input_tensors[out] Input tensors.

  • nframes[in] Number of frames.

  • dcoord_[in] Coordinates of atoms.

  • ntypes[in] Number of atom types.

  • datype_[in] Atom types.

  • dlist[in] Neighbor list.

  • fparam_[in] Frame parameters.

  • aparam_[in] Atom parameters.

  • atommap[in] Atom map.

  • nghost[in] Number of ghost atoms.

  • ago[in] Update the internal neighbour list if ago is 0.

  • scope[in] The scope of the tensors.

Typedefs

Typedef deepmd::ENERGYTYPE
Typedef Documentation
typedef double deepmd::ENERGYTYPE
Typedef deepmd::STRINGTYPE
Typedef Documentation
typedef std::string deepmd::STRINGTYPE

C API

Class Hierarchy

File Hierarchy

Full API

Namespaces

Namespace deepmd

Contents

Namespaces
Namespace std

Classes and Structs

Struct deepmd_exception
Inheritance Relationships
Base Type
  • public std::runtime_error

Struct Documentation
struct deepmd_exception : public std::runtime_error

General DeePMD-kit exception. Throw if anything doesn’t work.

Public Functions

inline deepmd_exception()
inline deepmd_exception(const std::string &msg)
Struct InputNlist
Struct Documentation
struct InputNlist

Neighbor list.

Public Functions

inline InputNlist()
inline InputNlist(int inum_, int *ilist_, int *numneigh_, int **firstneigh_)

Public Members

DP_Nlist *nl

C API neighbor list.

int inum

Number of core region atoms.

int *ilist

Array stores the core region atom’s index.

int *numneigh

Array stores the core region atom’s neighbor atom number.

int **firstneigh

Array stores the core region atom’s neighbor index.

Struct DP_DeepPot
Struct Documentation
struct DP_DeepPot

Public Functions

DP_DeepPot()
DP_DeepPot(deepmd::DeepPot &dp)

Public Members

deepmd::DeepPot dp
std::string exception
int dfparam
int daparam
Struct DP_DeepPotModelDevi
Struct Documentation
struct DP_DeepPotModelDevi

Public Functions

DP_DeepPotModelDevi()
DP_DeepPotModelDevi(deepmd::DeepPotModelDevi &dp)

Public Members

deepmd::DeepPotModelDevi dp
std::string exception
int dfparam
int daparam
Struct DP_DeepTensor
Struct Documentation
struct DP_DeepTensor

Public Functions

DP_DeepTensor()
DP_DeepTensor(deepmd::DeepTensor &dt)

Public Members

deepmd::DeepTensor dt
std::string exception
Struct DP_DipoleChargeModifier
Struct Documentation
struct DP_DipoleChargeModifier

Public Functions

DP_DipoleChargeModifier()
DP_DipoleChargeModifier(deepmd::DipoleChargeModifier &dcm)

Public Members

deepmd::DipoleChargeModifier dcm
std::string exception
Struct DP_Nlist
Struct Documentation
struct DP_Nlist

Public Functions

DP_Nlist()
DP_Nlist(deepmd::InputNlist &nl)

Public Members

deepmd::InputNlist nl
std::string exception
Class DeepPot
Class Documentation
class DeepPot

Deep Potential.

Public Functions

inline DeepPot()

DP constructor without initialization.

inline ~DeepPot()
inline DeepPot(const std::string &model, const int &gpu_rank = 0, const std::string &file_content = "")

DP constructor with initialization.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank.

  • file_content[in] The content of the frozen model file.

inline void init(const std::string &model, const int &gpu_rank = 0, const std::string &file_content = "")

Initialize the DP.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank.

  • file_content[in] The content of the frozen model file.

template<typename VALUETYPE, typename ENERGYVTYPE>
inline void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force and virial by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
inline void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_energy, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, virial, atomic energy, and atomic virial by using this DP.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_energy[out] The atomic energy.

  • atom_virial[out] The atomic virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
inline void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force and virial by using this DP with the neighbor list.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
inline void compute(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_energy, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, virial, atomic energy, and atomic virial by using this DP with the neighbor list.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_energy[out] The atomic energy.

  • atom_virial[out] The atomic virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
inline void compute_mixed_type(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const int &nframes, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force and virial by using this DP with the mixed type.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • nframes[in] The number of frames.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

template<typename VALUETYPE, typename ENERGYVTYPE>
inline void compute_mixed_type(ENERGYVTYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_energy, std::vector<VALUETYPE> &atom_virial, const int &nframes, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, virial, atomic energy, and atomic virial by using this DP with the mixed type.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_energy[out] The atomic energy.

  • atom_virial[out] The atomic virial.

  • nframes[in] The number of frames.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • fparam[in] The frame parameter. The array can be of size : nframes x dim_fparam. dim_fparam. Then all frames are assumed to be provided with the same fparam.

  • aparam[in] The atomic parameter The array can be of size : nframes x natoms x dim_aparam. natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam.

inline double cutoff() const

Get the cutoff radius.

Returns

The cutoff radius.

inline int numb_types() const

Get the number of types.

Returns

The number of types.

inline int numb_types_spin() const

Get the number of types with spin.

Returns

The number of types with spin.

inline void get_type_map(std::string &type_map)

Get the type map (element name of the atom types) of this model.

Parameters

type_map[out] The type map of this model.

inline void print_summary(const std::string &pre) const

Print the summary of DeePMD-kit, including the version and the build information.

Parameters

pre[in] The prefix to each line.

inline int dim_fparam() const

Get the dimension of the frame parameter.

Returns

The dimension of the frame parameter.

inline int dim_aparam() const

Get the dimension of the atomic parameter.

Returns

The dimension of the atomic parameter.

Class DeepPotModelDevi
Class Documentation
class DeepPotModelDevi

Deep Potential model deviation.

Public Functions

inline DeepPotModelDevi()

DP model deviation constructor without initialization.

inline ~DeepPotModelDevi()
inline DeepPotModelDevi(const std::vector<std::string> &models)

DP model deviation constructor with initialization.

Parameters

models[in] The names of the frozen model file.

inline void init(const std::vector<std::string> &models, const int &gpu_rank = 0, const std::vector<std::string> &file_content = std::vector<std::string>())

Initialize the DP model deviation.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The GPU rank.

  • file_content[in] The content of the frozen model file.

template<typename VALUETYPE>
inline void compute(std::vector<double> &ener, std::vector<std::vector<VALUETYPE>> &force, std::vector<std::vector<VALUETYPE>> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force and virial by using this DP model deviation.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

template<typename VALUETYPE>
inline void compute(std::vector<double> &ener, std::vector<std::vector<VALUETYPE>> &force, std::vector<std::vector<VALUETYPE>> &virial, std::vector<std::vector<VALUETYPE>> &atom_energy, std::vector<std::vector<VALUETYPE>> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list, const int &ago, const std::vector<VALUETYPE> &fparam = std::vector<VALUETYPE>(), const std::vector<VALUETYPE> &aparam = std::vector<VALUETYPE>())

Evaluate the energy, force, virial, atomic energy, and atomic virial by using this DP model deviation.

Parameters
  • ener[out] The system energy.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_energy[out] The atomic energy.

  • atom_virial[out] The atomic virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

inline double cutoff() const

Get the cutoff radius.

Returns

The cutoff radius.

inline int numb_types() const

Get the number of types.

Returns

The number of types.

inline int numb_types_spin() const

Get the number of types with spin.

Returns

The number of types with spin.

inline int dim_fparam() const

Get the dimension of the frame parameter.

Returns

The dimension of the frame parameter.

inline int dim_aparam() const

Get the dimension of the atomic parameter.

Returns

The dimension of the atomic parameter.

template<typename VALUETYPE>
inline void compute_avg(std::vector<VALUETYPE> &avg, const std::vector<std::vector<VALUETYPE>> &xx)

Compute the average of vectors.

Parameters
  • avg[out] The average of vectors.

  • xx[in] The vectors of all models.

template<typename VALUETYPE>
inline void compute_std(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const std::vector<std::vector<VALUETYPE>> &xx, const int &stride)

Compute the standard deviation of vectors.

Parameters
  • std[out] The standard deviation of vectors.

  • avg[in] The average of vectors.

  • xx[in] The vectors of all models.

  • stride[in] The stride to compute the deviation.

template<typename VALUETYPE>
inline void compute_relative_std(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const VALUETYPE eps, const int &stride)

Compute the relative standard deviation of vectors.

Parameters
  • std[out] The standard deviation of vectors.

  • avg[in] The average of vectors.

  • eps[in] The level parameter for computing the deviation.

  • stride[in] The stride to compute the deviation.

template<typename VALUETYPE>
inline void compute_std_f(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const std::vector<std::vector<VALUETYPE>> &xx)

Compute the standard deviation of forces.

Parameters
  • std[out] The standard deviation of forces.

  • avg[in] The average of forces.

  • xx[in] The vectors of all forces.

template<typename VALUETYPE>
inline void compute_relative_std_f(std::vector<VALUETYPE> &std, const std::vector<VALUETYPE> &avg, const VALUETYPE eps)

Compute the relative standard deviation of forces.

Parameters
  • std[out] The relative standard deviation of forces.

  • avg[in] The relative average of forces.

  • eps[in] The level parameter for computing the deviation.

Class DeepTensor
Class Documentation
class DeepTensor

Deep Tensor.

Public Functions

inline DeepTensor()

Deep Tensor constructor without initialization.

inline ~DeepTensor()
inline DeepTensor(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

DeepTensor constructor with initialization.

Parameters

model[in] The name of the frozen model file.

inline void init(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

Initialize the DeepTensor.

Parameters

model[in] The name of the frozen model file.

template<typename VALUETYPE>
inline void compute(std::vector<VALUETYPE> &tensor, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box)

Evaluate the tensor, force and virial by using this Deep Tensor.

Parameters
  • tensor[out] The atomic tensor.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

template<typename VALUETYPE>
inline void compute(std::vector<VALUETYPE> &tensor, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list)

Evaluate the tensor, force and virial by using this Deep Tensor with the neighbor list.

Parameters
  • tensor[out] The tensor.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

template<typename VALUETYPE>
inline void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box)

Evaluate the global tensor, force and virial by using this Deep Tensor.

Parameters
  • global_tensor[out] The global tensor.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

template<typename VALUETYPE>
inline void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_tensor, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box)

Evaluate the global tensor, force, virial, atomic tensor, and atomic virial by using this Deep Tensor.

Parameters
  • global_tensor[out] The global tensor.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_tensor[out] The atomic tensor.

  • atom_virial[out] The atomic virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

template<typename VALUETYPE>
inline void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list)

Evaluate the global tensor, force and virial by using this Deep Tensor with the neighbor list.

Parameters
  • global_tensor[out] The global tensor.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

template<typename VALUETYPE>
inline void compute(std::vector<VALUETYPE> &global_tensor, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, std::vector<VALUETYPE> &atom_tensor, std::vector<VALUETYPE> &atom_virial, const std::vector<VALUETYPE> &coord, const std::vector<int> &atype, const std::vector<VALUETYPE> &box, const int nghost, const InputNlist &lmp_list)

Evaluate the global tensor, force, virial, atomic tensor, and atomic virial by using this Deep Tensor with the neighbor list.

Parameters
  • global_tensor[out] The global tensor.

  • force[out] The force on each atom.

  • virial[out] The virial.

  • atom_tensor[out] The atomic tensor.

  • atom_virial[out] The atomic virial.

  • coord[in] The coordinates of atoms. The array should be of size nframes x natoms x 3.

  • atype[in] The atom types. The list should contain natoms ints.

  • box[in] The cell of the region. The array should be of size nframes x 9 (PBC) or empty (no PBC).

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

inline double cutoff() const

Get the cutoff radius.

Returns

The cutoff radius.

inline int numb_types() const

Get the number of types.

Returns

The number of types.

inline int output_dim() const

Get the output dimension.

Returns

The output dimension.

inline std::vector<int> sel_types() const
inline void print_summary(const std::string &pre) const

Print the summary of DeePMD-kit, including the version and the build information.

Parameters

pre[in] The prefix to each line.

Class DipoleChargeModifier
Class Documentation
class DipoleChargeModifier

Public Functions

inline DipoleChargeModifier()

DipoleChargeModifier constructor without initialization.

inline ~DipoleChargeModifier()
inline DipoleChargeModifier(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

DipoleChargeModifier constructor with initialization.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The rank of the GPU to be used.

  • name_scope[in] The name scope of the model.

inline void init(const std::string &model, const int &gpu_rank = 0, const std::string &name_scope = "")

Initialize the DipoleChargeModifier.

Parameters
  • model[in] The name of the frozen model file.

  • gpu_rank[in] The rank of the GPU to be used.

  • name_scope[in] The name scope of the model.

template<typename VALUETYPE>
inline void compute(std::vector<VALUETYPE> &dfcorr_, std::vector<VALUETYPE> &dvcorr_, const std::vector<VALUETYPE> &dcoord_, const std::vector<int> &datype_, const std::vector<VALUETYPE> &dbox, const std::vector<std::pair<int, int>> &pairs, const std::vector<VALUETYPE> &delef_, const int nghost, const InputNlist &lmp_list)

Evaluate the force and virial correction by using this dipole charge modifier.

