DeePMD-kit

DeepModeling

Dec 19, 2022

GETTING STARTED

1 Getting Started

1.1 Easyinstall
1.1.1 Install off-line packages
1.1.2 Imstall withconda
1.1.3 Imstall with docker
1.1.4 Install Python interface withpip
1.2 Preparedata withdpdata
1.3 Trainamodel
1.4 Freezeamodel
1.5 Testamodel. e e
1.6 Run MD With LAMMPS . .« o o oo e e e e e e e e e e
2 Installation
2.1 Easyinstall
2.1.1 Imstall off-line packages L
2.1.2 Imstall withconda e
2.1.3 Imstall with docker e
2.1.4 Install Python interface withpip
2.2 Install fromsource code e e
2.2.1 Install the python interface
2.2.2 Install the C++interface e
2.3 Install LAMMPS e e e
2.3.1 Imnstall LAMMPS’s DeePMD-kit module (built-inmode)
2.3.2 Install LAMMPS (plugin mode)
24 Install i-PI o
2.5 Install GROMACS with DeepMD
2.5.1 Patchsource code of GROMACS. it e
2.5.2 Compile GROMACS with deepmd-kit
2.6 Building conda packages. L
3 Data
3.1 System . ..o e
32 TFormatsofasystem
321 NumPyformat
3.2.2 HDF5formab. e e
3.2.3 Rawformatanddataconversion
3.3 Preparedata withdpdata
4 Model
4.1 Overall e e

0N~ UtU s W Www

10
10
11
11
11
15
17
17
18
18
19
19
19
19

21
21
23
23
23
24
24

27
27

4.2 Descriptor "se_e2_a" e e e e e 28
4.3 Descriptor "se_e2_r" . ..o e e e e e 29
4.4 Descriptor "se_e3" L e 29
4.5 Descriptor "se_atten" Lo e e e 30
4.5.1 DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation 30
452 Installation L 30
453 Introduction to new featuresof DPA-1 30
454 Dataformat 32
455 Trainingexample Lo e 33
4.6 Descriptor "hybrid" 33
4.7 Determine sel 34
4.8 Fitenergy o o e e e 34
4.8.1 Thefittingnetwork L 34
482 LOSS . v o e e 34
4.9 Fit tensor like Dipole and Polarizabilityot 35
4.9.1 Thefitting Network 35
492 LOSS . . oo 36
4.9.3 Training Data Preparation L oo o 36
494 Trainthe Model e 37
4.10 Typeembedding approach e 37
4.10.1 Typeembeddingnet e 38
4.11 Deep potential long-range (DPLR) o i ittt i 39
4.11.1 Train a deep Wannier model for Wannier centroids 39
4.11.2 Trainthe DPLRmodel e 40
4.11.3 Molecular dynamics simulation with DPLR 40
4.12 Deep Potential - Range Correction (DPRC)« . v v v v v i it et e e e 42
4.12.1 Trainingdata L 43
4.12.2 Training the DPRcmodel e 43
4.12.3 Run MDsimulations 44
Training 45
51 Trainamodel L 45
52 Advancedoptions. 46
5.2.1 Learningrate e 46
5.2.2 Training parameters L 47
5.2.3 Options and environment variables Lo 49
524 Adjustselof afrozenmodel. 50
5.3 Training Parameters L e 50
54 Parallel training L 78
54.1 Tuninglearning rate L 78
5.4.2 Scalingtest L 79
543 Howtouse 79
544 Logging e 80
55 Multi-task trainingo 80
56 TensorBoard Usage o o o i e 81
5.6.1 Highlighted features 81
5.6.2 How to use Tensorboard with DeePMD-kit 81
56.3 Examples. e 82
5.6.4 Attention L e 86
5.7 Known limitations of using GPUs 86
5.8 Finetune the pretrained model L 87
Freeze and Compress 89
6.1 Freezeamodel 89

6.2 Compressamodel

7 Test
7.1 Testamodel. e
7.2 Calculate Model Deviation e

8 Inference
8.1 Pythoninterface
8.2 C/C++interface e e
8.2.1 CH+interface e e e
822 Cinterface e
8.2.3 Header-only C++ library interface (recommended).

9 Command line interface
9.1 Named Arguments L
9.2 Validsubcommands e e
9.3 Sub-commands e e e e
931 config
9.3.2 transfer e
9.3.3 train e e e e
0.3.4 freeze e
9.3.5 teSt . . e e e e e e e e e
9.3.6 COMPIESS « . v v v vt e
9.3.7 doc-train-input
9.3.8 model-devi e
9.3.9 convert-from. e
9.3.10 neighbor-stat
9.3.11 train-nvonmd e e e e e e e

10 Integrate with third-party packages
10.1 Usedeep potential with ASE e
10.2 Run MD with LAMMPS
10.3 LAMMPS commands e e
10.3.1 Enable DeePMD-kit plugin (pluginmode)
10.3.2 pair styledeepmd L
10.3.3 Compute tensorial properties
10.3.4 Long-rangeinteraction L e
10.3.5 Use of the centroid/stress/atom to get the full 3x3 “atomic-virial”
10.3.6 Computationof heatflux. L o
10.4 Run path-integral MD with i-PTo
10.5 Running MD with GROMACS e
10.5.1 DP/MM Simulation e e
10.5.2 All-atom DP Simulation
10.6 Interfaces out of DeePMD-Kit e
10.6.1 dpdata
10.6.2 OpenMM plugin for DeePMD-Kkit i
10.6.3 AMBER interface to DeePMD-kit
10.6.4 DP-GEN e
10.6.5 MLatom e e e e e

11 Use NVNMD
11.1 Introduction o e
112 Training o o e
11.2.1 Imputscript e
11.2.2 Training o o o 0 e e e e e

93
93
94

95
95
96
96
96
97

99
99
99
99
99
100
100
101
102
103
104
104
105
106
106

109
109
109
110
110
110
111
112
112
112
113
114
114
116
117
117
117
117
117
117

119
119
119
120
122

11.3 Testing o o e e e e
11.4 Running MD o 0
11.4.1 Accountapplication e
11.4.2 Adding task e
11.4.3 Cancelling calculation L
11.4.4 Downloading results e
11.4.5 Deleting record
11.4.6 Clearingrecords o v ittt e

12 FAQs

12.1 How to tune Fitting/embedding-netsize ? o
12.1.1 AI203 . . o o e e
1212 Cu . .o o e
12.1.3 Water o o e e e e
1204 Mg-Al. oot e

12.2 How to control the parallelism of ajob?
12.2.1 MPI(optional) o o e
12.2.2 Parallelism between independent operators
12.2.3 Parallelism within an individual operators
12.2.4 Tune the performance

12.3 Do we need to set rcut < half boxsize?

12.4 How toset sel?

12.5 Installation L
12.5.1 Inadequate versions of gec/g++ L
12.5.2 Build files left in DeePMD-Kit

12.6 The temperature undulates violently during the early stagesof MD

12.7 MD: cannot run LAMMPS after installing a new version of DeePMD-kit

12.8 Model compatibility

12.9 Why does a model have low precision? L o

13 Find DeePMD-kit C/C++ library from CMake

14 Coding Conventions

14.1 Preface o o e
14.2 Rules . . . o o o e e
14.3 Whitespace e e e
14.4 General advice
14.5 Writing documentationinthecode L L L
14.6 Run pycodestyleon yourcode
147 Runmypyonyour codeot ittt e e e e e e e
14.8 Run pydocstyleon yourcode e e
149 Runblackonyourcode e

15 Create a model

15.1 Design a new component e e e e e e
15.2 Register new argumentso
15.3 Packagenew codeso

16 Atom Type Embedding

16.1 OVerview e e e e e e
16.2 Preliminary o e e
16.3 Howtouse. o e

16.4 Code Modification e

16.4.1
16.4.2
16.4.3
16.4.4

17 Python API

trainer (train/trainer.py)
model (model/ener.py)
embedding net (descriptor/se®™.py)
fitting net (fit/fener.py)

17.1 deepmd package

17.1.1
17.1.2
17.1.3
17.1.4
17.1.5
17.1.6

18 OP API

Subpackages
Submodules e
deepmd.calculator module
deepmd.common module
deepmd.envmodule
deepmd.Impmodule

181 op module e e
182 op grads module

19 C++ API

19.1 Class Hierarchy o o o e
19.2 FileHierarchy o o o e
19.3 Full APT . . . o e

19.3.1
19.3.2
19.3.3
19.3.4

20 CAPI

Namespaces oo e e e e
Classes and Structs e e
Functions e e
Typedefs . . . o o e

20.1 ClassHierarchy 0
20.2 FileHierarchy o
20.3 Full API . . .o

20.3.1
20.3.2
20.3.3
20.34

21 Core API

Namespaces oo e e e e
Classes and Structs e e
Functions e e
Typedefs . . . o o e

21.1 ClassHierarchy o L
21.2 File Hierarchy o o e
21.3 Full APT . . .o

21.3.1
21.3.2
21.3.3
21.34
21.3.5
21.3.6

22 License

Namespaces o v e e e e e
Classes and Structs e e
Functions e e
Variables e e e e
Defines e
Typedefs . . . o o

23 Authors and Credits
23.1 Package Contributors e
23.2 Other Credits e

Bibliography

469

471
471
472

473

Python Module Index 475

Index 477

Vi

DeePMD-kit

DeePMD-kit is a package written in Python/C++, designed to minimize the effort required to build deep
learning-based models of interatomic potential energy and force field and to perform molecular dynamics
(MD). This brings new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations.
Applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to
chemically bonded systems.

Important: The project DeePMD-kit is licensed under GNU LGPLv3.0. If you use this code in any future
publications, please cite this using Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. “DeePMD-kit: A
deep learning package for many-body potential energy representation and molecular dynamics.” Computer
Physics Communications 228 (2018): 178-184.

GETTING STARTED 1

https://github.com/deepmodeling/deepmd-kit/blob/master/LICENSE

DeePMD-kit

2 GETTING STARTED

CHAPTER
ONE

GETTING STARTED

In this text, we will call the deep neural network that is used to represent the interatomic interactions (Deep
Potential) the model. The typical procedure of using DeePMD-Kkit is

1.1 Easy install

There are various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by
yourself, jump to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (1mp) will be available to execute. You can try
dp -hand lmp -h to see the help. mpirun is also available considering you may want to train models or run
LAMMPS in parallel.

Note: Note: The off-line packages and conda packages require the GNU C Library 2.17 or above. The GPU
version requires compatible NVIDIA driver to be installed in advance. It is possible to force conda to override
detection when installation, but these requirements are still necessary during runtime.

o Install off-line packages

Install with conda

Install with docker

Install Python interface with pip

1.1.1 Install off-line packages

Both CPU and GPU version offline packages are available in the Releases page.

Some packages are splited into two files due to size limit of GitHub. One may merge them into one after
downloading;:

cat deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.0 deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.
—1 > deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh

One may enable the environment using

conda activate /path/to/deepmd-kit

https://www.gnu.org/software/libc/
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://github.com/deepmodeling/deepmd-kit/releases

DeePMD-kit

1.1.2 Install with conda

DeePMD-kit is avaiable with conda. Install Anaconda or Miniconda first.

Offical channel

One may create an environment that contains the CPU version of DeePMD-kit and LAMMPS:

conda create -n deepmd deepmd-kit=*=*cpu libdeepmd=*=*cpu lammps -c https://conda.deepmodeling.com,,
——c defaults

Or one may want to create a GPU environment containing CUDA Toolkit:

conda create -n deepmd deepmd-kit=*=xgpu libdeepmd=*=*gpu lammps cudatoolkit=11.6 horovod -c,
—https://conda.deepmodeling.com -c defaults

One could change the CUDA Toolkit version from 10.2 or 11.86.
One may specify the DeePMD-kit version such as 2.1.1 using

conda create -n deepmd deepmd-kit=2.1.1=*cpu libdeepmd=2.1.1=*cpu lammps horovod -c https://conda.
—deepmodeling.com -c defaults

One may enable the environment using

conda activate deepmd

conda-forge channel

DeePMD-Kit is also available on the conda-forge channel:

conda create -n deepmd deepmd-kit lammps -c conda-forge

The supported platform includes Linux x86-64, macOS x86-64, and macOS arm64. Read conda-forge FAQ
to learn how to install CUDA-enabled packages.

1.1.3 Install with docker

A docker for installing the DeePMD-kit is available here.
To pull the CPU version:

’docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cpu

To pull the GPU version:

’docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cudall.6_gpu

To pull the ROCm version:

’docker pull deepmodeling/dpmdkit-rocm:dp2.0.3-rocm4.5.2-tf2.6-1mp29Sep2021

4 Chapter 1. Getting Started

https://github.com/conda/conda
https://www.anaconda.com/distribution/#download-section
https://docs.conda.io/en/latest/miniconda.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-toolkit-driver
https://conda-forge.org/
https://conda-forge.org/docs/user/tipsandtricks.html#installing-cuda-enabled-packages-like-tensorflow-and-pytorch
https://github.com/orgs/deepmodeling/packages/container/package/deepmd-kit

DeePMD-kit

1.1.4 Install Python interface with pip

If you have no existing TensorFlow installed, you can use pip to install the pre-built package of the Python
interface with CUDA 11 supported:

’pip install deepmd-kit[gpul

Or install the CPU version without CUDA supported:

’pip install deepmd-kit[cpul

LAMMPS module is only provided on Linux and macOS. To enable it, add 1mp to extras:

’pip install deepmd-kit[gpu,lmp]

MPICH is required for parallel running.