Parameters
  • dfcorr_[out] The force correction on each atom.

  • dvcorr_[out] The virial correction.

  • dcoord_[in] The coordinates of atoms. The array should be of size natoms x 3.

  • datype_[in] The atom types. The list should contain natoms ints.

  • dbox[in] The cell of the region. The array should be of size 9.

  • pairs[in] The pairs of atoms. The list should contain npairs pairs of ints.

  • delef_[in] The electric field on each atom. The array should be of size natoms x 3.

  • nghost[in] The number of ghost atoms.

  • lmp_list[in] The neighbor list.

inline double cutoff() const

Get the cutoff radius.

Returns

The cutoff radius.

inline int numb_types() const

Get the number of types.

Returns

The number of types.

inline std::vector<int> sel_types() const
inline void print_summary(const std::string &pre) const

Print the summary of DeePMD-kit, including the version and the build information.

Parameters

pre[in] The prefix to each line.

Functions

Template Function _DP_DeepPotCompute
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepPotCompute(DP_DeepPot *dp, const int nframes, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, const FPTYPE *fparam, const FPTYPE *aparam, double *energy, FPTYPE *force, FPTYPE *virial, FPTYPE *atomic_energy, FPTYPE *atomic_virial)
Specialized Template Function _DP_DeepPotCompute< double >
Function Documentation
template<>
inline void _DP_DeepPotCompute<double>(DP_DeepPot *dp, const int nframes, const int natom, const double *coord, const int *atype, const double *cell, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)
Specialized Template Function _DP_DeepPotCompute< float >
Function Documentation
template<>
inline void _DP_DeepPotCompute<float>(DP_DeepPot *dp, const int nframes, const int natom, const float *coord, const int *atype, const float *cell, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)
Template Function _DP_DeepPotComputeMixedType
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepPotComputeMixedType(DP_DeepPot *dp, const int nframes, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, const FPTYPE *fparam, const FPTYPE *aparam, double *energy, FPTYPE *force, FPTYPE *virial, FPTYPE *atomic_energy, FPTYPE *atomic_virial)
Specialized Template Function _DP_DeepPotComputeMixedType< double >
Function Documentation
template<>
inline void _DP_DeepPotComputeMixedType<double>(DP_DeepPot *dp, const int nframes, const int natom, const double *coord, const int *atype, const double *cell, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)
Specialized Template Function _DP_DeepPotComputeMixedType< float >
Function Documentation
template<>
inline void _DP_DeepPotComputeMixedType<float>(DP_DeepPot *dp, const int nframes, const int natom, const float *coord, const int *atype, const float *cell, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)
Template Function _DP_DeepPotComputeNList
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepPotComputeNList(DP_DeepPot *dp, const int nframes, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, const int nghost, const DP_Nlist *nlist, const int ago, const FPTYPE *fparam, const FPTYPE *aparam, double *energy, FPTYPE *force, FPTYPE *virial, FPTYPE *atomic_energy, FPTYPE *atomic_virial)
Specialized Template Function _DP_DeepPotComputeNList< double >
Function Documentation
template<>
inline void _DP_DeepPotComputeNList<double>(DP_DeepPot *dp, const int nframes, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, const int ago, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)
Specialized Template Function _DP_DeepPotComputeNList< float >
Function Documentation
template<>
inline void _DP_DeepPotComputeNList<float>(DP_DeepPot *dp, const int nframes, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, const int ago, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)
Template Function _DP_DeepPotModelDeviComputeNList
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepPotModelDeviComputeNList(DP_DeepPotModelDevi *dp, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, const int nghost, const DP_Nlist *nlist, const int ago, const FPTYPE *fparam, const FPTYPE *aparam, double *energy, FPTYPE *force, FPTYPE *virial, FPTYPE *atomic_energy, FPTYPE *atomic_virial)
Specialized Template Function _DP_DeepPotModelDeviComputeNList< double >
Function Documentation
template<>
inline void _DP_DeepPotModelDeviComputeNList<double>(DP_DeepPotModelDevi *dp, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, const int ago, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)
Specialized Template Function _DP_DeepPotModelDeviComputeNList< float >
Function Documentation
template<>
inline void _DP_DeepPotModelDeviComputeNList<float>(DP_DeepPotModelDevi *dp, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, const int ago, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)
Template Function _DP_DeepTensorCompute
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepTensorCompute(DP_DeepTensor *dt, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, FPTYPE *global_tensor, FPTYPE *force, FPTYPE *virial, FPTYPE **atomic_energy, FPTYPE *atomic_virial, int *size_at)
Specialized Template Function _DP_DeepTensorCompute< double >
Function Documentation
template<>
inline void _DP_DeepTensorCompute<double>(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, double *global_tensor, double *force, double *virial, double **atomic_tensor, double *atomic_virial, int *size_at)
Specialized Template Function _DP_DeepTensorCompute< float >
Function Documentation
template<>
inline void _DP_DeepTensorCompute<float>(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, float *global_tensor, float *force, float *virial, float **atomic_tensor, float *atomic_virial, int *size_at)
Template Function _DP_DeepTensorComputeNList
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepTensorComputeNList(DP_DeepTensor *dt, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, const int nghost, const DP_Nlist *nlist, FPTYPE *global_tensor, FPTYPE *force, FPTYPE *virial, FPTYPE **atomic_energy, FPTYPE *atomic_virial, int *size_at)
Specialized Template Function _DP_DeepTensorComputeNList< double >
Function Documentation
template<>
inline void _DP_DeepTensorComputeNList<double>(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, double *global_tensor, double *force, double *virial, double **atomic_tensor, double *atomic_virial, int *size_at)
Specialized Template Function _DP_DeepTensorComputeNList< float >
Function Documentation
template<>
inline void _DP_DeepTensorComputeNList<float>(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, float *global_tensor, float *force, float *virial, float **atomic_tensor, float *atomic_virial, int *size_at)
Template Function _DP_DeepTensorComputeTensor
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepTensorComputeTensor(DP_DeepTensor *dt, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, FPTYPE **tensor, int *size)
Specialized Template Function _DP_DeepTensorComputeTensor< double >
Function Documentation
template<>
inline void _DP_DeepTensorComputeTensor<double>(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, double **tensor, int *size)
Specialized Template Function _DP_DeepTensorComputeTensor< float >
Function Documentation
template<>
inline void _DP_DeepTensorComputeTensor<float>(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, float **tensor, int *size)
Template Function _DP_DeepTensorComputeTensorNList
Function Documentation
template<typename FPTYPE>
inline void _DP_DeepTensorComputeTensorNList(DP_DeepTensor *dt, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, const int nghost, const DP_Nlist *nlist, FPTYPE **tensor, int *size)
Specialized Template Function _DP_DeepTensorComputeTensorNList< double >
Function Documentation
template<>
inline void _DP_DeepTensorComputeTensorNList<double>(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, double **tensor, int *size)
Specialized Template Function _DP_DeepTensorComputeTensorNList< float >
Function Documentation
template<>
inline void _DP_DeepTensorComputeTensorNList<float>(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, float **tensor, int *size)
Template Function _DP_DipoleChargeModifierComputeNList
Function Documentation
template<typename FPTYPE>
inline void _DP_DipoleChargeModifierComputeNList(DP_DipoleChargeModifier *dcm, const int natom, const FPTYPE *coord, const int *atype, const FPTYPE *cell, const int *pairs, const int npairs, const FPTYPE *delef_, const int nghost, const DP_Nlist *nlist, FPTYPE *dfcorr_, FPTYPE *dvcorr_)
Specialized Template Function _DP_DipoleChargeModifierComputeNList< double >
Function Documentation
template<>
inline void _DP_DipoleChargeModifierComputeNList<double>(DP_DipoleChargeModifier *dcm, const int natom, const double *coord, const int *atype, const double *cell, const int *pairs, const int npairs, const double *delef_, const int nghost, const DP_Nlist *nlist, double *dfcorr_, double *dvcorr_)
Specialized Template Function _DP_DipoleChargeModifierComputeNList< float >
Function Documentation
template<>
inline void _DP_DipoleChargeModifierComputeNList<float>(DP_DipoleChargeModifier *dcm, const int natom, const float *coord, const int *atype, const float *cell, const int *pairs, const int npairs, const float *delef_, const int nghost, const DP_Nlist *nlist, float *dfcorr_, float *dvcorr_)
Function _DP_Get_Energy_Pointer(std::vector<double>&, const int)
Function Documentation
inline double *_DP_Get_Energy_Pointer(std::vector<double> &vec, const int nframes)
Function _DP_Get_Energy_Pointer(double&, const int)
Function Documentation
inline double *_DP_Get_Energy_Pointer(double &vec, const int nframes)
Function deepmd::hpp::convert_nlist
Function Documentation
inline void deepmd::hpp::convert_nlist(InputNlist &to_nlist, std::vector<std::vector<int>> &from_nlist)

Convert int vector to InputNlist.

Parameters
  • to_nlist[out] InputNlist.

  • from_nlist[in] 2D int vector. The first axis represents the centeral atoms and the second axis represents the neighbor atoms.

Function deepmd::hpp::convert_pbtxt_to_pb
Function Documentation
inline void deepmd::hpp::convert_pbtxt_to_pb(std::string fn_pb_txt, std::string fn_pb)

Convert pbtxt to pb.

Parameters
  • fn_pb_txt[in] Filename of the pb txt file.

  • fn_pb[in] Filename of the pb file.

Function deepmd::hpp::read_file_to_string
Function Documentation
inline void deepmd::hpp::read_file_to_string(std::string model, std::string &file_content)

Read model file to a string.

Parameters
  • model[in] Path to the model.

  • file_content[out] Content of the model file.

Template Function deepmd::hpp::select_by_type
Function Documentation
template<typename VALUETYPE>
void deepmd::hpp::select_by_type(std::vector<int> &fwd_map, std::vector<int> &bkw_map, int &nghost_real, const std::vector<VALUETYPE> &dcoord_, const std::vector<int> &datype_, const int &nghost, const std::vector<int> &sel_type_)

Get forward and backward map of selected atoms by atom types.

Parameters
  • fwd_map[out] The forward map with size natoms.

  • bkw_map[out] The backward map with size nreal.

  • nghost_real[out] The number of selected ghost atoms.

  • dcoord_[in] The coordinates of all atoms. Reserved for compatibility.

  • datype_[in] The atom types of all atoms.

  • nghost[in] The number of ghost atoms.

  • sel_type_[in] The selected atom types.

Template Function deepmd::hpp::select_map
Function Documentation
template<typename VT>
void deepmd::hpp::select_map(std::vector<VT> &out, const std::vector<VT> &in, const std::vector<int> &fwd_map, const int &stride)

Apply the given map to a vector. Assume nframes is 1.

Template Parameters

VT – The value type of the vector. Only support int.

Parameters
  • out[out] The output vector.

  • in[in] The input vector.

  • fwd_map[in] The map.

  • stride[in] The stride of the input vector.

Function DP_ConvertPbtxtToPb
Function Documentation
void DP_ConvertPbtxtToPb(const char *c_pbtxt, const char *c_pb)

Convert PBtxt to PB.

Parameters
  • c_pbtxt[in] The name of the PBtxt file.

  • c_pb[in] The name of the PB file.

Function DP_DeepPotCheckOK
Function Documentation
const char *DP_DeepPotCheckOK(DP_DeepPot *dp)

Check if there is any exceptions throw.

Parameters

dp – The DP to use.

Returns

const char* error message.

Function DP_DeepPotCompute
Function Documentation
void DP_DeepPotCompute(DP_DeepPot *dp, const int natom, const double *coord, const int *atype, const double *cell, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)

Evaluate the energy, force and virial by using a DP. (double version)

Attention

The number of frames is assumed to be 1.

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotCompute2
Function Documentation
void DP_DeepPotCompute2(DP_DeepPot *dp, const int nframes, const int natom, const double *coord, const int *atype, const double *cell, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)

Evaluate the energy, force and virial by using a DP. (double version)

Version

2

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • nframes[in] The number of frames.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputef
Function Documentation
void DP_DeepPotComputef(DP_DeepPot *dp, const int natom, const float *coord, const int *atype, const float *cell, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)

Evaluate the energy, force and virial by using a DP. (float version)

Attention

The number of frames is assumed to be 1.

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputef2
Function Documentation
void DP_DeepPotComputef2(DP_DeepPot *dp, const int nframes, const int natom, const float *coord, const int *atype, const float *cell, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)

Evaluate the energy, force and virial by using a DP. (float version)

Version

2

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • nframes[in] The number of frames.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputeMixedType
Function Documentation
void DP_DeepPotComputeMixedType(DP_DeepPot *dp, const int nframes, const int natoms, const double *coord, const int *atype, const double *cell, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)

Evaluate the energy, force and virial by using a DP with the mixed type. (double version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • nframes[in] The number of frames.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain nframes x natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputeMixedTypef
Function Documentation
void DP_DeepPotComputeMixedTypef(DP_DeepPot *dp, const int nframes, const int natoms, const float *coord, const int *atype, const float *cell, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)

Evaluate the energy, force and virial by using a DP with the mixed type. (float version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • nframes[in] The number of frames.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain nframes x natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputeNList
Function Documentation
void DP_DeepPotComputeNList(DP_DeepPot *dp, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, const int ago, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)

Evaluate the energy, force and virial by using a DP with the neighbor list. (double version)

Attention

The number of frames is assumed to be 1.

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputeNList2
Function Documentation
void DP_DeepPotComputeNList2(DP_DeepPot *dp, const int nframes, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, const int ago, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)

Evaluate the energy, force and virial by using a DP with the neighbor list. (double version)

Version

2

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • nframes[in] The number of frames.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputeNListf
Function Documentation
void DP_DeepPotComputeNListf(DP_DeepPot *dp, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, const int ago, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)

Evaluate the energy, force and virial by using a DP with the neighbor list. (float version)

Attention

The number of frames is assumed to be 1.

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotComputeNListf2
Function Documentation
void DP_DeepPotComputeNListf2(DP_DeepPot *dp, const int nframes, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, const int ago, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)

Evaluate the energy, force and virial by using a DP with the neighbor list. (float version)

Version

2

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP to use.

  • nframes[in] The number of frames.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotGetCutoff
Function Documentation
double DP_DeepPotGetCutoff(DP_DeepPot *dp)

Get the type map of a DP.

Parameters

dp[in] The DP to use.

Returns

The cutoff radius.

Function DP_DeepPotGetDimAParam
Function Documentation
int DP_DeepPotGetDimAParam(DP_DeepPot *dp)

Get the dimension of atomic parameters of a DP.

Parameters

dp[in] The DP to use.

Returns

The dimension of atomic parameters of the DP.

Function DP_DeepPotGetDimFParam
Function Documentation
int DP_DeepPotGetDimFParam(DP_DeepPot *dp)

Get the dimension of frame parameters of a DP.

Parameters

dp[in] The DP to use.

Returns

The dimension of frame parameters of the DP.

Function DP_DeepPotGetNumbTypes
Function Documentation
int DP_DeepPotGetNumbTypes(DP_DeepPot *dp)

Get the number of types of a DP.

Parameters

dp[in] The DP to use.

Returns

The number of types of the DP.

Function DP_DeepPotGetNumbTypesSpin
Function Documentation
int DP_DeepPotGetNumbTypesSpin(DP_DeepPot *dp)

Get the number of types with spin of a DP.

Parameters

dp[in] The DP to use.

Returns

The number of types with spin of the DP.

Function DP_DeepPotGetTypeMap
Function Documentation
const char *DP_DeepPotGetTypeMap(DP_DeepPot *dp)

Get the type map of a DP.

Parameters

dp[in] The DP to use.

Returns

The type map of the DP.

Function DP_DeepPotModelDeviCheckOK
Function Documentation
const char *DP_DeepPotModelDeviCheckOK(DP_DeepPotModelDevi *dp)

Check if there is any exceptions throw.

Parameters

dp – The DP model deviation to use.

Returns

const char* error message.

Function DP_DeepPotModelDeviComputeNList
Function Documentation
void DP_DeepPotModelDeviComputeNList(DP_DeepPotModelDevi *dp, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, const int ago, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)

Evaluate the energy, force and virial by using a DP model deviation with neighbor list. (double version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP model deviation to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotModelDeviComputeNList2
Function Documentation
void DP_DeepPotModelDeviComputeNList2(DP_DeepPotModelDevi *dp, const int nframes, const int natoms, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, const int ago, const double *fparam, const double *aparam, double *energy, double *force, double *virial, double *atomic_energy, double *atomic_virial)

Evaluate the energy, force and virial by using a DP model deviation with neighbor list. (double version)

Version

2

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP model deviation to use.

  • nframes[in] The number of frames. Only support 1 for now.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x natoms x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotModelDeviComputeNListf
Function Documentation
void DP_DeepPotModelDeviComputeNListf(DP_DeepPotModelDevi *dp, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, const int ago, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)

Evaluate the energy, force and virial by using a DP model deviation with neighbor list. (float version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP model deviation to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotModelDeviComputeNListf2
Function Documentation
void DP_DeepPotModelDeviComputeNListf2(DP_DeepPotModelDevi *dp, const int nframes, const int natoms, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, const int ago, const float *fparam, const float *aparam, double *energy, float *force, float *virial, float *atomic_energy, float *atomic_virial)

Evaluate the energy, force and virial by using a DP model deviation with neighbor list. (float version)

Version

2

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dp[in] The DP model deviation to use.

  • nframes[in] The number of frames. Only support 1 for now.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • ago[in] Update the internal neighbour list if ago is 0.

  • fparam[in] The frame parameters. The array can be of size nframes x dim_fparam.

  • aparam[in] The atom parameters. The array can be of size nframes x natoms x dim_aparam.

  • energy[out] Output energy.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_energy[out] Output atomic energy. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

Function DP_DeepPotModelDeviGetCutoff
Function Documentation
double DP_DeepPotModelDeviGetCutoff(DP_DeepPotModelDevi *dp)

Get the type map of a DP model deviation.

Parameters

dp[in] The DP model deviation to use.

Returns

The cutoff radius.

Function DP_DeepPotModelDeviGetDimAParam
Function Documentation
int DP_DeepPotModelDeviGetDimAParam(DP_DeepPotModelDevi *dp)

Get the dimension of atomic parameters of a DP Model Deviation.

Parameters

dp[in] The DP Model Deviation to use.

Returns

The dimension of atomic parameters of the DP Model Deviation.

Function DP_DeepPotModelDeviGetDimFParam
Function Documentation
int DP_DeepPotModelDeviGetDimFParam(DP_DeepPotModelDevi *dp)

Get the dimension of frame parameters of a DP Model Deviation.

Parameters

dp[in] The DP Model Deviation to use.

Returns

The dimension of frame parameters of the DP Model Deviation.

Function DP_DeepPotModelDeviGetNumbTypes
Function Documentation
int DP_DeepPotModelDeviGetNumbTypes(DP_DeepPotModelDevi *dp)

Get the number of types of a DP model deviation.

Parameters

dp[in] The DP model deviation to use.

Returns

The number of types of the DP model deviation.

Function DP_DeepPotModelDeviGetNumbTypesSpin
Function Documentation
int DP_DeepPotModelDeviGetNumbTypesSpin(DP_DeepPotModelDevi *dp)

Get the number of types with spin of a DP model deviation.

Parameters

dp[in] The DP model deviation to use.

Returns

The number of types with spin of the DP model deviation.

Function DP_DeepTensorCheckOK
Function Documentation
const char *DP_DeepTensorCheckOK(DP_DeepTensor *dt)

Check if there is any exceptions throw.

Parameters

dt – The Deep Tensor to use.

Returns

const char* error message.

Function DP_DeepTensorCompute
Function Documentation
void DP_DeepTensorCompute(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, double *global_tensor, double *force, double *virial, double **atomic_tensor, double *atomic_virial, int *size_at)

Evaluate the global tensor, force and virial by using a DP. (double version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • global_tensor[out] Output global tensor.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_tensor[out] Output atomic tensor. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

  • size_at[out] Output size of atomic tensor.

Function DP_DeepTensorComputef
Function Documentation
void DP_DeepTensorComputef(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, float *global_tensor, float *force, float *virial, float **atomic_tensor, float *atomic_virial, int *size_at)

Evaluate the global tensor, force and virial by using a DP. (float version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • global_tensor[out] Output global tensor.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_tensor[out] Output atomic tensor. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

  • size_at[out] Output size of atomic tensor.

Function DP_DeepTensorComputeNList
Function Documentation
void DP_DeepTensorComputeNList(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, double *global_tensor, double *force, double *virial, double **atomic_tensor, double *atomic_virial, int *size_at)

Evaluate the global tensor, force and virial by using a DP with the neighbor list. (double version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • global_tensor[out] Output global tensor.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_tensor[out] Output atomic tensor. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

  • size_at[out] Output size of atomic tensor.

Function DP_DeepTensorComputeNListf
Function Documentation
void DP_DeepTensorComputeNListf(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, float *global_tensor, float *force, float *virial, float **atomic_tensor, float *atomic_virial, int *size_at)

Evaluate the global tensor, force and virial by using a DP with the neighbor list. (float version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • global_tensor[out] Output global tensor.

  • force[out] Output force. The array should be of size natoms x 3.

  • virial[out] Output virial. The array should be of size 9.

  • atomic_tensor[out] Output atomic tensor. The array should be of size natoms.

  • atomic_virial[out] Output atomic virial. The array should be of size natoms x 9.

  • size_at[out] Output size of atomic tensor.

Function DP_DeepTensorComputeTensor
Function Documentation
void DP_DeepTensorComputeTensor(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, double **tensor, int *size)

Evaluate the tensor by using a DP. (double version)

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • tensor[out] Output tensor.

Function DP_DeepTensorComputeTensorf
Function Documentation
void DP_DeepTensorComputeTensorf(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, float **tensor, int *size)

Evaluate the tensor by using a DP. (float version)

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • tensor[out] Output tensor.

  • size[out] Output size of the tensor.

Function DP_DeepTensorComputeTensorNList
Function Documentation
void DP_DeepTensorComputeTensorNList(DP_DeepTensor *dt, const int natom, const double *coord, const int *atype, const double *cell, const int nghost, const DP_Nlist *nlist, double **tensor, int *size)

Evaluate the tensor by using a DP with the neighbor list. (double version)

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • tensor[out] Output tensor.

  • size[out] Output size of the tensor.

Function DP_DeepTensorComputeTensorNListf
Function Documentation
void DP_DeepTensorComputeTensorNListf(DP_DeepTensor *dt, const int natom, const float *coord, const int *atype, const float *cell, const int nghost, const DP_Nlist *nlist, float **tensor, int *size)

Evaluate the tensor by using a DP with the neighbor list. (float version)

Parameters
  • dt[in] The Deep Tensor to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • box[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • tensor[out] Output tensor.

  • size[out] Output size of the tensor.

Function DP_DeepTensorGetCutoff
Function Documentation
double DP_DeepTensorGetCutoff(DP_DeepTensor *dt)

Get the type map of a Deep Tensor.

Parameters

dt[in] The Deep Tensor to use.

Returns

The cutoff radius.

Function DP_DeepTensorGetNumbSelTypes
Function Documentation
int DP_DeepTensorGetNumbSelTypes(DP_DeepTensor *dt)

Get the number of sel types of a Deep Tensor.

Parameters

dt[in] The Deep Tensor to use.

Returns

The number of sel types

Function DP_DeepTensorGetNumbTypes
Function Documentation
int DP_DeepTensorGetNumbTypes(DP_DeepTensor *dt)

Get the type map of a Deep Tensor.

Parameters

dt[in] The Deep Tensor to use.

Returns

The number of types of the Deep Tensor.

Function DP_DeepTensorGetOutputDim
Function Documentation
int DP_DeepTensorGetOutputDim(DP_DeepTensor *dt)

Get the output dimension of a Deep Tensor.

Parameters

dt[in] The Deep Tensor to use.

Returns

The output dimension of the Deep Tensor.

Function DP_DeepTensorGetSelTypes
Function Documentation
int *DP_DeepTensorGetSelTypes(DP_DeepTensor *dt)

Get sel types of a Deep Tensor.

Parameters

dt[in] The Deep Tensor to use.

Returns

The sel types

Function DP_DipoleChargeModifierCheckOK
Function Documentation
const char *DP_DipoleChargeModifierCheckOK(DP_DipoleChargeModifier *dcm)

Check if there is any exceptions throw.

Parameters

dcm – The DipoleChargeModifier to use.

Returns

const char* error message.

Function DP_DipoleChargeModifierComputeNList
Function Documentation
void DP_DipoleChargeModifierComputeNList(DP_DipoleChargeModifier *dcm, const int natom, const double *coord, const int *atype, const double *cell, const int *pairs, const int npairs, const double *delef_, const int nghost, const DP_Nlist *nlist, double *dfcorr_, double *dvcorr_)

Evaluate the force and virial correction by using a dipole charge modifier with the neighbor list. (double version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dcm[in] The dipole charge modifier to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • cell[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • pairs[in] The pairs of atoms. The list should contain npairs pairs of ints.

  • npairs[in] The number of pairs.

  • delef_[in] The electric field on each atom. The array should be of size nframes x natoms x 3.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • dfcorr_[out] Output force correction. The array should be of size natoms x 3.

  • dvcorr_[out] Output virial correction. The array should be of size 9.

Function DP_DipoleChargeModifierComputeNListf
Function Documentation
void DP_DipoleChargeModifierComputeNListf(DP_DipoleChargeModifier *dcm, const int natom, const float *coord, const int *atype, const float *cell, const int *pairs, const int npairs, const float *delef_, const int nghost, const DP_Nlist *nlist, float *dfcorr_, float *dvcorr_)

Evaluate the force and virial correction by using a dipole charge modifier with the neighbor list. (float version)

Warning

The output arrays should be allocated before calling this function. Pass NULL if not required.