Tt is suggested to install the package into an isolated environment. The supported platform includes Linux
x86-64 and aarch64 with GNU C Library 2.28 or above, macOS x86-64, and Windows x86-64. A specific
version of TensorFlow which is compatible with DeePMD-kit will be also installed.

Warning: If your platform is not supported, or want to build against the installed TensorFlow, or want
to enable ROCM support, please build from source.

1.2 Prepare data with dpdata

One can use a convenient tool dpdata to convert data directly from the output of first principle packages to
the DeePMD-kit format.

To install one can execute

pip install dpdata

An example of converting data VASP data in OUTCAR format to DeePMD-kit data can be found at

’$deepmd_source_dir/examples/data_conv

Switch to that directory, then one can convert data by using the following python script

import dpdata
dsys = dpdata.LabeledSystem('0OUTCAR')
dsys.to('deepmd/npy', 'deepmd_data', set_size = dsys.get_nframes())

get_nframes () method gets the number of frames in the OUTCAR, and the argument set_size enforces that
the set size is equal to the number of frames in the system, viz. only one set is created in the system.

The data in DeePMD-kit format is stored in the folder deepmd_data.

A list of all supported data format and more nice features of dpdata can be found on the official website.

1.2. Prepare data with dpdata 5

https://github.com/deepmodeling/dpdata
https://www.vasp.at/
https://github.com/deepmodeling/dpdata#load-data
https://github.com/deepmodeling/dpdata

DeePMD-kit

1.3 Train a model

Several examples of training can be found in the examples directory:

’$ cd $deepmd_source_dir/examples/water/se_e2_a/

After switching to that directory, the training can be invoked by

’$ dp train input.json

where input. json is the name of the input script.

By default, the verbosity level of the DeePMD-kit is INFO, one may see a lot of important information on
the code and environment showing on the screen. Among them two pieces of information regarding data
systems are worth special notice.

DEEPMD INFO ---Summary of DataSystem: training ------- - -

—

DEEPMD INFO found 3 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_0/ 192 1 80 0.250 T
DEEPMD INFO ../data_water/data_1/ 192 1 160 0.500 T
DEEPMD INFO ../data_water/data_2/ 192 1 80 0.250 T

DEEPMD INFO - -—= —-— _— -

—
DEEPMD INFO ---Summary of DataSystem: validation ------- - -

—
DEEPMD INFO found 1 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_3 192 1 80 1.000 T
DEEPMD INFO m oo m oo o o o e e

—

The DeePMD-kit prints detailed information on the training and validation data sets. The data sets are
defined by training data and validation data defined in the training section of the input script. The training
data set is composed of three data systems, while the validation data set is composed by one data system. The
number of atoms, batch size, the number of batches in the system and the probability of using the system
are all shown on the screen. The last column presents if the periodic boundary condition is assumed for the
system.

During the training, the error of the model is tested every disp freq training steps with the batch used to
train the model and with numb btch batches from the validating data. The training error and validation
error are printed correspondingly in the file disp_file (default is 1curve. out). The batch size can be set in the
input script by the key batch_size in the corresponding sections for the training and validation data set. An
example of the output

step rmse_val rmse_trn rmse_e_val rTmse_e_trn rmse_f_val rmse_f_trn ir
0 3.33e+01 3.41e+01 1.03e+01 1.03e+01 8.39e-01 8.72e-01 1.0e-03

100 2.57e+01 2.56e+01 1.87e+00 1.88e+00 8.03e-01 8.02e-01 1.0e-03

200 2.45e+01 2.56e+01 2.26e-01 2.21e-01 7.73e-01 8.10e-01 1.0e-03

300 1.62e+01 1.66e+01 5.01e-02 4.46e-02 5.11e-01 5.26e-01 1.0e-03
400 1.36e+01 1.32e+01 1.07e-02 2.07e-03 4.29e-01 4.19e-01 1.0e-03

500 1.07e+01 1.05e+01 2.45e-03 4.11e-03 3.38e-01 3.31e-01 1.0e-03

The file contains 8 columns, from left to right, which are the training step, the validation loss, training loss,
root mean square (RMS) validation error of energy, RMS training error of energy, RMS validation error of

6 Chapter 1. Getting Started

DeePMD-kit

force, RMS training error of force and the learning rate. The RMS error (RMSE) of the energy is normalized
by the number of atoms in the system. One can visualize this file with a simple Python script:

import numpy as np
import matplotlib.pyplot as plt

data = np.genfromtxt("lcurve.out", names=True)

for name in data.dtype.names[1:-1]:
plt.plot(datal'step'], data[name], label=name)

plt.legend()

plt.xlabel('Step')

plt.ylabel('Loss"')

plt.xscale('symlog')

plt.yscale('log')

plt.grid()

plt.show()

Checkpoints will be written to files with the prefix save ckpt every save freq training steps.

Warning: It is warned that the example water data (in folder examples/water/data) is of very limited
amount, is provided only for testing purposes, and should not be used to train a production model.

1.4 Freeze a model

The trained neural network is extracted from a checkpoint and dumped into a protobuf(.pb) file. This process
is called “freezing” a model. The idea and part of our code are from Morgan. To freeze a model, typically
one does

$ dp freeze -o graph.pb

in the folder where the model is trained. The output model is called graph.pb.

In multi-task mode, this process will output several models, each of which contains the common descriptor
and one of the user-defined fitting nets in fitting net_dict, let’s name it fitting_key, together frozen in
graph_{fitting_key}.pb. Those frozen models are exactly the same as single-task output with fitting net
fitting_key.

1.5 Test a model

The frozen model can be used in many ways. The most straightforward test can be performed usingdp test.
A typical usage of dp test is

’dp test -m graph.pb -s /path/to/system -n 30

where -m gives the tested model, -s the path to the tested system and -n the number of tested frames. Several
other command line options can be passed to dp test, which can be checked with

’$ dp test --help

An explanation will be provided

1.4. Freeze a model 7

https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

DeePMD-kit

usage: dp test [-h] [-m MODEL] [-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST]
[-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE]

optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Frozen model file to import
-s SYSTEM, --system SYSTEM
The system dir
-S SET_PREFIX, --set-prefix SET_PREFIX
The set prefix
-n NUMB_TEST, --numb-test NUMB_TEST
The number of data for test
-r RAND_SEED, --rand-seed RAND_SEED
The random seed
--shuffle-test Shuffle test data
-d DETAIL_FILE, --detail-file DETAIL_FILE
The prefix to files where details of energy, force and virial accuracy/
—accuracy per atom will be written
-a, —-atomic Test the accuracy of atomic label, i.e. energy / temsor (dipole, polar)

1.6 Run MD with LAMMPS

Running an MD simulation with LAMMPS is simpler. In the LAMMPS input file, one needs to specify the
pair style as follows

pair_style deepmd graph.pb
pair_coeff * ok

where graph.pb is the file name of the frozen model. It should be noted that LAMMPS counts atom types
starting from 1, therefore, all LAMMPS atom types will be firstly subtracted by 1, and then passed into the
DeePMD-kit engine to compute the interactions.

8 Chapter 1. Getting Started

CHAPTER
TWO

INSTALLATION

2.1 Easy install

There are various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by
yourself, jump to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (1mp) will be available to execute. You can try
dp -hand lmp -h to see the help. mpirun is also available considering you may want to train models or run
LAMMPS in parallel.

Note: Note: The off-line packages and conda packages require the GNU C Library 2.17 or above. The GPU
version requires compatible NVIDIA driver to be installed in advance. It is possible to force conda to override
detection when installation, but these requirements are still necessary during runtime.

o Install off-line packages
e Install with conda
e Install with docker

e Install Python interface with pip

2.1.1 Install off-line packages

Both CPU and GPU version offline packages are available in the Releases page.

Some packages are splited into two files due to size limit of GitHub. One may merge them into one after
downloading;:

cat deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.0 deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.
—1 > deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh

One may enable the environment using

conda activate /path/to/deepmd-kit

https://www.gnu.org/software/libc/
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://github.com/deepmodeling/deepmd-kit/releases

DeePMD-kit

2.1.2 Install with conda

DeePMD-kit is avaiable with conda. Install Anaconda or Miniconda first.

Offical channel

One may create an environment that contains the CPU version of DeePMD-kit and LAMMPS:

conda create -n deepmd deepmd-kit=*=*cpu libdeepmd=*=*cpu lammps -c https://conda.deepmodeling.com,,
——c defaults

Or one may want to create a GPU environment containing CUDA Toolkit:

conda create -n deepmd deepmd-kit=*=xgpu libdeepmd=*=*gpu lammps cudatoolkit=11.6 horovod -c,
—https://conda.deepmodeling.com -c defaults

One could change the CUDA Toolkit version from 10.2 or 11.86.
One may specify the DeePMD-kit version such as 2.1.1 using

conda create -n deepmd deepmd-kit=2.1.1=*cpu libdeepmd=2.1.1=*cpu lammps horovod -c https://conda.
—deepmodeling.com -c defaults

One may enable the environment using

conda activate deepmd

conda-forge channel

DeePMD-Kit is also available on the conda-forge channel:

conda create -n deepmd deepmd-kit lammps -c conda-forge

The supported platform includes Linux x86-64, macOS x86-64, and macOS arm64. Read conda-forge FAQ
to learn how to install CUDA-enabled packages.

2.1.3 Install with docker

A docker for installing the DeePMD-kit is available here.
To pull the CPU version:

’docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cpu

To pull the GPU version:

’docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cudall.6_gpu

To pull the ROCm version:

’docker pull deepmodeling/dpmdkit-rocm:dp2.0.3-rocm4.5.2-tf2.6-1mp29Sep2021

10 Chapter 2. Installation

https://github.com/conda/conda
https://www.anaconda.com/distribution/#download-section
https://docs.conda.io/en/latest/miniconda.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-toolkit-driver
https://conda-forge.org/
https://conda-forge.org/docs/user/tipsandtricks.html#installing-cuda-enabled-packages-like-tensorflow-and-pytorch
https://github.com/orgs/deepmodeling/packages/container/package/deepmd-kit

DeePMD-kit

2.1.4 Install Python interface with pip

If you have no existing TensorFlow installed, you can use pip to install the pre-built package of the Python
interface with CUDA 11 supported:

’pip install deepmd-kit[gpul

Or install the CPU version without CUDA supported:

’pip install deepmd-kit[cpul

LAMMPS module is only provided on Linux and macOS. To enable it, add 1mp to extras:

’pip install deepmd-kit[gpu,lmp]

MPICH is required for parallel running.

Tt is suggested to install the package into an isolated environment. The supported platform includes Linux
x86-64 and aarch64 with GNU C Library 2.28 or above, macOS x86-64, and Windows x86-64. A specific
version of TensorFlow which is compatible with DeePMD-kit will be also installed.

Warning: If your platform is not supported, or want to build against the installed TensorFlow, or want
to enable ROCM support, please build from source.

2.2 Install from source code

Please follow our GitHub webpage to download the latest released version and development version.

Or get the DeePMD-kit source code by git clone

cd /some/workspace
git clone --recursive https://github.com/deepmodeling/deepmd-kit.git deepmd-kit

The --recursive option clones all submodules needed by DeePMD-kit.

For convenience, you may want to record the location of the source to a variable, saying deepmd_source_dir
by

cd deepmd-kit
deepmd_source_dir="pwd"

2.2.1 Install the python interface

Install Tensorflow’s python interface

First, check the python version on your machine

python --version

We follow the virtual environment approach to install TensorFlow’s Python interface. The full instruction
can be found on the official TensorFlow website. TensorFlow 1.8 or later is supported. Now we assume that
the Python interface will be installed to the virtual environment directory $tensorflow_venv

2.2. Install from source code 11

https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling/deepmd-kit/tree/master
https://github.com/deepmodeling/deepmd-kit/tree/devel
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.tensorflow.org/install/pip

DeePMD-kit

virtualenv -p python3 $tensorflow_venv
source $tensorflow_venv/bin/activate
pip install --upgrade pip

pip install --upgrade tensorflow

It is important that every time a new shell is started and one wants to use DeePMD-kit, the virtual environ-
ment should be activated by

’source $tensorflow_venv/bin/activate

if one wants to skip out of the virtual environment, he/she can do

’deactivate

If one has multiple python interpreters named something like python3.x, it can be specified by, for example

virtualenv -p python3.7 $tensorflow_venv

|

If one does not need the GPU support of DeePMD-kit and is concerned about package size, the CPU-only
version of TensorFlow should be installed by

’pip install --upgrade tensorflow-cpu

To verify the installation, run

’python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

One should remember to activate the virtual environment every time he/she uses DeePMD-kit.

One can also build the TensorFlow Python interface from source for custom hardware optimization, such as
CUDA, ROCM, or OneDNN support.

Install the DeePMD-kit’s python interface

Check the compiler version on your machine

gcc --version

The compiler GCC 4.8 or later is supported in the DeePMD-kit. Note that TensorFlow may have
specific requirements for the compiler version. It is recommended to use the same compiler version
as TensorFlow, which can be printed by python -c¢ "import tensorflow;print(tensorflow.version.
COMPILER_VERSION)".

Execute

cd $deepmd_source_dir
pip install .