Parameters
  • dcm[in] The dipole charge modifier to use.

  • natoms[in] The number of atoms.

  • coord[in] The coordinates of atoms. The array should be of size natoms x 3.

  • atype[in] The atom types. The array should contain natoms ints.

  • cell[in] The cell of the region. The array should be of size 9. Pass NULL if pbc is not used.

  • pairs[in] The pairs of atoms. The list should contain npairs pairs of ints.

  • npairs[in] The number of pairs.

  • delef_[in] The electric field on each atom. The array should be of size nframes x natoms x 3.

  • nghost[in] The number of ghost atoms.

  • nlist[in] The neighbor list.

  • dfcorr_[out] Output force correction. The array should be of size natoms x 3.

  • dvcorr_[out] Output virial correction. The array should be of size 9.

Function DP_DipoleChargeModifierGetCutoff
Function Documentation
double DP_DipoleChargeModifierGetCutoff(DP_DipoleChargeModifier *dt)

Get the type map of a DipoleChargeModifier.

Parameters

dcm[in] The DipoleChargeModifier to use.

Returns

The cutoff radius.

Function DP_DipoleChargeModifierGetNumbSelTypes
Function Documentation
int DP_DipoleChargeModifierGetNumbSelTypes(DP_DipoleChargeModifier *dt)

Get the number of sel types of a DipoleChargeModifier.

Parameters

dcm[in] The DipoleChargeModifier to use.

Returns

The number of sel types

Function DP_DipoleChargeModifierGetNumbTypes
Function Documentation
int DP_DipoleChargeModifierGetNumbTypes(DP_DipoleChargeModifier *dt)

Get the type map of a DipoleChargeModifier.

Parameters

dcm[in] The DipoleChargeModifier to use.

Returns

The number of types of the DipoleChargeModifier.

Function DP_DipoleChargeModifierGetSelTypes
Function Documentation
int *DP_DipoleChargeModifierGetSelTypes(DP_DipoleChargeModifier *dt)

Get sel types of a DipoleChargeModifier.

Parameters

dcm[in] The DipoleChargeModifier to use.

Returns

The sel types

Function DP_NewDeepPot
Function Documentation
DP_DeepPot *DP_NewDeepPot(const char *c_model)

DP constructor with initialization.

Parameters

c_model[in] The name of the frozen model file.

Returns

A pointer to the deep potential.

Function DP_NewDeepPotModelDevi
Function Documentation
DP_DeepPotModelDevi *DP_NewDeepPotModelDevi(const char **c_models, int n_models)

DP model deviation constructor with initialization.

Parameters
  • c_models[in] The array of the name of the frozen model file.

  • nmodels[in] The number of models.

Function DP_NewDeepPotModelDeviWithParam
Function Documentation
DP_DeepPotModelDevi *DP_NewDeepPotModelDeviWithParam(const char **c_model, const int n_models, const int gpu_rank, const char **c_file_contents, const int n_file_contents, const int *size_file_contents)

DP model deviation constructor with initialization.

Parameters
  • c_models[in] The array of the name of the frozen model file.

  • nmodels[in] The number of models.

  • gpu_rank[in] The rank of the GPU.

  • c_file_contents[in] The contents of the model file.

  • n_file_contents[in] The number of the contents of the model file.

  • size_file_contents[in] The sizes of the contents of the model file.

Returns

DP_DeepPotModelDevi* A pointer to the deep potential model deviation.

Function DP_NewDeepPotWithParam
Function Documentation
DP_DeepPot *DP_NewDeepPotWithParam(const char *c_model, const int gpu_rank, const char *c_file_content)

DP constructor with initialization.

Parameters
  • c_model – The name of the frozen model file.

  • gpu_rank – The rank of the GPU.

  • c_file_content – Broken implementation. Use DP_NewDeepPotWithParam2 instead.

Returns

DP_DeepPot* A pointer to the deep potential.

Function DP_NewDeepPotWithParam2
Function Documentation
DP_DeepPot *DP_NewDeepPotWithParam2(const char *c_model, const int gpu_rank, const char *c_file_content, const int size_file_content)

DP constructor with initialization.

Version

2

Parameters
  • c_model – The name of the frozen model file.

  • gpu_rank – The rank of the GPU.

  • c_file_content – The content of the model file.

  • size_file_content – The size of the model file.

Returns

DP_DeepPot* A pointer to the deep potential.

Function DP_NewDeepTensor
Function Documentation
DP_DeepTensor *DP_NewDeepTensor(const char *c_model)

Deep Tensor constructor with initialization.

Parameters

c_model[in] The name of the frozen model file.

Returns

A pointer to the deep tensor.

Function DP_NewDeepTensorWithParam
Function Documentation
DP_DeepTensor *DP_NewDeepTensorWithParam(const char *c_model, const int gpu_rank, const char *c_name_scope)

Deep Tensor constructor with initialization.

Parameters
  • c_model – The name of the frozen model file.

  • gpu_rank – The rank of the GPU.

  • c_name_scope – The name scope.

Returns

DP_DeepTensor* A pointer to the deep tensor.

Function DP_NewDipoleChargeModifier
Function Documentation
DP_DipoleChargeModifier *DP_NewDipoleChargeModifier(const char *c_model)

Dipole charge modifier constructor with initialization.

Parameters

c_model[in] The name of the frozen model file.

Returns

A pointer to the dipole charge modifier.

Function DP_NewDipoleChargeModifierWithParam
Function Documentation
DP_DipoleChargeModifier *DP_NewDipoleChargeModifierWithParam(const char *c_model, const int gpu_rank, const char *c_name_scope)

Dipole charge modifier constructor with initialization.

Parameters
  • c_model – The name of the frozen model file.

  • gpu_rank – The rank of the GPU.

  • c_name_scope – The name scope.

Returns

DP_DipoleChargeModifier* A pointer to the dipole charge modifier.

Function DP_NewNlist
Function Documentation
DP_Nlist *DP_NewNlist(int inum_, int *ilist_, int *numneigh_, int **firstneigh_)

Create a new neighbor list.

Parameters
  • inum_[in] Number of core region atoms

  • Array[in] stores the core region atom’s index

  • Array[in] stores the core region atom’s neighbor atom number

  • Array[in] stores the core region atom’s neighbor index

Returns

A pointer to the neighbor list.

Function DP_NlistCheckOK
Function Documentation
const char *DP_NlistCheckOK(DP_Nlist *dp)

Check if there is any exceptions throw.

Parameters

dp – The neighbor list to use.

Returns

const char* error message.

Function DP_PrintSummary
Function Documentation
void DP_PrintSummary(const char *c_pre)

Print the summary of DeePMD-kit, including the version and the build information.

Parameters

c_pre[in] The prefix to each line.

Function DP_ReadFileToChar
Function Documentation
const char *DP_ReadFileToChar(const char *c_model)

Read a file to a char array.

Parameters

c_model[in] The name of the file.

Returns

const char* The char array.

Function DP_ReadFileToChar2
Function Documentation
const char *DP_ReadFileToChar2(const char *c_model, int *size)

Read a file to a char array. This version can handle string with ‘\0’.

Version

2

Parameters
  • c_model[in] The name of the file.

  • size[out] The size of the char array.

Returns

const char* The char array.

Function DP_SelectByType
Function Documentation
void DP_SelectByType(const int natoms, const int *atype, const int nghost, const int nsel_type, const int *sel_type, int *fwd_map, int *nreal, int *bkw_map, int *nghost_real)

Get forward and backward map of selected atoms by atom types.

Parameters
  • natoms[in] The number of atoms.

  • atype[in] The atom types of all atoms.

  • nghost[in] The number of ghost atoms.

  • nsel_type[in] The number of selected atom types.

  • sel_type[in] The selected atom types.

  • fwd_map[out] The forward map with size natoms.

  • nreal[out] The number of selected real atoms.

  • bkw_map[out] The backward map with size nreal.

  • nghost_real[out] The number of selected ghost atoms.

Function DP_SelectMapInt
Function Documentation
void DP_SelectMapInt(const int *in, const int *fwd_map, const int stride, const int nall1, const int nall2, int *out)

Apply the given map to a vector. Assume nframes is 1.

Parameters
  • in[in] The input vector.

  • fwd_map[in] The map.

  • stride[in] The stride of the input vector.

  • nall1[in] The number of atoms in the input vector.

  • nall2[out] The number of atoms in the output vector.

  • out[out] The output vector.

Defines

Define DP_CHECK_OK
Define Documentation
DP_CHECK_OK(check_func, dp)

Check if any exceptions throw in the C++ API. Throw if possible.

Define DP_NEW_OK
Define Documentation
DP_NEW_OK(dpcls, xx)
Define DP_REQUIRES_OK
Define Documentation
DP_REQUIRES_OK(dp, xx)

Typedefs

Typedef DP_DeepPot
Typedef Documentation
typedef struct DP_DeepPot DP_DeepPot

The deep potential.

Typedef DP_DeepPotModelDevi
Typedef Documentation
typedef struct DP_DeepPotModelDevi DP_DeepPotModelDevi

The deep potential model deviation.

Typedef DP_DeepTensor
Typedef Documentation
typedef struct DP_DeepTensor DP_DeepTensor

The deep tensor.

Typedef DP_DipoleChargeModifier
Typedef Documentation
typedef struct DP_DipoleChargeModifier DP_DipoleChargeModifier

The dipole charge modifier.

Typedef DP_Nlist
Typedef Documentation
typedef struct DP_Nlist DP_Nlist

Neighbor list.

Core API

Class Hierarchy

File Hierarchy

Full API

Namespaces

Namespace deepmd
Classes
Functions
Variables
Namespace std

Classes and Structs

Struct deepmd_exception
Inheritance Relationships
Base Type
  • public std::runtime_error

Derived Type
Struct Documentation
struct deepmd_exception : public std::runtime_error

General DeePMD-kit exception. Throw if anything doesn’t work.

Subclassed by deepmd::deepmd_exception_oom

Public Functions

inline deepmd_exception()
inline deepmd_exception(const std::string &msg)
Struct deepmd_exception_oom
Inheritance Relationships
Base Type
Struct Documentation
struct deepmd_exception_oom : public deepmd::deepmd_exception

Public Functions

inline deepmd_exception_oom()
inline deepmd_exception_oom(const std::string &msg)
Template Struct EwaldParameters
Struct Documentation
template<typename VALUETYPE>
struct EwaldParameters

Public Members

VALUETYPE rcut = 6.0
VALUETYPE beta = 2
VALUETYPE spacing = 4
Struct InputNlist
Struct Documentation
struct InputNlist

Construct InputNlist with the input LAMMPS nbor list info.

Public Functions

inline InputNlist()
inline InputNlist(int inum_, int *ilist_, int *numneigh_, int **firstneigh_)
inline ~InputNlist()

Public Members

int inum

Number of core region atoms.

int *ilist

Array stores the core region atom’s index.

int *numneigh

Array stores the core region atom’s neighbor atom number.

int **firstneigh

Array stores the core region atom’s neighbor index.

Template Struct Region
Struct Documentation
template<typename FPTYPE>
struct Region

Public Functions

Region()
~Region()

Public Members

FPTYPE *boxt
FPTYPE *rec_boxt
Template Struct DescrptSeRGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct DescrptSeRGPUExecuteFunctor

Public Functions

void operator()(const FPTYPE *coord, const int *type, const int *ilist, const int *jrange, const int *jlist, int *array_int, unsigned long long *array_longlong, const FPTYPE *avg, const FPTYPE *std, FPTYPE *descript, FPTYPE *descript_deriv, FPTYPE *rij, int *nlist, const int nloc, const int nall, const int nnei, const int ndescrpt, const float rcut_r, const float rcut_r_smth, const std::vector<int> sec_a, const bool fill_nei_a, const int MAGIC_NUMBER)
Template Struct GeluGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct GeluGPUExecuteFunctor

Public Functions

void operator()(const FPTYPE *in, FPTYPE *out, const int size)
Template Struct GeluGradGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct GeluGradGPUExecuteFunctor

Public Functions

void operator()(const FPTYPE *dy, const FPTYPE *in, FPTYPE *out, const int size)
Template Struct GeluGradGradGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct GeluGradGradGPUExecuteFunctor

Public Functions

void operator()(const FPTYPE *dy, const FPTYPE *dy_, const FPTYPE *in, FPTYPE *out, const int size)
Template Struct ProdForceSeAGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct ProdForceSeAGPUExecuteFunctor

Public Functions

void operator()(FPTYPE *force, const FPTYPE *net_derive, const FPTYPE *in_deriv, const int *nlist, const int nloc, const int nall, const int nnei, const int ndescrpt, const int n_a_sel, const int n_a_shift)
Template Struct ProdForceSeRGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct ProdForceSeRGPUExecuteFunctor

Public Functions

void operator()(FPTYPE *force, const FPTYPE *net_derive, const FPTYPE *in_deriv, const int *nlist, const int nloc, const int nall, const int nnei, const int ndescrpt)
Template Struct ProdVirialSeAGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct ProdVirialSeAGPUExecuteFunctor

Public Functions

void operator()(FPTYPE *virial, FPTYPE *atom_virial, const FPTYPE *net_deriv, const FPTYPE *in_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nall, const int nnei, const int ndescrpt, const int n_a_sel, const int n_a_shift)
Template Struct ProdVirialSeRGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct ProdVirialSeRGPUExecuteFunctor

Public Functions

void operator()(FPTYPE *virial, FPTYPE *atom_virial, const FPTYPE *net_deriv, const FPTYPE *in_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nall, const int nnei, const int ndescrpt)
Template Struct TabulateCheckerGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct TabulateCheckerGPUExecuteFunctor

Public Functions

void operator()(const FPTYPE *table_info, const FPTYPE *in, int *out, const int nloc, const int nnei)
Template Struct TabulateFusionGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct TabulateFusionGPUExecuteFunctor

Public Functions

void operator()(const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *in, const FPTYPE *ff, const int nloc, const int nnei, const int last_layer_size, FPTYPE *out)
Template Struct TabulateFusionGradGPUExecuteFunctor
Struct Documentation
template<typename FPTYPE>
struct TabulateFusionGradGPUExecuteFunctor

Public Functions

void operator()(const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *in, const FPTYPE *ff, const FPTYPE *dy, const int nloc, const int nnei, const int last_layer_size, FPTYPE *dy_dx, FPTYPE *dy_df)
Template Class SimulationRegion
Class Documentation
template<typename VALUETYPE>
class SimulationRegion

Public Functions

inline void reinitBox(const double *boxv)
inline void affineTransform(const double *affine_map)
inline void reinitOrigin(const double *orig)
inline void reinitOrigin(const std::vector<double> &orig)
void backup()
void recover()
SimulationRegion()
~SimulationRegion()
inline double *getBoxTensor()
inline const double *getBoxTensor() const
inline double *getRecBoxTensor()
inline const double *getRecBoxTensor() const
inline double *getBoxOrigin()
inline const double *getBoxOrigin() const
inline double getVolume() const
inline void toFaceDistance(double *dd) const
inline void phys2Inter(double *i_v, const VALUETYPE *p_v) const
inline void inter2Phys(VALUETYPE *p_v, const double *i_v) const
inline bool isPeriodic(const int dim) const
inline double *getShiftVec(const int index = 0)
inline const double *getShiftVec(const int index = 0) const
inline int getShiftIndex(const int *idx) const
inline int getNullShiftIndex() const
inline void shiftCoord(const int *idx, VALUETYPE &x, VALUETYPE &y, VALUETYPE &z) const
inline void diffNearestNeighbor(const VALUETYPE *r0, const VALUETYPE *r1, VALUETYPE *phys) const
inline virtual void diffNearestNeighbor(const VALUETYPE x0, const VALUETYPE y0, const VALUETYPE z0, const VALUETYPE x1, const VALUETYPE y1, const VALUETYPE z1, VALUETYPE &dx, VALUETYPE &dy, VALUETYPE &dz) const
inline virtual void diffNearestNeighbor(const VALUETYPE x0, const VALUETYPE y0, const VALUETYPE z0, const VALUETYPE x1, const VALUETYPE y1, const VALUETYPE z1, VALUETYPE &dx, VALUETYPE &dy, VALUETYPE &dz, int &shift_x, int &shift_y, int &shift_z) const
inline virtual void diffNearestNeighbor(const VALUETYPE x0, const VALUETYPE y0, const VALUETYPE z0, const VALUETYPE x1, const VALUETYPE y1, const VALUETYPE z1, VALUETYPE &dx, VALUETYPE &dy, VALUETYPE &dz, VALUETYPE &shift_x, VALUETYPE &shift_y, VALUETYPE &shift_z) const

Public Static Functions

static inline int compactIndex(const int *idx)
static inline int getNumbShiftVec()
static inline int getShiftVecTotalSize()

Protected Functions

void computeShiftVec()
inline double *getInterShiftVec(const int index = 0)
inline const double *getInterShiftVec(const int index = 0) const

Protected Attributes

double shift_vec[shift_vec_size]
double inter_shift_vec[shift_vec_size]

Protected Static Functions

static inline int index3to1(const int tx, const int ty, const int tz)

Protected Static Attributes

static const int SPACENDIM = 3
static const int DBOX_XX = 1
static const int DBOX_YY = 1
static const int DBOX_ZZ = 1
static const int NBOX_XX = DBOX_XX * 2 + 1
static const int NBOX_YY = DBOX_YY * 2 + 1
static const int NBOX_ZZ = DBOX_ZZ * 2 + 1
static const int shift_info_size = NBOX_XX * NBOX_YY * NBOX_ZZ
static const int shift_vec_size = SPACENDIM * shift_info_size

Unions

Union U_Flt64_Int64
Union Documentation
union U_Flt64_Int64

Public Members

double nflt
int64_t nint

Functions

Template Function add_flt_nvnmd
Function Documentation
template<class T>
void add_flt_nvnmd(T &y, T x1, T x2)
Function build_nlist(std::vector<std::vector<int>>&, std::vector<std::vector<int>>&, const std::vector<double>&, const int&, const double&, const double&, const std::vector<int>&, const std::vector<int>&, const std::vector<int>&, const std::vector<int>&, const SimulationRegion<double>&, const std::vector<int>&)
Function Documentation
void build_nlist(std::vector<std::vector<int>> &nlist0, std::vector<std::vector<int>> &nlist1, const std::vector<double> &coord, const int &nloc, const double &rc0, const double &rc1, const std::vector<int> &nat_stt_, const std::vector<int> &nat_end_, const std::vector<int> &ext_stt_, const std::vector<int> &ext_end_, const SimulationRegion<double> &region, const std::vector<int> &global_grid)
Function build_nlist(std::vector<std::vector<int>>&, std::vector<std::vector<int>>&, const std::vector<double>&, const double&, const double&, const std::vector<int>&, const SimulationRegion<double>&)
Function Documentation
void build_nlist(std::vector<std::vector<int>> &nlist0, std::vector<std::vector<int>> &nlist1, const std::vector<double> &coord, const double &rc0, const double &rc1, const std::vector<int> &grid, const SimulationRegion<double> &region)
Function build_nlist(std::vector<std::vector<int>>&, std::vector<std::vector<int>>&, const std::vector<double>&, const std::vector<int>&, const std::vector<int>&, const double&, const double&, const std::vector<int>&, const SimulationRegion<double>&)
Function Documentation
void build_nlist(std::vector<std::vector<int>> &nlist0, std::vector<std::vector<int>> &nlist1, const std::vector<double> &coord, const std::vector<int> &sel0, const std::vector<int> &sel1, const double &rc0, const double &rc1, const std::vector<int> &grid, const SimulationRegion<double> &region)
Function build_nlist(std::vector<std::vector<int>>&, std::vector<std::vector<int>>&, const std::vector<double>&, const double&, const double&, const SimulationRegion<double> *)
Function Documentation
void build_nlist(std::vector<std::vector<int>> &nlist0, std::vector<std::vector<int>> &nlist1, const std::vector<double> &coord, const double &rc0_, const double &rc1_, const SimulationRegion<double> *region = NULL)
Function compute_descriptor(std::vector<double>&, std::vector<double>&, std::vector<double>&, const std::vector<double>&, const int&, const std::vector<int>&, const SimulationRegion<double>&, const bool&, const int&, const std::vector<int>&, const std::vector<int>&, const std::vector<int>&, const std::vector<int>&, const int, const int, const int, const int)
Function Documentation
inline void compute_descriptor(std::vector<double> &descrpt_a, std::vector<double> &descrpt_r, std::vector<double> &rot_mat, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const int &i_idx, const std::vector<int> &fmt_nlist_a, const std::vector<int> &fmt_nlist_r, const std::vector<int> &sec_a, const std::vector<int> &sec_r, const int axis0_type, const int axis0_idx, const int axis1_type, const int axis1_idx)
Function compute_descriptor(std::vector<double>&, std::vector<double>&, std::vector<double>&, std::vector<double>&, std::vector<double>&, std::vector<double>&, std::vector<double>&, const std::vector<double>&, const int&, const std::vector<int>&, const SimulationRegion<double>&, const bool&, const int&, const std::vector<int>&, const std::vector<int>&, const std::vector<int>&, const std::vector<int>&, const int, const int, const int, const int)
Function Documentation
inline void compute_descriptor(std::vector<double> &descrpt_a, std::vector<double> &descrpt_a_deriv, std::vector<double> &descrpt_r, std::vector<double> &descrpt_r_deriv, std::vector<double> &rij_a, std::vector<double> &rij_r, std::vector<double> &rot_mat, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const int &i_idx, const std::vector<int> &fmt_nlist_a, const std::vector<int> &fmt_nlist_r, const std::vector<int> &sec_a, const std::vector<int> &sec_r, const int axis0_type, const int axis0_idx, const int axis1_type, const int axis1_idx)
Function compute_descriptor_se_a_ef_para
Function Documentation
inline void compute_descriptor_se_a_ef_para(std::vector<double> &descrpt_a, std::vector<double> &descrpt_a_deriv, std::vector<double> &rij_a, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const std::vector<double> &efield, const int &i_idx, const std::vector<int> &fmt_nlist_a, const std::vector<int> &sec_a, const double &rmin, const double &rmax)
Function compute_descriptor_se_a_ef_vert
Function Documentation
inline void compute_descriptor_se_a_ef_vert(std::vector<double> &descrpt_a, std::vector<double> &descrpt_a_deriv, std::vector<double> &rij_a, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const std::vector<double> &efield, const int &i_idx, const std::vector<int> &fmt_nlist_a, const std::vector<int> &sec_a, const double &rmin, const double &rmax)
Function compute_descriptor_se_a_extf
Function Documentation
inline void compute_descriptor_se_a_extf(std::vector<double> &descrpt_a, std::vector<double> &descrpt_a_deriv, std::vector<double> &rij_a, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const std::vector<double> &efield, const int &i_idx, const std::vector<int> &fmt_nlist_a, const std::vector<int> &sec_a, const double &rmin, const double &rmax)
Function compute_dRdT
Function Documentation

Warning

doxygenfunction: Unable to resolve function “compute_dRdT” with arguments (double (*), const double*, const double*, const double*) in doxygen xml output for project “core” from directory: _build/core/xml/. Potential matches:

- void compute_dRdT(double (*dRdT)[9], const double *r1, const double *r2, const double *rot)
Function compute_dRdT_1
Function Documentation

Warning

doxygenfunction: Unable to resolve function “compute_dRdT_1” with arguments (double (*), const double*, const double*, const double*) in doxygen xml output for project “core” from directory: _build/core/xml/. Potential matches:

- void compute_dRdT_1(double (*dRdT)[9], const double *r1, const double *r2, const double *rot)
Function compute_dRdT_2
Function Documentation

Warning

doxygenfunction: Unable to resolve function “compute_dRdT_2” with arguments (double (*), const double*, const double*, const double*) in doxygen xml output for project “core” from directory: _build/core/xml/. Potential matches:

- void compute_dRdT_2(double (*dRdT)[9], const double *r1, const double *r2, const double *rot)
Function copy_coord
Function Documentation
void copy_coord(std::vector<double> &out_c, std::vector<int> &out_t, std::vector<int> &mapping, std::vector<int> &ncell, std::vector<int> &ngcell, const std::vector<double> &in_c, const std::vector<int> &in_t, const double &rc, const SimulationRegion<double> &region)
Template Function deepmd::build_nlist_cpu
Function Documentation
template<typename FPTYPE>
int deepmd::build_nlist_cpu(InputNlist &nlist, int *max_list_size, const FPTYPE *c_cpy, const int &nloc, const int &nall, const int &mem_size, const float &rcut)
Template Function deepmd::build_nlist_gpu
Function Documentation
template<typename FPTYPE>
int deepmd::build_nlist_gpu(InputNlist &nlist, int *max_list_size, int *nlist_data, const FPTYPE *c_cpy, const int &nloc, const int &nall, const int &mem_size, const float &rcut)
Template Function deepmd::compute_cell_info
Function Documentation
template<typename FPTYPE>
void deepmd::compute_cell_info(int *cell_info, const float &rcut, const deepmd::Region<FPTYPE> &region)
Function deepmd::convert_nlist
Function Documentation
void deepmd::convert_nlist(InputNlist &to_nlist, std::vector<std::vector<int>> &from_nlist)

Construct the InputNlist with a two-dimensional vector.

Parameters
  • to_nlistInputNlist struct which stores the neighbor information of the core region atoms.

  • from_nlist – Vector which stores the neighbor information of the core region atoms.

Function deepmd::convert_nlist_gpu_device
Function Documentation
void deepmd::convert_nlist_gpu_device(InputNlist &gpu_nlist, InputNlist &cpu_nlist, int *&gpu_memory, const int &max_nbor_size)

Convert the a host memory InputNlist to a device memory InputNlist.