One may set the following environment variables before executing pip:

12 Chapter 2. Installation

https://www.tensorflow.org/install/source

DeePMD-kit

Envi- Al- | De- Usage
ronment | lowed fault
variables | valug value
DP _VARIASHL, | cpu | Build CPU variant or GPU variant with CUDA or ROCM support.
cudal
rocm
CUDA_TO@REITDROOT ThEmath to the CUDA toolkit directory. CUDA 7.0 or later is supported. NVCC
tected| is required.

au-
to-
mat-
i_
cally
ROCM_RQO®ath| De- The path to the ROCM toolkit directory.
tected
au-
to-
mat-
i_
cally
TEN- Path| De- The path to TensorFlow Python library. By default the installer only finds Ten-
SOR- tected| sorFlow under user site-package directory (site.getusersitepackages()) or
FLOW _ROOT | au- system site-package directory (sysconfig.get_path("purelib")) due to lim-
to- itation of PEP-517. If not found, the latest TensorFlow (or the environment
mat- | variable TENSORFLOW_VERSION if given) from PyPI will be built against.

i-

cally
DP_ENABLE INATIVE | ORERNEZamfiNtion optimization for the native machine’s CPU type. Do not
enable it if generated code will run on different CPUs.

To test the installation, one should first jump out of the source directory

cd /some/other/workspace

then execute

’dp -h

It will print the help information like

usage: dp [-h] {train,freeze,test} ...

DeePMD-kit: A deep learning package for many-body potential energy
representation and molecular dynamics

optional arguments:
-h, --help show this help message and exit

Valid subcommands:
{train,freeze,test}

train train a model
freeze freeze the model
test test the model

2.2. Install from source code 13

https://peps.python.org/pep-0517/

DeePMD-kit

Install horovod and mpi4py

Horovod and mpidpy are used for parallel training. For better performance on GPU, please follow the tuning
steps in Horovod on GPU.

With GPU, prefer NCCL as a communicator.
HOROVOD_WITHOUT_GLOO=1 HOROVOD_WITH_TENSORFLOW=1 HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_NCCL_HOME=/
—path/to/nccl pip install horovod mpidpy

If your work in a CPU environment, please prepare runtime as below:

By default, MPI is used as communticator.
HOROVOD_WITHOUT_GLOO=1 HOROVOD_WITH_TENSORFLOW=1 pip install horovod mpi4py

To ensure Horovod has been built with proper framework support enabled, one can invoke the horovodrun
--check-build command, e.g.,

$ horovodrun --check-build
Horovod v0.22.1:

Available Frameworks:
[X] TensorFlow
[X] PyTorch
[] MXNet

Available Controllers:
[X] MPI
[X] Gloo

Available Tensor Operationms:
[X] NCCL
[] DDL
[]ccL
[X] MPI
[X] Gloo

From version 2.0.1, Horovod and mpidpy with MPICH support are shipped with the installer.
If you don’t install Horovod, DeePMD-kit will fall back to serial mode.

14 Chapter 2. Installation

https://github.com/horovod/horovod
https://github.com/mpi4py/mpi4py
https://github.com/horovod/horovod/blob/master/docs/gpus.rst

DeePMD-kit

2.2.2 Install the C++ interface

If one does not need to use DeePMD-kit with Lammps or I-Pi, then the python interface installed in the
previous section does everything and he/she can safely skip this section.

Install Tensorflow’s C+4+ interface

The C++ interface of DeePMD-kit was tested with compiler GCC >= 4.8. It is noticed that the I-Pi support
is only compiled with GCC >= 4.8. Note that TensorFlow may have specific requirements for the compiler
version.

First, the C++ interface of Tensorflow should be installed. It is noted that the version of Tensorflow should be
consistent with the python interface. You may follow the instruction or run the script $deepmd_source_dir/
source/install/build_tf.py to install the corresponding C++ interface.

Install DeePMD-kit’s C++ interface

Now go to the source code directory of DeePMD-kit and make a building place.

cd $deepmd_source_dir/source
mkdir build
cd build

T assume you want to install DeePMD-kit into path $deepmd_root, then execute CMake

cmake -DTENSORFLOW_ROOT=$tensorflow_root -DCMAKE_INSTALL_PREFIX=$deepmd_root ..

where the variable tensorflow_root stores the location where TensorFlow’s C++ interface is installed.

One may add the following arguments to cmake:

2.2. Install from source code 15

DeePMD-kit

DCUDA_TOOLKIT ROOT_DlfRetedvaly

CMake Aurgements | Al- Default Usage

lowed | value

value
- Path | - The Path to TensorFlow’s C++ interface.
DTENSORFLOW_ROQOT=<yalue>
- Path | - The Path where DeePMD-kit will be installed.
DCMAKE_INSTALL| PREFIX=<value
- TRUE | FALSE If TRUE, Build GPU support with CUDA toolkit.
DUSE_CUDA_TOOLK®F=<YValue>

FALSE
- Path | De- The path to the CUDA toolkit directory. CUDA 7.0 or later is

esupported. NVCC is required.

auto-
mati-
cally
- TRUE | FALSE If TRUE, Build GPU support with ROCM toolkit.
DUSE_ROCM_TOOLKdT=<yalue>
FALSE
- Path | De- The path to the ROCM toolkit directory.
DCMAKE_HIP_COMPILER |Ri@€df RQOT=<value>
auto-
mati-
cally
- Path | - Only neccessary for LAMMPS plugin mode. The path to the
DLAMMPS SOURCE_ROOT=<value>| LAMMPS source code. LAMMPS 8 Apr2021 or later is supported.
If not assigned, the plugin mode will not be enabled.
- TRUE | FALSE If TRUE, Build C++ interface with TensorFlow’s Python li-
DUSE_TF PYTHON| biBS=Kvalue> | braries(TensorFlow’s Python Interface is required). And there’s
FALSE no need for building TensorFlow’s C++ interface.
- TRUE | FALSE Enable compilation optimization for the native machine’s CPU
DENABLE NATIVE| OPTIMIZATION | type. Do not enable it if generated code will run on different
FALSE CPUs.

If the CMake has been executed successfully, then run the following make commands to build the package:

make -j4
make install

Option -j4 means using 4 processes in parallel. You may want to use a different number according to your

hardware.

If everything works fine, you will have the following executable and libraries installed in $deepmd_root/bin

and $deepmd_root/1ib

$ 1s $deepmd_root/bin
dp_ipi dp_ipi_low
$ 1s $deepmd_root/1lib
libdeepmd_cc_low.so

—1libdeepmd_op_cuda.so
libdeepmd_cc.so

—libdeepmd_op_low.so libd

libdeepmd_ipi_low.so
libdeepmd_op.so
libdeepmd_ipi.so

eepmd. so

libdeepmd_lmp_low.so libdeepmd_low.so

u

libdeepmd_lmp.so libdeepmd_op_cuda_low.so

16

Chapter 2. Installation

DeePMD-kit

2.3 Install LAMMPS

There are two ways to install LAMMPS: the built-in mode and the plugin mode. The built-in mode builds
LAMMPS along with the DeePMD-kit and DeePMD-kit will be loaded automatically when running LAMMPS.
The plugin mode builds LAMMPS and a plugin separately, so one needs to use plugin load command to load
the DeePMD-kit’s LAMMPS plugin library.

2.3.1 Install LAMMPS’s DeePMD-kit module (built-in mode)

Before following this section, DeePMD-kit C++ interface should have be installed.

DeePMD-kit provides a module for running MD simulations with LAMMPS. Now make the DeePMD-kit mod-
ule for LAMMPS.

cd $deepmd_source_dir/source/build
make lammps

DeePMD-kit will generate a module called USER-DEEPMD in the build directory. If you need the low-precision
version, move env_low.sh to env.sh in the directory. Now download the LAMMPS code, and uncompress it.

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_23Jun2022_update2.tar.gz
tar xf stable_23Jun2022_update2.tar.gz

The source code of LAMMPS is stored in the directory lammps-stable_23Jun2022_update2. Now go into the
LAMMPS code and copy the DeePMD-kit module like this

cd lammps-stable_23Jun2022_update2/src/

cp -r $deepmd_source_dir/source/build/USER-DEEPMD .
make yes-kspace

make yes-extra-fix

make yes-user-deepmd

You can enable any other package you want. Now build LAMMPS

’make mpi -j4

If everything works fine, you will end up with an executable 1mp_mpi.

’./lmp_mpi -h

The DeePMD-kit module can be removed from the LAMMPS source code by

’make no-user-deepmd

2.3. Install LAMMPS 17

DeePMD-kit

2.3.2 Install LAMMPS (plugin mode)

Starting from 8Apr2021, LAMMPS also provides a plugin mode, allowing one to build LAMMPS and a plugin
separately.

Now download the LAMMPS code (8Apr2021 or later), and uncompress it:

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_23Jun2022_update2.tar.gz
tar xf stable_23Jun2022_update2.tar.gz

The source code of LAMMPS is stored in the directory lammps-stable_23Jun2022_update2. The directory
of the source code should be specified as the CMAKE argument LAMMPS_SOURCE_ROOT during installation of
the DeePMD-kit C++ interface. Now go into the LAMMPS directory and create a directory called build

mkdir -p lammps-stable_23Jun2022_update2/build/
cd lammps-stable_23Jun2022_update2/build/

Now build LAMMPS. Note that PLUGIN and KSPACE packages must be enabled, and BUILD_SHARED_LIBS must
be set to yes. You can install any other package you want.

cmake -D PKG_PLUGIN=0ON -D PKG_KSPACE=0ON -D LAMMPS_INSTALL_RPATH=ON -D BUILD_SHARED_LIBS=yes -D,
—CMAKE_INSTALL_PREFIX=${deepmd_root} -D CMAKE_INSTALL_LIBDIR=1ib -D CMAKE_INSTALL_FULL_LIBDIR=
< {deepmd_root }/1lib ../cmake

make -j4

make install

If everything works fine, you will end up with an executable ${deepmd_root}/bin/1lmp.

’ deepmd_root}/bin/lmp -h

Note: If ${tensorflow_root} or ${deepmd_root} is different from the prefix of LAMMPS, you need to
append the library path to RUNPATH of 1iblammps.so. For example,

’patchelf --set-rpath "${tensorflow_root//1ib" liblammps.so

2.4 Install i-Pl

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions
of atoms, while the DeePMD-kit provides a client named dp_ipi that computes the interactions (including
energy, forces and virials). The server and client communicate via the Unix domain socket or the Internet
socket. Full documentation for i-PI can be found here. The source code and a complete installation guide for
i-PI can be found here. To use i-PI with already existing drivers, install and update using Pip:

pip install -U i-PI

Test with Pytest:

pip install pytest
pytest --pyargs ipi.tests

18 Chapter 2. Installation

https://man7.org/linux/man-pages/man8/ld.so.8.html
http://ipi-code.org/
https://github.com/i-pi/i-pi

DeePMD-kit

2.5 Install GROMACS with DeepMD

Before following this section, DeePMD-kit C++ interface should have be installed.

2.5.1 Patch source code of GROMACS

Download the source code of a supported GROMACS version (2020.2) from
https://manual.gromacs.org/2020.2/download.html. Run the following command:

export PATH=$PATH:$deepmd_kit_root/bin
dp_gmx_patch -d $gromacs_root -v $version -p

where deepmd_kit_root is the directory where the latest version of DeePMD-kit is installed, and
gromacs_root refers to the source code directory of GROMACS. And version represents the version of GRO-
MACS, where only 2020.2 is supported now. If attempting to patch another version of GROMACS you will
still need to set version to 2020.2 as this is the only supported version, we cannot guarantee that patching
other versions of GROMACS will work.

2.5.2 Compile GROMACS with deepmd-kit

The C++ interface of Deepmd-kit 2.x and TensorFlow 2.x arerequired. And be aware that only DeePMD-
kit with high precision is supported now since we cannot ensure single precision is enough for a GROMACS
simulation. Here is a sample compile script:

#1/bin/bash

export CC=/usr/bin/gcc

export CXX=/usr/bin/g++

export CMAKE_PREFIX_PATH="/path/to/fftw-3.3.9" # fftw libraries
mkdir build

cd build

cmake3 .. -DCMAKE_CXX_STANDARD=14 \ # not required, but c++1/ seems to be more compatible withy
—higher version of tensorflow
-DGMX_MPI=0N \
-DGMX_GPU=CUDA \ # Gromacs on ROCm has not been fully developed yet
-DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda \
-DCMAKE_INSTALL_PREFIX=/path/to/gromacs-2020.2-deepmd
make -j
make install

2.6 Building conda packages

One may want to keep both convenience and personalization of the DeePMD-kit. To achieve this goal, one
can consider building conda packages. We provide building scripts in deepmd-kit-recipes organization. These
building tools are driven by conda-build and conda-smithy.

For example, if one wants to turn on MPII0 package in LAMMPS, go to lammps-feedstock repository and
modify recipe/build.sh. -D PKG_MPII0=0FF should be changed to -D PKG_MPII0=0N. Then go to the main
directory and execute

2.5. Install GROMACS with DeepMD 19

https://github.com/deepmd-kit-recipes/
https://github.com/conda/conda-build
https://github.com/conda-forge/conda-smithy
https://github.com/deepmd-kit-recipes/lammps-feedstock/

DeePMD-kit

./build-locally.py

This requires that Docker has been installed. After the building, the packages will be generated in
build_artifacts/linux-64 and build_artifacts/noarch, and then one can install then executing

conda create -n deepmd lammps -c file:///path/to/build_artifacts -c https://conda.deepmodeling.com,,
—-c nvidia

One may also upload packages to one’s Anaconda channel, so they can be installed on other machines:

anaconda upload /path/to/build_artifacts/linux-64/*.tar.bz2 /path/to/build_artifacts/noarch/*.tar.
—bz2

20 Chapter 2. Installation

CHAPTER

THREE

DATA

In this section, we will introduce how to convert the DFT-labeled data into the data format used by DeePMD-
kit.

The DeePMD-kit organizes data in systems. Each system is composed of a number of frames. One may
roughly view a frame as a snapshot of an MD trajectory, but it does not necessarily come from an MD simu-
lation. A frame records the coordinates and types of atoms, cell vectors if the periodic boundary condition is
assumed, energy, atomic forces and virials. It is noted that the frames in one system share the same number
of atoms with the same type.

3.1 System

DeePMD-kit takes a system as the data structure. A snapshot of a system is called a frame. A system may
contain multiple frames with the same atom types and numbers, i.e. the same formula (like H20). To contains
data with different formulas, one usually needs to divide data into multiple systems, which may sometimes
result in sparse-frame systems. See a new system format to further combine different systems with the same
atom numbers, when training with descriptor se_atten.

A system should contain system properties, input frame properties, and labeled frame properties. The system
property contains the following property:

ID Property Raw file | Re- Shapg Description
quired/Optional
type | Atom type | type.raw| Required | Natomdntegers that start with 0
indexes
type _maptom type | type map.faptional | NtypesAtom namesthat map to atom type, which is unnec-
names essart to be contained in the periodic table
nopbc | Non- nopbc Optional | 1 If True, this system is non-periodic; otherwise it’s
periodic periodic
system

The input frame properties contain the following property, the first axis of which is the number of frames:

21

DeePMD-kit

1D Property Raw file | Unit| Re- Shape Description
quired /Optional
co- Atomic coordi- | co- A Required Nframes *
ord nates ord.raw Natoms * 3
box | Boxes box.raw | A Required if | Nframes*3*3 | in the order XX XY XZ YX
periodic YY YZ ZX ZY ZZ
fparamExtra frame | fparam.rpwiny| Optional Nframes * Any
parameters
aparamExtra atomic | aparam.fawny| Optional Nframes *
parameters aparam * Any

The labeled frame properties is listed as follows, all of which will be used for training if and only if the loss
function contains such property:

ID Property Raw file Unit | Shape Description
energy Frame energies | energy.raw eV | Nframes
force Atomic forces force.raw eV/A| Nframes *
Natoms * 3
virial Frame virial virial.raw eV | Nframes*9 in the order XX XY XZ ¥X
YY YZ ZX ZY ZZ
atom_ener Atomic ener- | atom_ener.raw eV | Nframes *
gies Natoms
atom_pref Weights of | atom_pref.raw 1 Nframes *
atomic forces Natoms
dipole Frame dipole dipole.raw Any| Nframes * 3
atomic_dipole | Atomic dipole atomic_dipole.raw Any| Nframes *
Natoms * 3
polarizability | Frame polariz- | polarizabil- Any | Nframes * 9 in the order XX XY XZ YX
ability ity.raw YY YZ ZX ZY ZZ
atomic_polarizaliitismnic polariz- | atomic_polarizabilifynsawNframes * 1 in the order XX XY XZ YX
ability Natoms * 9 YY YZ ZX ZY ZZ

In general, we always use the following convention of units:

Property | Unit
Time ps
Length A
Energy eV
Force eV/A
Virial eV
Pressure | Bar

22 Chapter 3. Data

DeePMD-kit

3.2 Formats of a system

Two binary formats, NumPy and HDF5, are supported for training. The raw format is not directly supported,
but a tool is provided to convert data from the raw format to the NumPy format.

3.2.1 NumPy format

In a system with the Numpy format, the system properties are stored as text files ending with .raw, such
as type.raw and type_map.raw, under the system directory. If one needs to train a non-periodic system,
an empty nopbc file should be put under the system directory. Both input and labeled frame properties are
saved as the NumPy binary data (NPY) files ending with .npy in each of the set.* directories. Take an
example, a system may contain the following files:

type.raw
type_map.raw

nopbc
set.000/coord.npy
set.000/energy .npy
set.000/force.npy
set.001/coord.npy
set.001/energy.npy
set.001/force.npy

We assume that the atom types do not change in all frames. It is provided by type.raw, which has one line
with the types of atoms written one by one. The atom types should be integers. For example the type.raw
of a system that has 2 atoms with 0 and 1:

$ cat type.raw
01

Sometimes one needs to map the integer types to atom names. The mapping can be given by the file
type_map.raw. For example

$ cat type_map.raw
0H

The type 0 is named by "0" and the type 1 is named by "H".

For training models with descriptor se_atten, a new system format is supported to put together the frame-
sparse systems with the same atom number.

3.2.2 HDF5 format

A system with the HDF5 format has the same structure as the Numpy format, but in an HDF5 file, a system
is organized as an HDF5 group. The file name of a Numpy file is the key in an HDF5 file, and the data is the
value of the key. One needs to use # in a DP path to divide the path to the HDF5 file and the HDF5 path:

/path/to/data.hdf6#/H20

Here, /path/to/data.hdf5 is the file path and /H20 is the HDF5 path. All HDF5 paths should start with /.
There should be some data in the H20 group, such as /H20/type .raw and /H20/set .000/force.npy.

An HDF5 file with a large number of systems has better performance than multiple NumPy files in a large
cluster.

3.2. Formats of a system 23

https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#npy-format
https://docs.h5py.org/en/stable/high/group.html

DeePMD-kit

3.2.3 Raw format and data conversion

A raw file is a plain text file with each information item written in one file and one frame written on one line.
It’s not directly supported, but we provide a tool to convert them.

In the raw format, the property of one frame is provided per line, ending with .raw. Take an example,
the default files that provide box, coordinate, force, energy and virial are box.raw, coord.raw, force.raw,
energy.raw and virial.raw, respectively. Here is an example of force.raw:

$ cat force.raw

-0.724 2.039 -0.951 0.841 -0.464 0.363
6.737 1.554 -5.587 -2.803 0.062 2.222
-1.968 -0.163 1.020 -0.225 -0.789 0.343

This force.raw contains 3 frames with each frame having the forces of 2 atoms, thus it has 3 lines and 6
columns. Each line provides all the 3 force components of 2 atoms in 1 frame. The first three numbers are
the 3 force components of the first atom, while the second three numbers are the 3 force components of the
second atom. Other files are organized similarly. The number of lines of all raw files should be identical.

One can use the script $deepmd_source_dir/data/raw/raw_to_set.sh to convert the prepared raw files to
the NumPy format. For example, if we have a raw file that contains 6000 frames,

$ 1s

box.raw coord.raw energy.raw force.raw type.raw virial.raw
$ $deepmd_source_dir/data/raw/raw_to_set.sh 2000

nframe is 6000

nline per set is 2000

will make 3 sets

making set O ...

making set 1 ...

making set 2 ...

$ 1s

box.raw coord.raw energy.raw force.raw set.000 set.001 set.002 type.raw virial.raw

It generates three sets set.000, set.001 and set.002, with each set containing 2000 frames in the Numpy
format.

3.3 Prepare data with dpdata

One can use a convenient tool dpdata to convert data directly from the output of first principle packages to
the DeePMD-kit format.

To install one can execute

pip install dpdata

An example of converting data VASP data in OUTCAR format to DeePMD-kit data can be found at

’$deepmd_source_dir/examples/data_conv

Switch to that directory, then one can convert data by using the following python script

import dpdata
dsys = dpdata.LabeledSystem('OUTCAR')
dsys.to('deepmd/npy', 'deepmd_data', set_size = dsys.get_nframes())

24 Chapter 3. Data

https://github.com/deepmodeling/dpdata
https://www.vasp.at/

DeePMD-kit

get_nframes () method gets the number of frames in the OUTCAR, and the argument set_size enforces that
the set size is equal to the number of frames in the system, viz. only one set is created in the system.

The data in DeePMD-kit format is stored in the folder deepmd_data.

A list of all supported data format and more nice features of dpdata can be found on the official website.

3.3. Prepare data with dpdata 25

https://github.com/deepmodeling/dpdata#load-data
https://github.com/deepmodeling/dpdata

DeePMD-kit

26

Chapter 3. Data

CHAPTER

FOUR

MODEL

4.1 Overall

A model has two parts, a descriptor that maps atomic configuration to a set of symmetry invariant features,
and a fitting net that takes descriptor as input and predicts the atomic contribution to the target physical
property. It’s defined in the model section of the input. json, for example,

"model": {
"type_map" : [uou s |IH|I] s
"descriptor" :{
} b
"fitting_net" : {

}

The two subsections, descriptor and fitting net, define the descriptor and the fitting net, respectively.

The type map is optional, which provides the element names (but not necessarily same as the actual name
of the element) of the corresponding atom types. A water model, as in this example, has two kinds of atoms.
The atom types are internally recorded as integers, e.g., 0 for oxygen and 1 for hydrogen here. A mapping
from the atom type to their names is provided by type map.

DeePMD-kit implements the following descriptors:

1. se_e2 a: DeepPot-SE constructed from all information (both angular and radial) of atomic configura-
tions. The embedding takes the distance between atoms as input.

2. se_e2_r: DeepPot-SE constructed from radial information of atomic configurations. The embedding
takes the distance between atoms as input.

3. se_e3: DeepPot-SE constructed from all information (both angular and radial) of atomic configura-
tions. The embedding takes angles between two neighboring atoms as input.

4. loc_frame: Defines a local frame at each atom and compute the descriptor as local coordinates under
this frame.

5. hybrid: Concate a list of descriptors to form a new descriptor.
The fitting of the following physical properties is supported

1. ener: Fit the energy of the system. The force (derivative with atom positions) and the virial (derivative
with the box tensor) can also be trained.

2. dipole: The dipole moment.

27

DeePMD-kit

3. polar: The polarizability.

4.2 Descriptor "se_e2_a"

The notation of se_e2_a is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from all
information (both angular and radial) of atomic configurations. The e2 stands for the embedding with two-
atoms information. This descriptor was described in detail in the DeepPot-SE paper.

Note that it is sometimes called a “two-atom embedding descriptor” which means the input of the embed-
ding net is atomic distances. The descriptor does encode multi-body information (both angular and radial

information of neighboring atoms).

In this example, we will train a DeepPot-SE model for a water system. A complete training input script of

this example can be found in the directory.

$deepmd_source_dir/examples/water/se_e2_a/input.json

With the training input script, data are also provided in the example directory. One may train the model

with the DeePMD-kit from the directory.

The construction of the descriptor is given by section descriptor. An example of the descriptor is provided as

follows

"descriptor" :{

"type": "se_e2_a",
"rcut_smth": 0.50,

"rcut": 6.00,

"sel": [46, 92],
"neuron": [25, 50, 1007,
"type_one_side": true,
"axis_neuron": 16,

"resnet_dt": false,

"seed": 1

The type of the descriptor is set to "se_e2_a".
rcut is the cut-off radius for neighbor searching, and the rcut_smth gives where the smoothing starts.

sel gives the maximum possible number of neighbors in the cut-off radius. Itisa list, the length of which
is the same as the number of atom types in the system, and sel[i] denotes the maximum possible
number of neighbors with type i.

The neuron specifies the size of the embedding net. From left to right the members denote the sizes of
each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size
of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built
between them.

If the option type one_side is set to true, then the descriptor will consider the types of neighbor atoms.
Otherwise, both the types of centric and neighbor atoms are considered.

The axis neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as ex-
plained in the DeepPot-SE paper

If the option resnet dt is set to true, then a timestep is used in the ResNet.

seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

28

Chapter 4. Model

https://arxiv.org/abs/1805.09003
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1805.09003

DeePMD-kit

4.3 Descriptor "se_e2_r"

The notation of se_e2_r is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from the
radial information of atomic configurations. The e2 stands for the embedding with two-atom information.

A complete training input script of this example can be found in the directory

$deepmd_source_dir/examples/water/se_e2_r/input.json

The training input script is very similar to that of se_e2_a. The only difference lies in the descriptor section

"descriptor": {

"type": "se_e2_r",
"sel": [46, 92],
"rcut_smth": 0.50,

"rcut": 6.00,
"neuron": [5, 10, 207,
"resnet_dt": false,

"seed": 1,

"_comment": " that's all"

}’

The type of the descriptor is set by the key type.

4.4 Descriptor "se_e3"

The notation of se_e3 is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from all
information (both angular and radial) of atomic configurations. The embedding takes angles between two
neighboring atoms as input (denoted by e3).

A complete training input script of this example can be found in the directory

$deepmd_source_dir/examples/water/se_e3/input.json

The training input script is very similar to that of se_e2 a. The only difference lies in the descriptor
<model/descriptor> section

"descriptor": {

"type": "se_e3",

"sel": [40, 80],
"rcut_smth": 0.50,

"rcut": 6.00,

"neuron": [2, 4, 8],
"resnet_dt": false,

"seed": 1,

"_comment": " that's all"

},

The type of the descriptor is set by the key type.

4.3. Descriptor "se_e2_r" 29

DeePMD-kit

4.5 Descriptor "se_atten"

4.5.1 DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular

| |
Atom types Relative coordinates | @) |
{ ‘11 } ﬂ‘ : @ | : RIRYT 2 (G
o y“ g Ceneralized | T T |
embeddmgm . e [a2 }nml mmsl L i} : \
(0 Tx) E"T‘fﬁ"“?”“l”“ : DT : Linlca: Lirienr Liliear \ S 0.)
| Embedding | | o) (x0) (vt \ @ =@— 5 O
net | Linear I 1 1 \ 3 ~&N¢
I8 | .. ‘MatMul LT ® ! o |
gl ! ! ! \ o = \ \ AN
Gated | g ! Scale | @ (Roriia Sk
; | (), | ® ¢ LS e S Fel
Eeitauchtony 0 | 0 o el
‘mechanism [Softmax Ga o, / co;
& | @R o) . 9.0 T
-~ ;vx : | lﬂal l' | s /—/ 7
[atMul L e
i | GHTRIRYTG T | MatMul P @ N
= ; | | —~ ~
@R | i o » >
| flat | | -y /
Fitting | Lirieat | ! N Py
T | ko 2 ~ v
Atomic | | ~~ N
i Al ~ /
€ilenergy (a) e 1 gt (c) (+)
I | N %
Scalar gy Element-wise - Linear Matrix ~ /
- D o Linear o oion MAMUL yirication - Feed forward > /
Vector @ Sementwiss Scale | Scdleand g Softmax network

Matrix multiplication normalization operation e

Here we propose DPA-1, a Deep Potential model with a novel attention mechanism, which is highly effective
for representing the conformation and chemical spaces of atomic systems and learning the PES.