Parameters
  • cpu_nlist – Host memory InputNlist struct which stores the neighbor information of the core region atoms

  • gpu_nlist – Device memory InputNlist struct which stores the neighbor information of the core region atoms

  • gpu_memory – Device array which stores the elements of gpu_nlist

  • max_nbor_size

Template Function deepmd::convert_to_inter_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::convert_to_inter_cpu(FPTYPE *ri, const Region<FPTYPE> &region, const FPTYPE *rp)
Template Function deepmd::convert_to_inter_gpu
Function Documentation
template<typename FPTYPE>
void deepmd::convert_to_inter_gpu(FPTYPE *ri, const Region<FPTYPE> &region, const FPTYPE *rp)
Template Function deepmd::convert_to_phys_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::convert_to_phys_cpu(FPTYPE *rp, const Region<FPTYPE> &region, const FPTYPE *ri)
Template Function deepmd::convert_to_phys_gpu
Function Documentation
template<typename FPTYPE>
void deepmd::convert_to_phys_gpu(FPTYPE *rp, const Region<FPTYPE> &region, const FPTYPE *ri)
Template Function deepmd::copy_coord_cpu
Function Documentation
template<typename FPTYPE>
int deepmd::copy_coord_cpu(FPTYPE *out_c, int *out_t, int *mapping, int *nall, const FPTYPE *in_c, const int *in_t, const int &nloc, const int &mem_nall, const float &rcut, const deepmd::Region<FPTYPE> &region)
Template Function deepmd::copy_coord_gpu
Function Documentation
template<typename FPTYPE>
int deepmd::copy_coord_gpu(FPTYPE *out_c, int *out_t, int *mapping, int *nall, int *int_data, const FPTYPE *in_c, const int *in_t, const int &nloc, const int &mem_nall, const int &loc_cellnum, const int &total_cellnum, const int *cell_info, const deepmd::Region<FPTYPE> &region)
Function deepmd::cos_switch(const double&, const double&, const double&)
Function Documentation
inline double deepmd::cos_switch(const double &xx, const double &rmin, const double &rmax)
Function deepmd::cos_switch(double&, double&, const double&, const double&, const double&)
Function Documentation
inline void deepmd::cos_switch(double &vv, double &dd, const double &xx, const double &rmin, const double &rmax)
Template Function deepmd::cprod
Function Documentation
template<typename TYPE>
inline void deepmd::cprod(const TYPE *r0, const TYPE *r1, TYPE *r2)
Function deepmd::cum_sum
Function Documentation
void deepmd::cum_sum(std::vector<int> &sec, const std::vector<int> &n_sel)
Template Function deepmd::delete_device_memory
Function Documentation
template<typename FPTYPE>
void deepmd::delete_device_memory(FPTYPE *&device)
Template Function deepmd::dot1
Function Documentation
template<typename TYPE>
inline TYPE deepmd::dot1(const TYPE *r0, const TYPE *r1)
Template Function deepmd::dot2
Function Documentation
template<typename TYPE>
inline TYPE deepmd::dot2(const TYPE *r0, const TYPE *r1)
Template Function deepmd::dot3
Function Documentation
template<typename TYPE>
inline TYPE deepmd::dot3(const TYPE *r0, const TYPE *r1)
Template Function deepmd::dot4
Function Documentation
template<typename TYPE>
inline TYPE deepmd::dot4(const TYPE *r0, const TYPE *r1)
Template Function deepmd::dotmv3
Function Documentation
template<typename TYPE>
inline void deepmd::dotmv3(TYPE *vec_o, const TYPE *tensor, const TYPE *vec_i)
Function deepmd::DPGetDeviceCount
Function Documentation
inline void deepmd::DPGetDeviceCount(int &gpu_num)
Function deepmd::dprc_pairwise_map_cpu
Function Documentation
void deepmd::dprc_pairwise_map_cpu(std::vector<int> &forward_qm_map, std::vector<int> &backward_qm_map, std::vector<int> &forward_qmmm_map, std::vector<int> &backward_qmmm_map, int &nloc_qm, int &nloc_qmmm, int &nall_qm, int &nall_qmmm, const std::vector<std::vector<int>> &fragments, const int nloc, const int nall)

DPRc pairwise map.

Parameters
  • forward_qm_map[out] Forward map for QM atoms.

  • backward_qm_map[out] Backward map for QM atoms.

  • forward_qmmm_map[out] Forward map for QM/MM atoms.

  • backward_qmmm_map[out] Backward map for QM/MM atoms.

  • nloc_qm[out] The number of local QM atoms.

  • nloc_qmmm[out] The number of local QM/MM atoms.

  • nall_qm[out] The number of all QM atoms, including local and ghost atoms.

  • nall_qmmm[out] The number of all QM/MM atoms, including local and ghost atoms.

  • fragments[in] The indexes of atoms that each fragment contains. Assume that only the first fragment consists of QM atoms.

  • nloc[in] The number of local atoms.

  • nall[in] The number of all atoms, including local and ghost atoms.

Function deepmd::DPSetDevice
Function Documentation
inline cudaError_t deepmd::DPSetDevice(int rank)
Template Function deepmd::env_mat_a_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::env_mat_a_cpu(std::vector<FPTYPE> &descrpt_a, std::vector<FPTYPE> &descrpt_a_deriv, std::vector<FPTYPE> &rij_a, const std::vector<FPTYPE> &posi, const std::vector<int> &type, const int &i_idx, const std::vector<int> &fmt_nlist, const std::vector<int> &sec, const float &rmin, const float &rmax)
Template Function deepmd::env_mat_a_nvnmd_quantize_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::env_mat_a_nvnmd_quantize_cpu(std::vector<FPTYPE> &descrpt_a, std::vector<FPTYPE> &descrpt_a_deriv, std::vector<FPTYPE> &rij_a, const std::vector<FPTYPE> &posi, const std::vector<int> &type, const int &i_idx, const std::vector<int> &fmt_nlist, const std::vector<int> &sec, const float &rmin, const float &rmax)
Function deepmd::env_mat_nbor_update
Function Documentation
void deepmd::env_mat_nbor_update(InputNlist &inlist, InputNlist &gpu_inlist, int &max_nbor_size, int *&nbor_list_dev, const int *mesh, const int size)
Template Function deepmd::env_mat_r_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::env_mat_r_cpu(std::vector<FPTYPE> &descrpt_a, std::vector<FPTYPE> &descrpt_a_deriv, std::vector<FPTYPE> &rij_a, const std::vector<FPTYPE> &posi, const std::vector<int> &type, const int &i_idx, const std::vector<int> &fmt_nlist_a, const std::vector<int> &sec_a, const float &rmin, const float &rmax)
Template Function deepmd::ewald_recp
Function Documentation
template<typename VALUETYPE>
void deepmd::ewald_recp(VALUETYPE &ener, std::vector<VALUETYPE> &force, std::vector<VALUETYPE> &virial, const std::vector<VALUETYPE> &coord, const std::vector<VALUETYPE> &charge, const deepmd::Region<VALUETYPE> &region, const EwaldParameters<VALUETYPE> &param)
Function deepmd::filter_ftype_gpu_cuda
Function Documentation
void deepmd::filter_ftype_gpu_cuda(int *ftype_out, const int *ftype_in, const int nloc)

Filter the fake atom type.

If >=0, set to 0; if <0, set to -1.

Parameters
  • ftype_out – The output filtered atom type.

  • ftype_in – The input atom type.

  • nloc – The number of atoms.

Template Function deepmd::format_nbor_list_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::format_nbor_list_gpu_cuda(int *nlist, const FPTYPE *coord, const int *type, const deepmd::InputNlist &gpu_inlist, int *array_int, uint_64 *array_longlong, const int max_nbor_size, const int nloc, const int nall, const float rcut, const std::vector<int> sec)
Template Function deepmd::format_nlist_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::format_nlist_cpu(int *nlist, const InputNlist &in_nlist, const FPTYPE *coord, const int *type, const int nloc, const int nall, const float rcut, const std::vector<int> sec)
Function deepmd::free_nlist_gpu_device
Function Documentation
void deepmd::free_nlist_gpu_device(InputNlist &gpu_nlist)

Reclaim the allocated device memory of struct InputNlist.

Parameters

gpu_nlist – Device memory InputNlist struct which stores the neighbor information of the core region atoms

Template Function deepmd::gelu_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::gelu_cpu(FPTYPE *out, const FPTYPE *xx, const int_64 size)
Template Function deepmd::gelu_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::gelu_gpu_cuda(FPTYPE *out, const FPTYPE *xx, const int_64 size)
Template Function deepmd::gelu_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::gelu_grad_cpu(FPTYPE *out, const FPTYPE *xx, const FPTYPE *dy, const int_64 size)
Template Function deepmd::gelu_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::gelu_grad_gpu_cuda(FPTYPE *out, const FPTYPE *xx, const FPTYPE *dy, const int_64 size)
Template Function deepmd::gelu_grad_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::gelu_grad_grad_cpu(FPTYPE *out, const FPTYPE *xx, const FPTYPE *dy, const FPTYPE *dy_2, const int_64 size)
Template Function deepmd::gelu_grad_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::gelu_grad_grad_gpu_cuda(FPTYPE *out, const FPTYPE *xx, const FPTYPE *dy, const FPTYPE *dy_2, const int_64 size)
Function deepmd::group_atoms_cpu
Function Documentation
void deepmd::group_atoms_cpu(std::vector<std::vector<int>> &fragments, const std::vector<int> &idxs)

Group atoms into different fragments according to indexes.

Parameters
  • fragments[out] The indexes of atoms that each fragment contains. Fragment has been sorted.

  • idxs[in] The indexes of the fragment that each atom belongs to. -1 will be ignored.

Template Function deepmd::init_region_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::init_region_cpu(Region<FPTYPE> &region, const FPTYPE *boxt)
Template Function deepmd::invsqrt
Function Documentation
template<typename TYPE>
inline TYPE deepmd::invsqrt(const TYPE x)
Specialized Template Function deepmd::invsqrt< double >
Function Documentation
template<>
inline double deepmd::invsqrt<double>(const double x)
Specialized Template Function deepmd::invsqrt< float >
Function Documentation
template<>
inline float deepmd::invsqrt<float>(const float x)
Template Function deepmd::malloc_device_memory(FPTYPE *&, const std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::malloc_device_memory(FPTYPE *&device, const std::vector<FPTYPE> &host)
Template Function deepmd::malloc_device_memory(FPTYPE *&, const int)
Function Documentation
template<typename FPTYPE>
void deepmd::malloc_device_memory(FPTYPE *&device, const int size)
Template Function deepmd::malloc_device_memory(FPTYPE *&, std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::malloc_device_memory(FPTYPE *&device, std::vector<FPTYPE> &host)
Template Function deepmd::malloc_device_memory_sync(FPTYPE *&, const std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::malloc_device_memory_sync(FPTYPE *&device, const std::vector<FPTYPE> &host)
Template Function deepmd::malloc_device_memory_sync(FPTYPE *&, const FPTYPE *, const int)
Function Documentation
template<typename FPTYPE>
void deepmd::malloc_device_memory_sync(FPTYPE *&device, const FPTYPE *host, const int size)
Template Function deepmd::malloc_device_memory_sync(FPTYPE *&, std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::malloc_device_memory_sync(FPTYPE *&device, std::vector<FPTYPE> &host)
Template Function deepmd::map_aparam_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::map_aparam_cpu(FPTYPE *output, const FPTYPE *aparam, const int *nlist, const int &nloc, const int &nnei, const int &numb_aparam)
Function deepmd::max_numneigh
Function Documentation
int deepmd::max_numneigh(const InputNlist &to_nlist)

Compute the max number of neighbors within the core region atoms.

Parameters

to_nlistInputNlist struct which stores the neighbor information of the core region atoms.