See this paper for more information. DPA-1 is implemented as a new descriptor "se_atten" for model train-
ing, which can be used after simply editing the input.json.

4.5.2 Installation

Follow the standard installation of Python interface in the DeePMD-kit. After that, you can smoothly use
the DPA-1 model with the following instructions.

4.5.3 Introduction to new features of DPA-1

Next, we will list the detailed settings in input.json and the data format, especially for large systems with
dozens of elements. An example of DPA-1 input can be found here.

Descriptor "se_atten"
The notation of se_atten is short for the smooth edition of Deep Potential with an attention mechanism.
This descriptor was described in detail in the DPA-1 paper and the images above.

In this example, we will train a DPA-1 model for a water system. A complete training input script of this
example can be found in the directory:

$deepmd_source_dir/examples/water/se_atten/input. json

With the training input script, data are also provided in the example directory. One may train the model
with the DeePMD-kit from the directory.

An example of the DPA-1 descriptor is provided as follows

30 Chapter 4. Model

https://arxiv.org/abs/2208.08236
https://arxiv.org/abs/2208.08236

DeePMD-kit

"descriptor" :{

"type": "se_atten",
"rcut_smth": 0.50,

"rcut": 6.00,
"sel": 120,
"neuron": [25, 50, 100],
"axis_neuron": 16,
"resnet_dt": false,

"attn": 128,

"attn_layer": 2,
"attn_mask": false,
"attn_dotr": true,

"seed": 1

The type of the descriptor is set to "se_atten", which will use DPA-1 structures.
rcut is the cut-off radius for neighbor searching, and the rcut_smth gives where the smoothing starts.

sel gives the maximum possible number of neighbors in the cut-off radius. It is an int. Note that this
number highly affects the efficiency of training, which we usually use less than 200. (We use 120 for
training 56 elements in OC2M dataset)

The neuron specifies the size of the embedding net. From left to right the members denote the sizes of
each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size
of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built
between them.

The axis_neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as ex-
plained in the DeepPot-SE paper

If the option resnet dt is set to true, then a timestep is used in the ResNet.

seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

attn sets the length of a hidden vector during scale-dot attention computation.
attn_layer sets the number of layers in attention mechanism.

attn mask determines whether to mask the diagonal in the attention weights and False is recom-
mended.

attn_dotr determines whether to dot the relative coordinates on the attention weights as a gated
scheme, True is recommended.

Fitting "ener"

DPA-1 only supports "ener" fitting type, and you can refer here for detailed information.

4.5. Descriptor "se_atten" 31

https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1805.09003

DeePMD-kit

Type embedding

DPA-1 only supports models with type embeddings. And the default setting is as follows:

"type_embedding":{

"neuron": [81,
"resnet_dt": false,
"seed": 1

}

You can add these settings in input.json if you want to change the default ones, see here for detailed infor-
mation.

Type map

For training large systems, especially those with dozens of elements, the type determines the element index
of training data:

"type_map": [
" Mg " s
"AL",
n CuH

]

which should include all the elements in the dataset you want to train on.

4.5.4 Data format

DPA-1 supports the standard data format, which is detailed in data-conv.md and system.md. Note that in
this format, only those frames with the same fingerprint (i.e. the number of atoms of different elements) can
be put together as a unified system. This may lead to sparse frame numbers in those rare systems.

An ideal way is to put systems with the same total number of atoms together, which is the way we trained
DPA-1 on OC2M. This system format, which is called mixed_type, is proper to put frame-sparse systems
together and is slightly different from the standard one. Take an example, a mixed_type may contain the
following files:

type.raw

type_map.raw
set.000/box.npy
set.000/coord.npy
set.000/energy .npy
set.000/force.npy
set.000/real_atom_types.npy

This system contains Nframes frames with the same atom number Natoms, the total number of element types
contained in all frames is Ntypes. Note that we put all the frames in one set set.000. Most files are the same
as those in standard formats, here we only list the distinct ones:

32 Chapter 4. Model

https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md

DeePMD-kit

ID Property File Re- Shape Description
quired /Opptional
/ Atom type | type.raw | Re- Natoms | All zeros to fake the type input
indexes quired
(place
holder)
type mamm type | type map.rRe- Ntypes | Atom names that map to atom type contained in
names quired all the frames, which is unnecessart to be con-
tained in the periodic table
type | Atom type | real atom RBwes.npy Nframes| Integers that describe atom types in each frame,
indexes of quired | * corresponding to indexes in type _map
each frame Natoms

With these edited files, one can put together frames with the same Natoms, instead of the same formula (like
H20). Note that this mixed_type format only supports se_atten descriptor.

The API to generate or transfer tomixed_type format will be uploaded on dpdata soon for a more convenient
experience.

4.5.5 Training example

Here we upload the AIMgCu example shown in the paper, you can download it here: Baidu disk; Google disk.

4.6 Descriptor "hybrid"

This descriptor hybridizes multiple descriptors to form a new descriptor. For example, we have a list of
descriptors denoted by D1, Do, ..., Dy, the hybrid descriptor this the concatenation of the list, i.e. D =
(DlaD27 T aDN)

To use the descriptor in DeePMD-kit, one firstly set the type to hybrid, then provide the definitions of the
descriptors by the items in the 1list,

"descriptor" :{
"type": "hybrid",

"list" : [
{
"type" : "se_e2_a",
})
{
"type" : "se_e2_r",
}

},

A complete training input script of this example can be found in the directory

$deepmd_source_dir/examples/water/hybrid/input.json

4.6. Descriptor "hybrid" 33

https://github.com/deepmodeling/dpdata
https://pan.baidu.com/s/1Mk9CihPHCmf8quwaMhT-nA?pwd=d586
https://drive.google.com/file/d/11baEpRrvHoqxORFPSdJiGWusb3Y4AnRE/view?usp=sharing

DeePMD-kit

4.7 Determine sel

All descriptors require to set sel, which means the expected maximum number of type-i neighbors of an
atom. DeePMD-kit will allocate memory according to sel.

sel should not be too large or too small. If sel is too large, the computing will become much slower and
cost more memory. If sel is not enough, the energy will be not conserved, making the accuracy of the model
worse.

To determine a proper sel, one can calculate the neighbor stat of the training data before training;:

dp neighbor-stat -s data -r 6.0 -t 0 H

where data is the directory of data, 6.0 is the cutoff radius, and 0 and H is the type map. The program will
give the max_nbor_size. For example, max_nbor_size of the water example is [38, 72], meaning an atom
may have 38 O neighbors and 72 H neighbors in the training data.

The sel should be set to a higher value than that of the training data, considering there may be some extreme
geometries during MD simulations. As a result, we set sel to [46, 92] in the water example.

4.8 Fit energy

In this section, we will take $deepmd_source_dir/examples/water/se_e2_a/input.json as an example of
the input file.

4.8.1 The fitting network

The construction of the fitting net is given by section fitting net

"fitting_net" : {

"neuron": [240, 240, 240],
"resnet_dt": true,
"seed": 1

},

¢ neuron specifies the size of the fitting net. If two neighboring layers are of the same size, then a ResNet
architecture is built between them.

o If the option resnet_dt is set to true, then a timestep is used in the ResNet.

e seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

4.8.2 Loss

The loss function L for training energy is given by
L=p.Lc+ prf + puLy

where L., Ly, and L, denote the loss in energy, forces and virials, respectively. p., ps, and p, give the
prefactors of the energy, force and virial losses. The prefectors may not be a constant, rather it changes
linearly with the learning rate. Taking the force prefactor for example, at training step t, it is given by

a(t) a(t)

pr(t) = P?m +pF(1— m)

34 Chapter 4. Model

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

DeePMD-kit

where a(t) denotes the learning rate at step t. p? and pP° specifies the py at the start of the training and the
limit of t — oo (set by start pref fand limit pref f, respectively), i.e.

’pref_f(t) = start_pref_f * (lr(t) / start_lr) + limit_pref_f * (1 - 1r(t) / start_lr)

The loss section in the input. json is

"loss" : {
"start_pref_e": 0.02,
"limit_pref_e": 1,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0,
"limit_pref_v": 0

}

The options start_pref e, limit_pref e, start_pref f, limit pref f, start pref v and limit_pref v determine
the start and limit prefactors of energy, force and virial, respectively.

If one does not want to train with virial, then he/she may set the virial prefactors start pref v and
limit pref v to 0.

4.9 Fit tensor like Dipole and Polarizability

Unlike energy, which is a scalar, one may want to fit some high dimensional physical quantity, like dipole
(vector) and polarizability (matrix, shorted as polar). Deep Potential has provided different APIs to do
this. In this example, we will show you how to train a model to fit a water system. A complete training input
script of the examples can be found in

$deepmd_source_dir/examples/water_tensor/dipole/dipole_input.json
$deepmd_source_dir/examples/water_tensor/polar/polar_input.json

The training and validation data are also provided our examples. But note that the data provided along with
the examples are of limited amount, and should not be used to train a production model.

Similar to the input. json used in ener mode, training JSON is also divided into model, learning rate, loss
and training. Most keywords remain the same as ener mode, and their meaning can be found here. To fit a
tensor, one needs to modify model/fitting net and loss.

4.9.1 The fitting Network

The fitting net section tells DP which fitting net to use.
The JSON of dipole type should be provided like

"fitting_net" : {
"type": "dipole",
"sel_type": [0],
"neuron": [100,100,100],
"resnet_dt": true,
"seed": 1,

}’

The JSON of polar type should be provided like

4.9. Fit tensor like Dipole and Polarizability 35

DeePMD-kit

"fitting_net" : {

"type": "polar",
"sel_type": [0],
"neuron": [100,100,100],
"resnet_dt": true,
"seed": 1,

},

* type specifies which type of fitting net should be used. It should be either dipole or polar. Note that
global_polar mode in version 1.x is already deprecated and is merged into polar. To specify whether
a system is global or atomic, please see here.

¢ sel_type isa list specifying which type of atoms have the quantity you want to fit. For example, in the
water system, sel_type is [0] since O represents atom 0. If left unset, all types of atoms will be fitted.

¢ The rest arguments have the same meaning as they do in ener mode.

4.9.2 Loss

DP supports a combinational training of the global system (only a global tensor label, i.e. dipole or polar,
is provided in a frame) and atomic system (labels for each atom included in sel_type are provided). In a
global system, each frame has just one tensor label. For example, when fitting polar, each frame will just
provide a 1 x 9 vector which gives the elements of the polarizability tensor of that frame in order XX, XY,
XZ, YX,YY, YZ, XZ, ZY, 7ZZ. By contrast, in an atomic system, each atom in sel_type has a tensor label.
For example, when fitting a dipole, each frame will provide a #sel_atom x 3 matrices, where #sel_atom is
the number of atoms whose type are in sel_type.

The loss section tells DP the weight of these two kinds of loss, i.e.

loss = pref * global_loss + pref_atomic * atomic_loss

The loss section should be provided like

"loss" : {
"type": "tensor",
"pref": 1.0,
"pref_atomic": 1.0

1,

e type should be written as tensor as a distinction from ener mode.

o pref and pref atomic respectively specify the weight of global loss and atomic loss. It can not be left
unset. If set to 0, the corresponding label will NOT be included in the training process.

4.9.3 Training Data Preparation

In tensor mode, the identification of the label’s type (global or atomic) is derived from the file name. The
global label should be named dipole.npy/raw or polarizability.npy/raw, while the atomic label should
be named atomic_dipole.npy/rawor atomic_polarizability.npy/raw. If wrongly named, DP will report
an error

ValueError: cannot reshape array of size xxx into shape (xx,xx). This error may occur when your
—label mismatch it's name, i.e. you might store global tensor in “atomic_tensor.npy or atomic
—tensor in “tensor.npy".

In this case, please check the file name of the label.

36 Chapter 4. Model

DeePMD-kit

4.9.4 Train the Model

The training command is the same as ener mode, i.e.

dp train input.json

The detailed loss can be found in 1curve.out:

step rmse_val rmse_trn rTmse_lc_val rmse_lc_trn rmse_gl_wal rmse_gl_trn 17

0 8.34e+00 8.26e+00 8.34e+00 8.26e+00 0.00e+00 0.00e+00 1.0e-02
100 3.51e-02 8.55e-02 0.00e+00 8.55e-02 4.38e-03 0.00e+00 5.0e-03
200 4.77e-02 5.61e-02 0.00e+00 5.61e-02 5.96e-03 0.00e+00 2.5e-03
300 5.68e-02 1.47e-02 0.00e+00 0.00e+00 7.10e-03 1.84e-03 1.3e-03
400 3.73e-02 3.48e-02 1.99e-02 0.00e+00 2.18e-03 4.35e-03 6.3e-04
500 2.77e-02 5.82e-02 1.08e-02 5.82e-02 2.11e-03 0.00e+00 3.2e-04
600 2.81e-02 5.43e-02 2.01e-02 0.00e+00 1.01e-03 6.79e-03 1.6e-04
700 2.97e-02 3.28e-02 2.03e-02 0.00e+00 1.17e-03 4.10e-03 7.9e-05
800 2.25e-02 6.19e-02 9.05e-03 0.00e+00 1.68e-03 7.74e-03 4.0e-05
900 3.18e-02 5.54e-02 9.93e-03 5.54e-02 2.74e-03 0.00e+00 2.0e-05
1000 2.63e-02 5.02e-02 1.02e-02 5.02e-02 2.01e-03 0.00e+00 1.0e-05
1100 3.27e-02 5.89e-02 2.13e-02 5.89e-02 1.43e-03 0.00e+00 5.0e-06
1200 2.85e-02 2.42e-02 2.85e-02 0.00e+00 0.00e+00 3.02e-03 2.5e-06
1300 3.47e-02 5.71e-02 1.07e-02 5.71e-02 3.00e-03 0.00e+00 1.3e-06
1400 3.13e-02 5.76e-02 3.13e-02 5.76e-02 0.00e+00 0.00e+00 6.3e-07
1500 3.34e-02 1.11e-02 2.09e-02 0.00e+00 1.57e-03 1.39e-03 3.2e-07
1600 3.11e-02 5.64e-02 3.11e-02 5.64e-02 0.00e+00 0.00e+00 1.6e-07
1700 2.97e-02 5.05e-02 2.97e-02 5.05e-02 0.00e+00 0.00e+00 7.9e-08
1800 2.64e-02 7.70e-02 1.09e-02 0.00e+00 1.94e-03 9.62e-03 4.0e-08
1900 3.28e-02 2.56e-02 3.28e-02 0.00e+00 0.00e+00 3.20e-03 2.0e-08
2000 2.59e-02 5.71e-02 1.03e-02 5.71e-02 1.94e-03 0.00e+00 1.0e-08

One may notice that in each step, some of the local loss and global loss will be 0. 0. This is because our training
data and validation data consist of the global system and atomic system, i.e.

--training_data
>atomic_system
>global_system

--validation_data
>atomic_system
>global_system

During training, at each step when the 1curve.out is printed, the system used for evaluating the training
(validation) error may be either with only global or only atomic labels, thus the corresponding atomic or
global errors are missing and are printed as zeros.

4.10 Type embedding approach

We generate specific a type embedding vector for each atom type so that we can share one descriptor em-
bedding net and one fitting net in total, which decline training complexity largely.

The training input script is similar to that of se_e2_a, but different by adding the type embedding section.

4.10. Type embedding approach 37

DeePMD-kit

4.10.1 Type embedding net

The model defines how the model is constructed, adding a section of type embedding net:

"model": {
"type_map" . [uou s "H"] s
"type_embedding" :{

}’

"descriptor" :{

},
"fitting net" : {

}

The model will automatically apply the type embedding approach and generate type embedding vectors. If
the type embedding vector is detected, the descriptor and fitting net would take it as a part of the input.

The construction of type embedding net is given by type embedding. An example of type embedding is
provided as follows

"type_embedding" :{

"neuron": [2, 4, 8],
"resnet_dt": false,
"seed": 1

e The neuron specifies the size of the type embedding net. From left to right the members denote the
sizes of each hidden layer from the input end to the output end, respectively. It takes a one-hot vector
as input and output dimension equals to the last dimension of the neuron list. If the outer layer is twice
the size of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture
is built between them.

o If the option resnet_dt is set to true, then a timestep is used in the ResNet.

e seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

A complete training input script of this example can be found in the directory.

$deepmd_source_dir/examples/water/se_e2_a_tebd/input.json

See here for further explanation of type embedding.

Note: You can’t apply the compression method while using the atom type embedding.

38 Chapter 4. Model

https://arxiv.org/abs/1512.03385

DeePMD-kit

4.11 Deep potential long-range (DPLR)

Notice: The interfaces of DPLR are not stable and subject to change

The method of DPLR is described in this paper. One is recommended to read the paper before using the
DPLR.

In the following, we take the DPLR model for example to introduce the training and LAMMPS simulation
with the DPLR model. The DPLR model is trained in two steps.

4.11.1 Train a deep Wannier model for Wannier centroids

We use the deep Wannier model (DW) to represent the relative position of the Wannier centroid (WC) with
the atom with which it is associated. One may consult the introduction of the dipole model for a detailed
introduction. An example input wc. json and a small dataset data for tutorial purposes can be found in

$deepmd_source_dir/examples/water/dplr/train/

It is noted that the tutorial dataset is not enough for training a productive model. Two settings make the
training input script different from an energy training input:

"fitting_net": {

"type": "dipole",
"dipole_type": (o1,

"neuron": [128, 128, 128],
"seed": 1

},

The type of fitting is set to dipole. The dipole is associated with type 0 atoms (oxygens), by the setting
"dipole_type": [0]. What we trained is the displacement of the WC from the corresponding oxygen atom.
It shares the same training input as the atomic dipole because both are 3-dimensional vectors defined on
atoms. The loss section is provided as follows

"loss": {
"type": "tensor",
"pref": 0.0,
"pref_atomic": 1.0

1,

so that the atomic dipole is trained as labels. Note that the NumPy compressed file atomic_dipole.npy
should be provided in each dataset.

The training and freezing can be started from the example directory by

4.11. Deep potential long-range (DPLR) 39

https://arxiv.org/abs/2112.13327

DeePMD-kit

dp train dw.json && dp freeze -o dw.pb

4.11.2 Train the DPLR model

The training of the DPLR model is very similar to the standard short-range DP models. An example input
script can be found in the example directory. The following section is introduced to compute the long-range
energy contribution of the DPLR model, and modify the short-range DP model by this part.

"modifier": {

"type": "dipole_charge",
"model_name": "dw.pb",
"model_charge_map": [-8],
"sys_charge_map": 6, 11,
"ewald_h": 1.00,
"ewald_beta": 0.40

},

The model name specifies which DW model is used to predict the position of WCs. model charge map gives
the amount of charge assigned to WCs. sys charge map provides the nuclear charge of oxygen (type 0) and
hydrogen (type 1) atoms. ewald beta (unit Ail) gives the spread parameter controls the spread of Gaussian
charges, and ewald h (unit A) assigns the grid size of Fourier transformation. The DPLR model can be trained
and frozen by (from the example directory)

dp train ener.json && dp freeze -o ener.pb

4.11.3 Molecular dynamics simulation with DPLR

In MD simulations, the long-range part of the DPLR is calculated by the LAMMPS kspace support. Then
the long-range interaction is back-propagated to atoms by DeePMD-kit. This setup is commonly used in
classical molecular dynamics simulations as the “virtual site”. Unfortunately, LAMMPS does not natively
support virtual sites, so we have to hack the LAMMPS code, which makes the input configuration and script
a little wired.

An example of an input configuration file and script can be found in

$deepmd_source_dir/examples/water/dplr/lmp/

We use atom_style full for DPLR simulations. the coordinates of the WCs are explicitly written in the
configuration file. Moreover, a virtual bond is established between the oxygens and the WCs to indicate they
are associated together. The configuration file containing 128 H20 molecules is thus written as

512 atoms
3 atom types
128 bonds
1 bond types

0 16.421037674 xlo xhi
0 16.421037674 ylo yhi
0 16.421037674 zlo zhi
000 xy xz yz

Masses

(continues on next page)

40 Chapter 4. Model

DeePMD-kit

(continued from previous page)

1 16
22
3 16
Atoms
1 11 6 8.4960699081e+00 7.5073699951e+00 9.6371297836e+00
21 6 4.0597701073e+00 6.8156299591e+00 1.2051420212e+01
385 1 3 -8 8.4960699081e+00 7.5073699951e+00 9.6371297836e+00
386 2 3 -8 4.0597701073e+00 6.8156299591e+00 1.2051420212e+01
Bonds
111 385
21 2 386

The oxygens and hydrogens are assigned with atom types 1 and 2 (corresponding to training atom types 0
and 1), respectively. The WCs are assigned with atom type 3. We want to simulate heavy water so the mass
of hydrogens is set to 2.

An example input script is provided in

$deepmd_source_dir/examples/water/dplr/lmp/in.lammps

Here are some explanations

groups of real and virtual atoms
group real_atom type 1 2
group virtual_atom type 3

bond between real and its corresponding virtual site should be given
to setup a map between real and virtual atoms. However, no real
bonded interaction ts applied, thus bond_sytle "zero" is used.

pair_style deepmd ener.pb
pair_coeff *

bond_style zero
bond_coeff *

special_bonds 1j/coul 1 1 1 angle no

Type 1 and 2 (O and H) are real_atoms, while type 3 (WCs) are virtual_atoms. The model file ener.pb
stores both the DW and DPLR models, so the position of WCs and the energy can be inferred from it. A
virtual bond type is specified by bond_style zero. The special_bonds command switches off the exclusion
of intramolecular interactions.

kspace_style "pppm/dplr" should be used. in addition the

gewald(1/distance) should be set the same as that used in

training. Currently only ik differentiation is supported.

kspace_style pppm/dplr le-5

kspace_modify gewald ${BETA} diff ik mesh ${KMESH} ${KMESH} ${KMESH}

The long-range part is calculated by the kspace support of LAMMPS. The kspace_style pppm/dplr is re-
quired. The spread parameter set by variable BETA should be set the same as that used in training. The KMESH

4.11. Deep potential long-range (DPLR) 41

DeePMD-kit

should be set dense enough so the long-range calculation is converged.

"fixz dplr" set the position of the wvirtual atom, and spread the

electrostatic interaction asserting on the virtual atom to the real

atoms. "type_associate” associates the real atom type its

corresponding virtual atom type. "bond_type" gives the type of the

bond between the real and virtual atoms.

fix 0 all dplr model ener.pb type_associate 1 3 bond_type 1
fix_modify 0 virial yes

The fix command dplr calculates the position of WCs by the DW model and back-propagates the long-range
interaction on virtual atoms to real toms.

compute the temperature of real atoms, excluding virtual atom contridbution
compute real_temp real_atom temp

compute real press all pressure real_temp

fix 1 real_atom nvt temp ${TEMP} ${TEMP} ${TAU_T}

fix_modify 1 temp real_temp

The temperature of the system should be computed from the real atoms. The kinetic contribution in the
pressure tensor is also computed from the real atoms. The thermostat is applied to only real atoms. The
computed temperature and pressure of real atoms can be accessed by, e.g.

fix thermo_print all print ${THERMO_FREQ} "$(step) $(pe) $(ke) $(etotal) $(enthalpy)
—$(c_real_temp) $(c_real_press) $(vol) $(c_real_press[1]) $(c_real_press[2]) $(c_real_press[3])",
—append thermo.out screen no title "# step pe ke etotal enthalpy temp press vol pxx pyy pzz"

The LAMMPS simulation can be started from the example directory by

Imp -i in.lammps

If LAMMPS complains that no model file ener . pb exists, it can be copied from the training example directory.

The MD simulation lasts for only 20 steps. If one runs a longer simulation, it will blow up, because the model
is trained with a very limited dataset for very short training steps, thus is of poor quality.

Another restriction that should be noted is that the energies printed at the zero steps are not correct. This
is because at the zero steps the position of the WC has not been updated with the DW model. The energies
printed in later steps are correct.

4.12 Deep Potential - Range Correction (DPRc)

Deep Potential - Range Correction (DPRc) is designed to combine with QM/MM method, and corrects energies
from a low-level QM/MM method to a high-level QM/MM method:

E = Equ(R; P) + Equpin(R; P) + Eavi(R) + Eppre(R)

See the JCTC paper for details.

42 Chapter 4. Model

https://doi.org/10.1021/acs.jctc.1c00201

DeePMD-kit

4.12.1 Training data

Instead the normal ab initio data, one needs to provide the correction from a low-level QM/MM method to a
high-level QM/MM method:

E = Ehighflevel QM/MM — Elowflevel QM/MM

Two levels of data use the same MM method, so Fyny is eliminated.

4.12.2 Training the DPRc model

In a DPRc model, QM atoms and MM atoms have different atom types. Assuming we have 4 QM atom types
(C, H, O, P) and 2 MM atom types (HW, OW):

"type_map": [ncu’ IIHU’ unn, I|Dll, ||Ow||, IIPH]

As described in the paper, the DPRc model only corrects Eqy and Equane within the cutoff, so we use a
hybrid descriptor to describe them separatedly:

"descriptor" :{

"type": "hybrid",
"list" : [
{
"type": "se_e2_a",
"sel": [6, 11, 0, 6, 0, 11,
"rcut_smth": 1.00,
"rcut": 9.00,
"neuron": [12, 25, 501,
"exclude_types": [[2, 21, [2, 41, [4, 41, [0, 2], [o, 41, [1, 21, [1, 41, [3, 2],
—[3, 41, [5, 21, [5, 411,
"axis_neuron": 12,
"set_davg_zero": true,
"_comment": " QM/QM interaction"
},
{
"type": "se_e2_a",
"sel": [6, 11, 100, 6, 50, 1],
"rcut_smth": 0.50,
"rcut": 6.00,
"neuron": [12, 25, 50],
"exclude_types": (o, o1, fo, 11, ro, 31, [o, &1, [z, 11, [1, 31, [1, 51, [3, 3],u
—I[3, 51, [5, 51, [2, 21, [2, 41, [4, 411,
"axis_neuron": 12,
"set_davg_zero": true,
"_comment": " QM/MM interaction"
}
1

exclude_types can be generated by the following Python script:

from itertools import combinations_with_replacement, product

qgqm = (0, 1, 3, 5)

mm = (2, 4)

print ("QM/QM:", list(map(list, list(combinations_with_replacement(mm, 2)) + list(product(qm,,
—mm)))))

print("QM/MM:", list(map(list, list(combinations_with_replacement(qm, 2)) + list(combinations_with_

—replacement (mm, 2))))) (continues on next page)

4.12. Deep Potential - Range Correction (DPRc) 43

DeePMD-kit

(continued from previous page)

|

Also, DPRc assumes MM atom energies (atom_ener) are zero:

"fitting_net": {
"neuron": [240, 240, 240],
"resnet_dt": true,
"atom_ener": [null, null, 0.0, null, 0.0, null]

Note that atom_ener only works when descriptor/set_davg zero is true.