Return values

max – number of neighbors

Returns

integer

Template Function deepmd::memcpy_device_to_host(const FPTYPE *, std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::memcpy_device_to_host(const FPTYPE *device, std::vector<FPTYPE> &host)
Template Function deepmd::memcpy_device_to_host(const FPTYPE *, FPTYPE *, const int)
Function Documentation
template<typename FPTYPE>
void deepmd::memcpy_device_to_host(const FPTYPE *device, FPTYPE *host, const int size)
Template Function deepmd::memcpy_device_to_host(FPTYPE *, std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::memcpy_device_to_host(FPTYPE *device, std::vector<FPTYPE> &host)
Template Function deepmd::memcpy_host_to_device(FPTYPE *, const std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::memcpy_host_to_device(FPTYPE *device, const std::vector<FPTYPE> &host)
Template Function deepmd::memcpy_host_to_device(FPTYPE *, const FPTYPE *, const int)
Function Documentation
template<typename FPTYPE>
void deepmd::memcpy_host_to_device(FPTYPE *device, const FPTYPE *host, const int size)
Template Function deepmd::memcpy_host_to_device(FPTYPE *, std::vector<FPTYPE>&)
Function Documentation
template<typename FPTYPE>
void deepmd::memcpy_host_to_device(FPTYPE *device, std::vector<FPTYPE> &host)
Template Function deepmd::memset_device_memory
Function Documentation
template<typename FPTYPE>
void deepmd::memset_device_memory(FPTYPE *device, const int var, const int size)
Template Function deepmd::normalize_coord_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::normalize_coord_cpu(FPTYPE *coord, const int natom, const deepmd::Region<FPTYPE> &region)
Template Function deepmd::normalize_coord_gpu
Function Documentation
template<typename FPTYPE>
void deepmd::normalize_coord_gpu(FPTYPE *coord, const int natom, const deepmd::Region<FPTYPE> &region)
Template Function deepmd::pair_tab_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::pair_tab_cpu(FPTYPE *energy, FPTYPE *force, FPTYPE *virial, const double *table_info, const double *table_data, const FPTYPE *rij, const FPTYPE *scale, const int *type, const int *nlist, const int *natoms, const std::vector<int> &sel_a, const std::vector<int> &sel_r)
Template Function deepmd::prod_env_mat_a_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_env_mat_a_cpu(FPTYPE *em, FPTYPE *em_deriv, FPTYPE *rij, int *nlist, const FPTYPE *coord, const int *type, const InputNlist &inlist, const int max_nbor_size, const FPTYPE *avg, const FPTYPE *std, const int nloc, const int nall, const float rcut, const float rcut_smth, const std::vector<int> sec, const int *f_type = NULL)
Template Function deepmd::prod_env_mat_a_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_env_mat_a_gpu_cuda(FPTYPE *em, FPTYPE *em_deriv, FPTYPE *rij, int *nlist, const FPTYPE *coord, const int *type, const InputNlist &gpu_inlist, int *array_int, unsigned long long *array_longlong, const int max_nbor_size, const FPTYPE *avg, const FPTYPE *std, const int nloc, const int nall, const float rcut, const float rcut_smth, const std::vector<int> sec, const int *f_type = NULL)
Template Function deepmd::prod_env_mat_a_nvnmd_quantize_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_env_mat_a_nvnmd_quantize_cpu(FPTYPE *em, FPTYPE *em_deriv, FPTYPE *rij, int *nlist, const FPTYPE *coord, const int *type, const InputNlist &inlist, const int max_nbor_size, const FPTYPE *avg, const FPTYPE *std, const int nloc, const int nall, const float rcut, const float rcut_smth, const std::vector<int> sec, const int *f_type = NULL)
Template Function deepmd::prod_env_mat_r_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_env_mat_r_cpu(FPTYPE *em, FPTYPE *em_deriv, FPTYPE *rij, int *nlist, const FPTYPE *coord, const int *type, const InputNlist &inlist, const int max_nbor_size, const FPTYPE *avg, const FPTYPE *std, const int nloc, const int nall, const float rcut, const float rcut_smth, const std::vector<int> sec)
Template Function deepmd::prod_env_mat_r_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_env_mat_r_gpu_cuda(FPTYPE *em, FPTYPE *em_deriv, FPTYPE *rij, int *nlist, const FPTYPE *coord, const int *type, const InputNlist &gpu_inlist, int *array_int, unsigned long long *array_longlong, const int max_nbor_size, const FPTYPE *avg, const FPTYPE *std, const int nloc, const int nall, const float rcut, const float rcut_smth, const std::vector<int> sec)
Template Function deepmd::prod_force_a_cpu(FPTYPE *, const FPTYPE *, const FPTYPE *, const int *, const int, const int, const int, const int)
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_a_cpu(FPTYPE *force, const FPTYPE *net_deriv, const FPTYPE *in_deriv, const int *nlist, const int nloc, const int nall, const int nnei, const int nframes)

Produce force from net_deriv and in_deriv.

Template Parameters

FPTYPE – float or double

Parameters
  • force[out] Atomic forces.

  • net_deriv[in] Net derivative.

  • in_deriv[in] Environmental derivative.

  • nlist[in] Neighbor list.

  • nloc[in] The number of local atoms.

  • nall[in] The number of all atoms, including ghost atoms.

  • nnei[in] The number of neighbors.

  • nframes[in] The number of frames.

Template Function deepmd::prod_force_a_cpu(FPTYPE *, const FPTYPE *, const FPTYPE *, const int *, const int, const int, const int, const int, const int, const int)
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_a_cpu(FPTYPE *force, const FPTYPE *net_deriv, const FPTYPE *in_deriv, const int *nlist, const int nloc, const int nall, const int nnei, const int nframes, const int thread_nloc, const int thread_start_index)

Produce force from net_deriv and in_deriv.

This function is used for multi-threading. Only part of atoms are computed in this thread. They will be comptued in parallel.

Template Parameters

FPTYPE – float or double

Parameters
  • force[out] Atomic forces.

  • net_deriv[in] Net derivative.

  • in_deriv[in] Environmental derivative.

  • nlist[in] Neighbor list.

  • nloc[in] The number of local atoms.

  • nall[in] The number of all atoms, including ghost atoms.

  • nnei[in] The number of neighbors.

  • nframes[in] The number of frames.

  • thread_nloc[in] The number of local atoms to be computed in this thread.

  • thread_start_index[in] The start index of local atoms to be computed in this thread. The index should be in [0, nloc).

Template Function deepmd::prod_force_a_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_a_gpu_cuda(FPTYPE *force, const FPTYPE *net_deriv, const FPTYPE *in_deriv, const int *nlist, const int nloc, const int nall, const int nnei, const int nframes)
Template Function deepmd::prod_force_grad_a_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_grad_a_cpu(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const int *nlist, const int nloc, const int nnei, const int nframes)
Template Function deepmd::prod_force_grad_a_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_grad_a_gpu_cuda(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const int *nlist, const int nloc, const int nnei, const int nframes)
Template Function deepmd::prod_force_grad_r_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_grad_r_cpu(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const int *nlist, const int nloc, const int nnei, const int nframes)
Template Function deepmd::prod_force_grad_r_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_grad_r_gpu_cuda(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const int *nlist, const int nloc, const int nnei, const int nframes)
Template Function deepmd::prod_force_r_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_r_cpu(FPTYPE *force, const FPTYPE *net_deriv, const FPTYPE *in_deriv, const int *nlist, const int nloc, const int nall, const int nnei, const int nframes)
Template Function deepmd::prod_force_r_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_force_r_gpu_cuda(FPTYPE *force, const FPTYPE *net_deriv, const FPTYPE *in_deriv, const int *nlist, const int nloc, const int nall, const int nnei, const int nframes)
Template Function deepmd::prod_virial_a_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_a_cpu(FPTYPE *virial, FPTYPE *atom_virial, const FPTYPE *net_deriv, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nall, const int nnei)
Template Function deepmd::prod_virial_a_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_a_gpu_cuda(FPTYPE *virial, FPTYPE *atom_virial, const FPTYPE *net_deriv, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nall, const int nnei)
Template Function deepmd::prod_virial_grad_a_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_grad_a_cpu(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nnei)
Template Function deepmd::prod_virial_grad_a_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_grad_a_gpu_cuda(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nnei)
Template Function deepmd::prod_virial_grad_r_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_grad_r_cpu(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nnei)
Template Function deepmd::prod_virial_grad_r_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_grad_r_gpu_cuda(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nnei)
Template Function deepmd::prod_virial_r_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_r_cpu(FPTYPE *virial, FPTYPE *atom_virial, const FPTYPE *net_deriv, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nall, const int nnei)
Template Function deepmd::prod_virial_r_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::prod_virial_r_gpu_cuda(FPTYPE *virial, FPTYPE *atom_virial, const FPTYPE *net_deriv, const FPTYPE *env_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nall, const int nnei)
Template Function deepmd::soft_min_switch_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::soft_min_switch_cpu(FPTYPE *sw_value, FPTYPE *sw_deriv, const FPTYPE *rij, const int *nlist, const int &nloc, const int &nnei, const FPTYPE &alpha, const FPTYPE &rmin, const FPTYPE &rmax)
Template Function deepmd::soft_min_switch_force_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::soft_min_switch_force_cpu(FPTYPE *force, const FPTYPE *du, const FPTYPE *sw_deriv, const int *nlist, const int nloc, const int nall, const int nnei)
Template Function deepmd::soft_min_switch_force_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::soft_min_switch_force_grad_cpu(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *sw_deriv, const int *nlist, const int nloc, const int nnei)
Template Function deepmd::soft_min_switch_virial_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::soft_min_switch_virial_cpu(FPTYPE *virial, FPTYPE *atom_virial, const FPTYPE *du, const FPTYPE *sw_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nall, const int nnei)
Template Function deepmd::soft_min_switch_virial_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::soft_min_switch_virial_grad_cpu(FPTYPE *grad_net, const FPTYPE *grad, const FPTYPE *sw_deriv, const FPTYPE *rij, const int *nlist, const int nloc, const int nnei)
Function deepmd::spline3_switch
Function Documentation
inline void deepmd::spline3_switch(double &vv, double &dd, const double &xx, const double &rmin, const double &rmax)
Template Function deepmd::spline5_switch
Function Documentation
template<typename FPTYPE>
inline void deepmd::spline5_switch(FPTYPE &vv, FPTYPE &dd, const FPTYPE &xx, const float &rmin, const float &rmax)
Template Function deepmd::tabulate_fusion_se_a_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_a_cpu(FPTYPE *out, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *two_embed, const int nloc, const int nnei, const int last_layer_size, const bool is_sorted = true)
Template Function deepmd::tabulate_fusion_se_a_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_a_gpu_cuda(FPTYPE *out, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *two_embed, const int nloc, const int nnei, const int last_layer_size, const bool is_sorted = true)
Template Function deepmd::tabulate_fusion_se_a_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_a_grad_cpu(FPTYPE *dy_dem_x, FPTYPE *dy_dem, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *two_embed, const FPTYPE *dy, const int nloc, const int nnei, const int last_layer_size, const bool is_sorted = true)
Template Function deepmd::tabulate_fusion_se_a_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_a_grad_gpu_cuda(FPTYPE *dy_dem_x, FPTYPE *dy_dem, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *two_embed, const FPTYPE *dy, const int nloc, const int nnei, const int last_layer_size, const bool is_sorted = true)
Template Function deepmd::tabulate_fusion_se_a_grad_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_a_grad_grad_cpu(FPTYPE *dz_dy, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *dz_dy_dem_x, const FPTYPE *dz_dy_dem, const int nloc, const int nnei, const int last_layer_size, const bool is_sorted = true)
Template Function deepmd::tabulate_fusion_se_a_grad_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_a_grad_grad_gpu_cuda(FPTYPE *dz_dy, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *dz_dy_dem_x, const FPTYPE *dz_dy_dem, const int nloc, const int nnei, const int last_layer_size, const bool is_sorted = true)
Template Function deepmd::tabulate_fusion_se_r_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_r_cpu(FPTYPE *out, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em, const int nloc, const int nnei, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_r_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_r_gpu_cuda(FPTYPE *out, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em, const int nloc, const int nnei, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_r_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_r_grad_cpu(FPTYPE *dy_dem, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em, const FPTYPE *dy, const int nloc, const int nnei, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_r_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_r_grad_gpu_cuda(FPTYPE *dy_dem, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em, const FPTYPE *dy, const int nloc, const int nnei, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_r_grad_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_r_grad_grad_cpu(FPTYPE *dz_dy, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em, const FPTYPE *dz_dy_dem, const int nloc, const int nnei, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_r_grad_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_r_grad_grad_gpu_cuda(FPTYPE *dz_dy, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em, const FPTYPE *dz_dy_dem, const int nloc, const int nnei, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_t_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_t_cpu(FPTYPE *out, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const int nloc, const int nnei_i, const int nnei_j, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_t_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_t_gpu_cuda(FPTYPE *out, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const int nloc, const int nnei_i, const int nnei_j, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_t_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_t_grad_cpu(FPTYPE *dy_dem_x, FPTYPE *dy_dem, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *dy, const int nloc, const int nnei_i, const int nnei_j, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_t_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_t_grad_gpu_cuda(FPTYPE *dy_dem_x, FPTYPE *dy_dem, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *dy, const int nloc, const int nnei_i, const int nnei_j, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_t_grad_grad_cpu
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_t_grad_grad_cpu(FPTYPE *dz_dy, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *dz_dy_dem_x, const FPTYPE *dz_dy_dem, const int nloc, const int nnei_i, const int nnei_j, const int last_layer_size)
Template Function deepmd::tabulate_fusion_se_t_grad_grad_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::tabulate_fusion_se_t_grad_grad_gpu_cuda(FPTYPE *dz_dy, const FPTYPE *table, const FPTYPE *table_info, const FPTYPE *em_x, const FPTYPE *em, const FPTYPE *dz_dy_dem_x, const FPTYPE *dz_dy_dem, const int nloc, const int nnei_i, const int nnei_j, const int last_layer_size)
Template Function deepmd::test_encoding_decoding_nbor_info_gpu_cuda
Function Documentation
template<typename FPTYPE>
void deepmd::test_encoding_decoding_nbor_info_gpu_cuda(uint_64 *key, int *out_type, int *out_index, const int *in_type, const FPTYPE *in_dist, const int *in_index, const int size_of_array)
Function deepmd::use_nei_info_cpu
Function Documentation
void deepmd::use_nei_info_cpu(int *nlist, int *ntype, bool *nmask, const int *type, const int *nlist_map, const int nloc, const int nnei, const int ntypes, const bool b_nlist_map)
Function deepmd::use_nei_info_gpu
Function Documentation
void deepmd::use_nei_info_gpu(int *nlist, int *ntype, bool *nmask, const int *type, const int *nlist_map, const int nloc, const int nnei, const int ntypes, const bool b_nlist_map)
Function deepmd::use_nlist_map
Function Documentation
void deepmd::use_nlist_map(int *nlist, const int *nlist_map, const int nloc, const int nnei)
Template Function deepmd::volume_cpu
Function Documentation
template<typename FPTYPE>
FPTYPE deepmd::volume_cpu(const Region<FPTYPE> &region)
Template Function deepmd::volume_gpu
Function Documentation
template<typename FPTYPE>
void deepmd::volume_gpu(FPTYPE *volume, const Region<FPTYPE> &region)
Template Function dotmul_flt_nvnmd
Function Documentation
template<class T>
void dotmul_flt_nvnmd(T &y, T *x1, T *x2, int64_t M)
Function DPAssert(cudaError_t, const char *, int, bool)
Function Documentation
inline void DPAssert(cudaError_t code, const char *file, int line, bool abort = true)
Function DPAssert(hipError_t, const char *, int, bool)
Function Documentation
inline void DPAssert(hipError_t code, const char *file, int line, bool abort = true)
Function env_mat_a
Function Documentation
void env_mat_a(std::vector<double> &descrpt_a, std::vector<double> &descrpt_a_deriv, std::vector<double> &rij_a, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const int &i_idx, const std::vector<int> &fmt_nlist, const std::vector<int> &sec, const double &rmin, const double &rmax)
Function env_mat_r
Function Documentation
void env_mat_r(std::vector<double> &descrpt_r, std::vector<double> &descrpt_r_deriv, std::vector<double> &rij_r, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const int &i_idx, const std::vector<int> &fmt_nlist, const std::vector<int> &sec, const double &rmin, const double &rmax)
Template Function find_max_expo(int64_t&, T *, int64_t)
Function Documentation
template<class T>
void find_max_expo(int64_t &max_expo, T *x, int64_t M)
Template Function find_max_expo(int64_t&, T *, int64_t, int64_t)
Function Documentation
template<class T>
void find_max_expo(int64_t &max_expo, T *x, int64_t N, int64_t M)
Template Function format_nlist_i_cpu
Function Documentation
template<typename FPTYPE>
int format_nlist_i_cpu(std::vector<int> &fmt_nei_idx_a, const std::vector<FPTYPE> &posi, const std::vector<int> &type, const int &i_idx, const std::vector<int> &nei_idx_a, const float &rcut, const std::vector<int> &sec_a)
Function format_nlist_i_fill_a
Function Documentation
int format_nlist_i_fill_a(std::vector<int> &fmt_nei_idx_a, std::vector<int> &fmt_nei_idx_r, const std::vector<double> &posi, const int &ntypes, const std::vector<int> &type, const SimulationRegion<double> &region, const bool &b_pbc, const int &i_idx, const std::vector<int> &nei_idx_a, const std::vector<int> &nei_idx_r, const double &rcut, const std::vector<int> &sec_a, const std::vector<int> &sec_r)
Template Function mul_flt_nvnmd
Function Documentation
template<class T>
void mul_flt_nvnmd(T &y, T x1, T x2)
Function nborAssert(cudaError_t, const char *, int, bool)
Function Documentation
inline void nborAssert(cudaError_t code, const char *file, int line, bool abort = true)
Function nborAssert(hipError_t, const char *, int, bool)
Function Documentation
inline void nborAssert(hipError_t code, const char *file, int line, bool abort = true)
Function omp_get_num_threads
Function Documentation
int omp_get_num_threads()
Function omp_get_thread_num
Function Documentation
int omp_get_thread_num()
Template Function split_flt
Function Documentation
template<class T>
void split_flt(T x, int64_t &sign, int64_t &expo, int64_t &mant)