4.12.3 Run MD simulations

The DPRc model has the best practices with the AMBER QM/MM module. An example is given by GitLab
RutgersLBSR/AmberDPRc. In theory, DPRc is able to be used with any QM/MM package, as long as the
DeePMD-kit package accepts QM atoms and MM atoms within the cutoff range and returns energies and
forces.

44 Chapter 4. Model

https://gitlab.com/RutgersLBSR/AmberDPRc/
https://gitlab.com/RutgersLBSR/AmberDPRc/

CHAPTER
FIVE

TRAINING

5.1 Train a model

Several examples of training can be found in the examples directory:

’$ cd $deepmd_source_dir/examples/water/se_e2_a/

After switching to that directory, the training can be invoked by

’$ dp train input.json

where input . json is the name of the input script.

By default, the verbosity level of the DeePMD-kit is INFO, one may see a lot of important information on
the code and environment showing on the screen. Among them two pieces of information regarding data
systems are worth special notice.

DEEPMD INFO ---Summary of DataSystem: training ------- - - -

—

DEEPMD INFO found 3 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_0/ 192 1 80 0.250 T
DEEPMD INFO ../data_water/data_1/ 192 1 160 0.500 T
DEEPMD INFO ../data_water/data_2/ 192 1 80 0.250 T

DEEPMD INFO -————————————— - ——— e

—

DEEPMD INFO ---Summary of DataSystem: validation ------- - - -

DEEPMD INFO found 1 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_3 192 1 80 1.000 T
DEEPMD INFO -- -—= -—= -

—

The DeePMD-kit prints detailed information on the training and validation data sets. The data sets are
defined by training data and validation data defined in the training section of the input script. The training
data set is composed of three data systems, while the validation data set is composed by one data system. The
number of atoms, batch size, the number of batches in the system and the probability of using the system
are all shown on the screen. The last column presents if the periodic boundary condition is assumed for the
System.

During the training, the error of the model is tested every disp freq training steps with the batch used to
train the model and with numb_btch batches from the validating data. The training error and validation
error are printed correspondingly in the file disp file (default is 1curve.out). The batch size can be set in the

45

DeePMD-kit

input script by the key batch_size in the corresponding sections for the training and validation data set. An
example of the output

step rmse_val rmse_trn rmse_e_val Tmse_e_trn rmse_f_val rmse_f_trn ir
0 3.33e+01 3.41e+01 1.03e+01 1.03e+01 8.39e-01 8.72e-01 1.0e-03

100 2.57e+01 2.56e+01 1.87e+00 1.88e+00 8.03e-01 8.02e-01 1.0e-03

200 2.45e+01 2.56e+01 2.26e-01 2.21e-01 7.73e-01 8.10e-01 1.0e-03

300 1.62e+01 1.66e+01 5.01e-02 4.46e-02 5.11e-01 5.26e-01 1.0e-03

400 1.36e+01 1.32e+01 1.07e-02 2.07e-03 4.29e-01 4.19e-01 1.0e-03

500 1.07e+01 1.05e+01 2.45e-03 4.11e-03 3.38e-01 3.31e-01 1.0e-03

The file contains 8 columns, from left to right, which are the training step, the validation loss, training loss,
root mean square (RMS) validation error of energy, RMS training error of energy, RMS validation error of
force, RMS training error of force and the learning rate. The RMS error (RMSE) of the energy is normalized
by the number of atoms in the system. One can visualize this file with a simple Python script:

import numpy as np
import matplotlib.pyplot as plt

data = np.genfromtxt("lcurve.out", names=True)

for name in data.dtype.names[1:-1]:
plt.plot(datal'step'], datal[name], label=name)

plt.legend()

plt.xlabel('Step')

plt.ylabel('Loss')

plt.xscale('symlog')

plt.yscale('log')

plt.grid()

plt.show()

Checkpoints will be written to files with the prefix save ckpt every save freq training steps.

Warning: It is warned that the example water data (in folder examples/water/data) is of very limited
amount, is provided only for testing purposes, and should not be used to train a production model.

5.2 Advanced options

In this section, we will take $deepmd_source_dir/examples/water/se_e2_a/input.json as an example of
the input file.

5.2.1 Learning rate

The learning rate section in input. json is given as follows

"learning_rate" :{

|ltypell R Ilexpﬂ s
"start_1lr": 0.001,
"stop_lr": 3.51e-8,
"decay_steps": 5000,
"_comment": "that's all"

e start_Ir gives the learning rate at the beginning of the training.

46 Chapter 5. Training

DeePMD-kit

e stop Ir gives the learning rate at the end of the training. It should be small enough to ensure that the
network parameters satisfactorily converge.

e During the training, the learning rate decays exponentially from start Ir to stop lr following the for-
mula:

alt) = agAt/T

where ¢ is the training step, « is the learning rate, ag is the starting learning rate (set by start_Ir), A is the
decay rate, and 7 is the decay steps, i.e.

1r(t) = start_lr * decay_rate ~ (t / decay_steps)

5.2.2 Training parameters

Other training parameters are given in the training section.

"training": {
"training_data": {
"systems": ["../data_water/data_0/", "../data_water/data_1/", "../data_
—water/data_2/"1,
"batch_size": "auto"
},
"validation_data":{
"systems": ["../data_water/data_3"],
"batch_size": 1,
"numb_btch": 3
},
"mixed_precision": {
"output_prec": "float32",
"compute_prec": "floatl6"

},

"numb_steps": 1000000,
"seed": 1,
"disp_file": "lcurve.out",
"disp_freq": 100,
"save_freq": 1000

The sections training_data and validation data give the training dataset and validation dataset, respectively.
Taking the training dataset for example, the keys are explained below:

« systems provide paths of the training data systems. DeePMD-kit allows you to provide multiple systems
with different numbers of atoms. This key can be a 1ist or a str.

— list: systems gives the training data systems.

— str: systems should be a valid path. DeePMD-kit will recursively search all data systems in this
path.

o At each training step, DeePMD-kit randomly picks batch_size frame(s) from one of the systems. The
probability of using a system is by default in proportion to the number of batches in the system. More
options are available for automatically determining the probability of using systems. One can set the
key auto prob to

— "prob_uniform" all systems are used with the same probability.

5.2. Advanced options 47

DeePMD-kit

— "prob_sys_size" the probability of using a system is proportional to its size (number of frames).

"prob_sys_size; sidx_0O:eidx_0:w_0; sidx_1:eidx_1:w_1;..." the list of systems is di-
vided into blocks. Block i has systems ranging from sidx_i to eidx_i. The probability of using
a system from block i is proportional to w_i. Within one block, the probability of using a system
is proportional to its size.

¢ An example of using "auto_prob" is given below. The probability of using systems[2] is 0.4, and
the sum of the probabilities of using systems[0] and systems[1] is 0.6. If the number of frames in
systems [1] is twice of system[0], then the probability of using system[1] is 0.4 and that of system[0]

is 0.2.
"training_data": {
"systems": ["../data_water/data_0/", "../data_water/data_1/", "../data_
—water/data_2/"],
"auto_prob": "prob_sys_size; 0:2:0.6; 2:3:0.4",
"batch_size": "auto"

}

 The probability of using systems can also be specified explicitly with key sys probs which is a list having
the length of the number of systems. For example

"training_data": {

"systems": ["../data_water/data_0/", "../data_water/data_1/", "../data_
—water/data_2/"],

"sys_probs": [0.5, 0.3, 0.2],

"batch_size": "auto:32"

¢ The key batch_size specifies the number of frames used to train or validate the model in a training step.
It can be set to

— list: the length of which is the same as the systems. The batch size of each system is given by
the elements of the list.

int: all systems use the same batch size.
— "auto": the same as "auto:32", see "auto:N"

— "auto:N": automatically determines the batch size so that the batch size times the number of
atoms in the system is no less than N.

¢ The key numb_batch in validate data gives the number of batches of model validation. Note that the
batches may not be from the same system

The section mixed precision specifies the mixed precision settings, which will enable the mixed precision
training workflow for DeePMD-kit. The keys are explained below:

e output prec precision used in the output tensors, only float32 is supported currently.

e compute prec precision used in the computing tensors, only float16 is supported currently. Note there
are several limitations about mixed precision training:

¢ Only se _e2 a type descriptor is supported by the mixed precision training workflow.

¢ The precision of the embedding net and the fitting net are forced to be set to float32.
Other keys in the training section are explained below:

e numb_steps The number of training steps.

¢ seed The random seed for getting frames from the training data set.

48 Chapter 5. Training

DeePMD-kit

e disp file The file for printing learning curve.
e disp freq The frequency of printing learning curve. Set in the unit of training steps

e save freq The frequency of saving checkpoint.

5.2.3 Options and environment variables

Several command line options can be passed to dp train, which can be checked with

$ dp train --help

An explanation will be provided

positional arguments:
INPUT the input json database

optional arguments:
-h, --help show this help message and exit

--init-model INIT_MODEL
Initialize a model by the provided checkpoint

--restart RESTART Restart the training from the provided checkpoint

--init-frz-model INIT_FRZ_MODEL
Initialize the training from the frozen model.
--skip-neighbor-stat Skip calculating neighbor statistics. Sel checking, automatic sel, and
—model compression will be disabled. (default: False)

--init-model model.ckpt, initializes the model training with an existing model that is stored in the check-
point model. ckpt, the network architectures should match.

--restart model.ckpt, continues the training from the checkpoint model. ckpt.

—--init-frz-model frozen_model.pb, initializes the training with an existing model that is stored in
frozen_model.pb.

--skip-neighbor-stat will skip calculating neighbor statistics if one is concerned about performance. Some
features will be disabled.

To maximize the performance, one should follow FAQ: How to control the parallelism of a job to control the
number of threads.

One can set other environmental variables:

Environment variables Allowed Default Usage
value value
DP_INTERFACE PREC high, low | high Control high (double) or low (float) precision of
training.
DP_AUTO PARALLELIZATIONL 0 Enable auto parallelization for CPU operators.

5.2. Advanced options 49

DeePMD-kit

5.2.4 Adjust sel of a frozen model

One can use --init-frz-model features to adjust (increase or decrease) sel of a existing model. Firstly, one
needs to adjust sel in input. json. For example, adjust from [46, 92] to [23, 46].

"model": {
"descriptor": {
"sel": [23, 46]
}

To obtain the new model at once, numb_steps should be set to zero:

"training": {
"numb_steps": O

}

Then, one can initialize the training from the frozen model and freeze the new model at once:

dp train input.json --init-frz-model frozen_model.pb
dp freeze -o frozen_model_adjusted_sel.pb

Two models should give the same result when the input satisfies both constraints.

Note: At this time, this feature is only supported by se_e2_a descriptor with set_davg_true enabled, or
hybrid composed of the above descriptors.

5.3 Training Parameters

Note: One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All
training parameters below can be set in DP-GUI By clicking “SAVE JSON”, one can download the input file
for furthur training.

model:

type: dict
argument path: model
type_map:
type: 1ist, optional
argument path: model/type_map
A list of strings. Give the name to each type of atoms. It is noted that the number
of atom type of training system must be less than 128 in a GPU environment.
data_stat_nbatch:
type: int, optional, default: 10
argument path: model/data_stat_nbatch

The model determines the normalization from the statistics of the data. This key
specifies the number of frames in each system used for statistics.

50 Chapter 5. Training

https://deepmodeling.com/dpgui/input/deepmd-kit-2.0

DeePMD-kit

data_stat_protect:
type: float, optional, default: 0.01
argument path: model/data_stat_protect

Protect parameter for atomic energy regression.

data_bias_nsample:
type: int, optional, default: 10
argument path: model/data_bias_nsample
The number of training samples in a system to compute and change the energy
bias.

use_srtab:
type: str, optional
argument path: model/use_srtab
The table for the short-range pairwise interaction added on top of DP. The table
is a text data file with (N_t + 1) * N_t /2 + 1 columes. The first colume is the
distance between atoms. The second to the last columes are energies for pairs of
certain types. For example we have two atom types, 0 and 1. The columes from
2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha:
type: float, optional
argument path: model/smin_alpha
The short-range tabulated interaction will be swithed according to the distance
of the nearest neighbor. This distance is calculated by softmin. This parameter
is the decaying parameter in the softmin. It is only required when use srtab is
provided.

sw_rmin:
type: float, optional
argument path: model/sw_rmin
The lower boundary of the interpolation between short-range tabulated interac-
tion and DP. It is only required when use_srtab is provided.

SW_rmax:
type: float, optional
argument path: model/sw_rmax
The upper boundary of the interpolation between short-range tabulated inter-
action and DP. It is only required when use_srtab is provided.

type_embedding:
type: dict, optional
argument path: model/type_embedding
The type embedding.

neuron:
type: 1ist, optional, default: [8]
argument path: model/type_embedding/neuron
Number of neurons in each hidden layers of the embedding net. When

two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.