Variables

Variable deepmd::ElectrostaticConvertion
Variable Documentation
const double deepmd::ElectrostaticConvertion = 14.39964535475696995031

Defines

Define DPErrcheck
Define Documentation
DPErrcheck(res)
Define DPErrcheck
Define Documentation
DPErrcheck(res)
Define FLT_MASK
Define Documentation
FLT_MASK
Define GPU_MAX_NBOR_SIZE
Define Documentation
GPU_MAX_NBOR_SIZE
Define GPU_MAX_NBOR_SIZE
Define Documentation
GPU_MAX_NBOR_SIZE
Define MOASPNDIM
Define Documentation
MOASPNDIM
Define NBIT_CUTF
Define Documentation
NBIT_CUTF
Define NBIT_FLTF
Define Documentation
NBIT_FLTF
Define nborErrcheck
Define Documentation
nborErrcheck(res)
Define nborErrcheck
Define Documentation
nborErrcheck(res)
Define SQRT_2_PI
Define Documentation
SQRT_2_PI
Define TPB
Define Documentation
TPB

Typedefs

Typedef int_64
Typedef Documentation
typedef long long int_64
Typedef uint_64
Typedef Documentation
typedef unsigned long long uint_64

License

The project DeePMD-kit is licensed under GNU LGPLv3.0.

Authors and Credits

Cite DeePMD-kit and methods

  • For general purpose,

WZHE18

Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Comm., 228:178–184, jul 2018. doi:10.1016/j.cpc.2018.03.016.

ZZL+23

Jinzhe Zeng, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Marián Rynik, Li'ang Huang, Ziyao Li, Shaochen Shi, Yingze Wang, Haotian Ye, Ping Tuo, Jiabin Yang, Ye Ding, Yifan Li, Davide Tisi, Qiyu Zeng, Han Bao, Yu Xia, Jiameng Huang, Koki Muraoka, Yibo Wang, Junhan Chang, Fengbo Yuan, Sigbjørn Løland Bore, Chun Cai, Yinnian Lin, Bo Wang, Jiayan Xu, Jia-Xin Zhu, Chenxing Luo, Yuzhi Zhang, Rhys E A Goodall, Wenshuo Liang, Anurag Kumar Singh, Sikai Yao, Jingchao Zhang, Renata Wentzcovitch, Jiequn Han, Jie Liu, Weile Jia, Darrin M York, Weinan E, Roberto Car, Linfeng Zhang, and Han Wang. DeePMD-kit v2: A software package for deep potential models. J. Chem. Phys., 159:054801, 2023. doi:10.1063/5.0155600.

  • If GPU version is used,

LWC+21

Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, Weinan E, Weile Jia, and Linfeng Zhang. 86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy. Comput. Phys. Comm., 259:107624, 2021. doi:10.1016/j.cpc.2020.107624.

  • If local frame (loc_frame) is used,

ZHW+18

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett., 120(14):143001, 2018. doi:10.1103/PhysRevLett.120.143001.

  • If DeepPot-SE (se_e2_a, se_e2_r, se_e3, se_atten) is used,

ZHW+18

Linfeng Zhang, Jiequn Han, Han Wang, Wissam Saidi, Roberto Car, and Weinan E. End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended Systems. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 4436–4446. Curran Associates, Inc., 2018. URL: https://dl.acm.org/doi/10.5555/3327345.3327356.

  • If three-body embedding DeepPot-SE (se_e3) is used,

WWZ+22

Xiaoyang Wang, Yinan Wang, Linfeng Zhang, Fuzhi Dai, and Han Wang. A tungsten deep neural-network potential for simulating mechanical property degradation under fusion service environment. Nucl. Fusion, 62:126013, 2022. doi:10.1088/1741-4326/ac888b.

  • If attention-based descriptor (se_atten) is used,

ZBD+22

Duo Zhang, Hangrui Bi, Fu-Zhi Dai, Wanrun Jiang, Linfeng Zhang, and Han Wang. DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation. 2022. doi:10.48550/arXiv.2208.08236.

  • If fitting dipole,

ZCW+20

Linfeng Zhang, Mohan Chen, Xifan Wu, Han Wang, Weinan E, and Roberto Car. Deep neural network for the dielectric response of insulators. Phys. Rev. B, 102(4):041121, 2020. doi:10.1103/PhysRevB.102.041121.

  • If fitting polarizability,

SAZ+20

Grace M Sommers, Marcos F Calegari Andrade, Linfeng Zhang, Han Wang, and Roberto Car. Raman spectrum and polarizability of liquid water from deep neural networks. Phys. Chem. Chem. Phys., 22(19):10592–10602, 2020. doi:10.1039/D0CP01893G.

  • If fitting density of states,

ZCY+22

Qiyu Zeng, Bo Chen, Xiaoxiang Yu, Shen Zhang, Dongdong Kang, Han Wang, and Jiayu Dai. Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning. Phys. Rev. B, 105:174109, 2022. doi:10.1103/PhysRevB.105.174109.

  • If fitting relative energies,

ZTGY23

Jinzhe Zeng, Yujun Tao, Timothy J Giese, and Darrin M York. QD\pi : A Quantum Deep Potential Interaction Model for Drug Discovery. J. Chem. Theory Comput., 19:1261–1275, 2023. doi:10.1021/acs.jctc.2c01172.

  • If DPLR is used, or se_e2_r and hybrid are used,

ZWM+22

Linfeng Zhang, Han Wang, Maria Carolina Muniz, Athanassios Z Panagiotopoulos, Roberto Car, and Weinan E. A deep potential model with long-range electrostatic interactions. J. Chem. Phys., 156:124107, 2022. doi:10.1063/5.0083669.

  • If DPRc is used,

ZGEY21

Jinzhe Zeng, Timothy J Giese, Şölen Ekesan, and Darrin M York. Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/molecular Mechanical Simulations of Chemical Reactions in Solution. J. Chem. Theory Comput., 17:6993–7009, 2021. doi:10.1021/acs.jctc.1c00201.

  • If interpolation with a pair-wise potential is used,

WGZ+19

Hao Wang, Xun Guo, Linfeng Zhang, Han Wang, and Jianming Xue. Deep learning inter-atomic potential model for accurate irradiation damage simulations. Appl. Phys. Lett., 114(24):244101, 2019. doi:10.1063/1.5098061.

  • If the model is compressed (dp compress),

LJC+22

Denghui Lu, Wanrun Jiang, Yixiao Chen, Linfeng Zhang, Weile Jia, Han Wang, and Mohan Chen. DP Compress: A Model Compression Scheme for Generating Efficient Deep Potential Models. J. Chem. Theory Comput., 18:5555–5567, 2022. doi:10.1021/acs.jctc.2c00102.

  • If model deviation is computed,

ZLW+19

Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, and Weinan E. Active learning of uniformly accurate interatomic potentials for materials simulation. Phys. Rev. Mater., 3:23804, 2019. doi:10.1103/PhysRevMaterials.3.023804.

  • If relative or atomic model deviation is computed,

ZZWZ21

Jinzhe Zeng, Linfeng Zhang, Han Wang, and Tong Zhu. Exploring the Chemical Space of Linear Alkane Pyrolysis via Deep Potential GENerator. Energy & Fuels, 35(1):762–769, 2021. doi:10.1021/acs.energyfuels.0c03211.

  • If NVNMD is used,

MLZ+22

Pinghui Mo, Chang Li, Dan Zhao, Yujia Zhang, Mengchao Shi, Junhua Li, and Jie Liu. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture. npj Comput. Mater., 8:107, 2022. doi:10.1038/s41524-022-00773-z.

Package Contributors

  • AngelJia

  • AnguseZhang

  • Anurag Kumar Singh

  • Chenqqian Zhang

  • Chenxing Luo

  • Chun Cai

  • Davide Tisi

  • Denghui Lu

  • Duo

  • Eisuke Kawashima

  • GeiduanLiu

  • Han Wang

  • Harvey Que

  • HuangJiameng

  • Jia-Xin Zhu

  • Jiequn Han

  • Jingchao Zhang

  • Jinzhe Zeng

  • Koki MURAOKA

  • LiangWenshuo1118

  • Linfeng Zhang

  • LiuGroupHNU

  • Lu

  • Marián Rynik

  • Nick Lin

  • Rhys Goodall

  • Shaochen Shi

  • TrellixVulnTeam

  • Wanrun Jiang

  • Xia, Yu

  • YWolfeee

  • Ye Ding

  • Yifan Li李一帆

  • Yingze Wang

  • Yixiao Chen

  • Zeyu Li

  • ZhengdQin

  • ZiyaoLi

  • baohan

  • bwang-ecnu

  • deepmodeling

  • denghuilu

  • dependabot[bot]

  • haidi

  • hlyang

  • hsulab

  • hztttt

  • iProzd

  • imgbot[bot]

  • jxxiaoshaoye

  • liangadam

  • likefallwind

  • marian-code

  • mingzhong15

  • nahso

  • njzjz

  • pkulzy

  • pre-commit-ci[bot]

  • readthedocs-assistant

  • sigbjobo

  • tuoping

  • wsyxbcl

  • ziyao

Other Credits

  • Zhang ZiXuan for designing the Deepmodeling logo.

  • Everyone on the Deepmodeling mailing list for contributing to many discussions and decisions!