5.3. Training Parameters 51

DeePMD-kit

activation_function:
type: str, optional, default: tanh
argument path: model/type_embedding/activation_function
The activation function in the embedding net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,

“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.

resnet_dt:
type: bool, optional, default: False
argument path: model/type_embedding/resnet_dt
Whether to use a “Timestep” in the skip connection
precision:
type: str, optional, default: default
argument path: model/type_embedding/precision

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

trainable:
type: bool, optional, default: True
argument path: model/type_embedding/trainable
If the parameters in the embedding net are trainable
seed:

type: NoneType | int, optional, default: None
argument path: model/type_embedding/seed

Random seed for parameter initialization

descriptor:

type: dict
argument path: model/descriptor

The descriptor of atomic environment.
Depending on the value of type, different sub args are accepted.

type:
type: str (flag key)
argument path: model/descriptor/type
possible choices: loc_ frame, se_e2_a, se_e3, se_a_tpe, se_e2_r,
hybrid, se_atten

The type of the descritpor. See explanation below.

¢ loc_frame: Defines a local frame at each atom, and the compute the
descriptor as local coordinates under this frame.

e se e2 a: Used by the smooth edition of Deep Potential. The full
relative coordinates are used to construct the descriptor.

e se_e2 1: Used by the smooth edition of Deep Potential. Only the
distance between atoms is used to construct the descriptor.

52

Chapter 5. Training

DeePMD-kit

¢ se_e3: Used by the smooth edition of Deep Potential. The full rel-
ative coordinates are used to construct the descriptor. Three-body
embedding will be used by this descriptor.

e se_a_tpe: Used by the smooth edition of Deep Potential. The full
relative coordinates are used to construct the descriptor. Type em-
bedding will be used by this descriptor.

e se_atten: Used by the smooth edition of Deep Potential. The full
relative coordinates are used to construct the descriptor. Attention
mechanism will be used by this descriptor.

» hybrid: Concatenate of a list of descriptors as a new descriptor.

When type is set to loc_frame:

sel_a:

type: 1list
argument path: model/descriptor[loc_frame]/sel_a

A list of integers. The length of the list should be the same as the num-
ber of atom types in the system. sel a[i] gives the selected number
of type-i neighbors. The full relative coordinates of the neighbors are
used by the descriptor.

sel r:

rcut:

type: 1list

argument path: model/descriptor[loc_frame] /sel_r

A list of integers. The length of the list should be the same as the num-
ber of atom types in the system. sel r[i] gives the selected number of
type-i neighbors. Only relative distance of the neighbors are used by

the descriptor. sel _a[i] + sel r[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius.

type: float, optional, default: 6.0
argument path: model/descriptor[loc_frame] /rcut

The cut-off radius. The default value is 6.0

axis_rule:

type: 1list
argument path: model/descriptor [loc_frame] /axis_rule

A list of integers. The length should be 6 times of the number of types.

e axis_rule[i*6+0]: class of the atom defining the first axis of type-i
atom. 0 for neighbors with full coordinates and 1 for neighbors only
with relative distance.

e axis rule[i*6+1]: type of the atom defining the first axis of type-i
atom.

e axis_rule[i*6+2]: index of the axis atom defining the first axis. Note
that the neighbors with the same class and type are sorted according
to their relative distance.

e axis_rule[i*6+3]: class of the atom defining the second axis of type-i
atom. 0 for neighbors with full coordinates and 1 for neighbors only
with relative distance.

e axis rule[i*6+4]: type of the atom defining the second axis of type-i
atom.

5.3. Training Parameters

53

DeePMD-kit

e axis rule[i*6+5]: index of the axis atom defining the second axis.
Note that the neighbors with the same class and type are sorted ac-
cording to their relative distance.

When type is set to se_e2_a (or its alias se_a):

sel:

rcut:

rcut_

type: str | list, optional, default: auto
argument path: model/descriptor[se_e2_al/sel

This parameter set the number of selected neighbors for each type of

atom. It can be:

e List[int]. The length of the list should be the same as the number of
atom types in the system. sel[i] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally
possible number of type-i neighbors in the cut-off radius. It is noted
that the total sel value must be less than 4096 in a GPU environment.

¢ str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail
it counts the maximal number of neighbors with in the cutoff ra-
dius for each type of neighbor, then multiply the maximum by the
“factor”. Finally the number is wraped up to 4 divisible. The option
“auto” is equivalent to “auto:1.1”.

type: float, optional, default: 6.0
argument path: model/descriptor[se_e2_al/rcut

The cut-off radius.
smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_e2_al/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth

neuron:

type: 1list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_e2_a]/neuron
Number of neurons in each hidden layers of the embedding net. When

two layers are of the same size or one layer is twice as large as the
previous layer, a skip connection is built.

axis_neuron:

type: int, optional, default: 4, alias: n_axis_neuron
argument path: model/descriptor[se_e2_al/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh

argument path:
model/descriptor[se_e2_al/activation_function

The activation function in the embedding net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,

54

Chapter 5.

Training

DeePMD-kit

“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.

resnet_dt:

type_

type: bool, optional, default: False
argument path: model/descriptor[se_e2_al]/resnet_dt

Whether to use a “Timestep” in the skip connection

one_side:
type: bool, optional, default: False
argument path: model/descriptor[se_e2_al/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types*2
embedding nets

precision:

type: str, optional, default: default
argument path: model/descriptor[se_e2_al/precision

The precision of the embedding net parameters, supported options are
“default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows
the interface precision.

trainable:

seed:

type: bool, optional, default: True
argument path: model/descriptor[se_e2_a]/trainable

If the parameters in the embedding net is trainable

type: NoneType | int, optional
argument path: model/descriptor[se_e2_a]/seed

Random seed for parameter initialization

exclude_types:

type: list, optional, default: []
argument path: model/descriptor[se_e2_al/exclude_types

The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_e2_al/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used

When type is set to se_e3 (or its aliases se_at, se_a_3be, se_t):

sel:

type: str | list, optional, default: auto
argument path: model/descriptor[se_e3]/sel

This parameter set the number of selected neighbors for each type of
atom. It can be:

5.3. Training Parameters

55

DeePMD-kit

e List[int]. The length of the list should be the same as the number of
atom types in the system. sel[i] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally
possible number of type-i neighbors in the cut-off radius. It is noted
that the total sel value must be less than 4096 in a GPU environment.

¢ str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail
it counts the maximal number of neighbors with in the cutoff ra-
dius for each type of neighbor, then multiply the maximum by the
“factor”. Finally the number is wraped up to 4 divisible. The option
“auto” is equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model/descriptor[se_e3]/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model/descriptor[se_e3]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth

neuron:
type: 1list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_e3]/neuron
Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the
previous layer, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model/descriptor[se_e3]/activation_function
The activation function in the embedding net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,
“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.

resnet_dt:
type: bool, optional, default: False
argument path: model/descriptor[se_e3]/resnet_dt
Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model/descriptor[se_e3]/precision

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloatl6”. Default follows
the interface precision.

trainable:

type: bool, optional, default: True

56 Chapter 5.

Training

DeePMD-kit

seed:

argument path: model/descriptor[se_e3]/trainable

If the parameters in the embedding net are trainable

type: NoneType | int, optional
argument path: model/descriptor[se_e3]/seed

Random seed for parameter initialization

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_e3]/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used

When type is set to se_a_tpe (or its alias se_a_ebd):

sel:

rcut:

rcut_

type: str | list, optional, default: auto
argument path: model/descriptor[se_a_tpel]/sel

This parameter set the number of selected neighbors for each type of

atom. It can be:

e List[int]. The length of the list should be the same as the number of
atom types in the system. sel[i] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally
possible number of type-i neighbors in the cut-off radius. It is noted
that the total sel value must be less than 4096 in a GPU environment.

e str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail
it counts the maximal number of neighbors with in the cutoff ra-
dius for each type of neighbor, then multiply the maximum by the
“factor”. Finally the number is wraped up to 4 divisible. The option
“auto” is equivalent to “auto:1.17.

type: float, optional, default: 6.0
argument path: model/descriptor[se_a_tpel] /rcut

The cut-off radius.

smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_a_tpel /rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth

neuron:

type: 1ist, optional, default: [10, 20, 40]
argument path: model/descriptor[se_a_tpe] /neuron
Number of neurons in each hidden layers of the embedding net. When

two layers are of the same size or one layer is twice as large as the
previous layer, a skip connection is built.

5.3. Training Parameters 57

DeePMD-kit

axis_neuron:

type: int, optional, default: 4, alias: n_axis_neuron
argument path: model/descriptor[se_a_tpel] /axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh

argument path:
model/descriptor[se_a_tpel/activation_function

The activation function in the embedding net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,
“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpel/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpel/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types™2
embedding nets

precision:

type: str, optional, default: default
argument path: model/descriptor[se_a_tpe] /precision

The precision of the embedding net parameters, supported options are
“default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows
the interface precision.

trainable:

seed:

type: bool, optional, default: True
argument path: model/descriptor[se_a_tpel] /trainable

If the parameters in the embedding net is trainable

type: NoneType | int, optional
argument path: model/descriptor[se_a_tpel /seed

Random seed for parameter initialization

exclude_types:

type: 1ist, optional, default: []
argument path: model/descriptor[se_a_tpel /exclude_types

The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero:

type: bool, optional, default: False

58

Chapter 5.

Training

DeePMD-kit

argument path: model/descriptor[se_a_tpel/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used

type_nchanl:

type: int, optional, default: 4
argument path: model/descriptor[se_a_tpel/type_nchanl

number of channels for type embedding

type_nlayer:

type: int, optional, default: 2
argument path: model/descriptor[se_a_tpel /type_nlayer

number of hidden layers of type embedding net

numb_aparam:

type: int, optional, default: 0
argument path: model/descriptor [se_a_tpe] /numb_aparam

dimension of atomic parameter. if set to a value > 0, the atomic pa-
rameters are embedded.

When type is set to se_e2_r (or its alias se_r):

sel:

rcut:

rcut_

type: str | 1list, optional, default: auto
argument path: model/descriptor[se_e2_r]/sel

This parameter set the number of selected neighbors for each type of

atom. It can be:

e List[int]. The length of the list should be the same as the number of
atom types in the system. sel[i] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally
possible number of type-i neighbors in the cut-off radius. It is noted
that the total sel value must be less than 4096 in a GPU environment.

o str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail
it counts the maximal number of neighbors with in the cutoff ra-
dius for each type of neighbor, then multiply the maximum by the
“factor”. Finally the number is wraped up to 4 divisible. The option
“auto” is equivalent to “auto:1.17.

type: float, optional, default: 6.0
argument path: model/descriptor[se_e2_r]/rcut

The cut-off radius.
smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_e2_r]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth

5.3. Training Parameters 59

DeePMD-kit

neuron:

type: list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_e2_r]/neuron
Number of neurons in each hidden layers of the embedding net. When

two layers are of the same size or one layer is twice as large as the
previous layer, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path:
model/descriptor[se_e2_r]/activation_function

The activation function in the embedding net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,
“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.

resnet_dt:

type_

type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/resnet_dt

Whether to use a “Timestep” in the skip connection

one_side:

type: bool, optional, default: False

argument path: model/descriptor[se_e2_r]/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types*2
embedding nets

precision:

type: str, optional, default: default
argument path: model/descriptor[se_e2_r]/precision

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloatl6”. Default follows
the interface precision.

trainable:

seed:

type: bool, optional, default: True
argument path: model/descriptor[se_e2_r]/trainable

If the parameters in the embedding net are trainable

type: NoneType | int, optional
argument path: model/descriptor[se_e2_r]/seed

Random seed for parameter initialization

exclude_types:

type: 1ist, optional, default: []
argument path: model/descriptor[se_e2_r]/exclude_types

The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.

60

Chapter 5.

Training

DeePMD-kit

set_davg_zero:
type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used

When type is set to hybrid:
list:

type: 1list
argument path: model/descriptor [hybrid]/list

A list of descriptor definitions
When type is set to se_atten:

sel:
type: str|int | list, optional, default: auto
argument path: model/descriptor[se_atten]/sel

This parameter set the number of selected neighbors. Note that this
parameter is a little different from that in other descriptors. Instead
of separating each type of atoms, only the summation matters. And
this number is highly related with the efficiency, thus one should not
make it too large. Usually 200 or less is enough, far away from the GPU
limitation 4096. It can be:

e int. The maximum number of neighbor atoms to be considered. We
recommend it to be less than 200.

e List[int]. The length of the list should be the same as the num-
ber of atom types in the system. sel[i] gives the selected number
of type-i neighbors. Only the summation of sel[i] matters, and it
is recommended to be less than 200. - str. Can be “auto:factor”
or “auto”. “factor” is a float number larger than 1. This option
will automatically determine the sel. In detail it counts the maxi-
mal number of neighbors with in the cutoff radius for each type of
neighbor, then multiply the maximum by the “factor”. Finally the
number is wraped up to 4 divisible. The option “auto” is equivalent
to “auto:1.1”.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_atten] /rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model/descriptor[se_atten] /rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth
neuron:
type: list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_atten] /neuron

5.3. Training Parameters

61

DeePMD-kit

Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the
previous layer, a skip connection is built.

axis_neuron:

type: int, optional, default: 4, alias: n_axis neuron
argument path: model/descriptor [se_atten]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh
argument path:
model/descriptor[se_atten] /activation_function

The activation function in the embedding net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,
“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.

resnet_dt:

type_

type: bool, optional, default: False
argument path: model/descriptor[se_atten] /resnet_dt

Whether to use a “Timestep” in the skip connection

one_side:
type: bool, optional, default: False
argument path: model/descriptor[se_atten] /type_one_side

Whether to consider the information from only one side or both sides.

precision:

type: str, optional, default: default
argument path: model/descriptor[se_atten] /precision

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloatl6”. Default follows
the interface precision.

trainable:

seed:

type: bool, optional, default: True
argument path: model/descriptor[se_atten] /trainable

If the parameters in the embedding net is trainable

type: NoneType | int, optional
argument path: model/descriptor [se_atten]/seed

Random seed for parameter initialization

exclude_types:

type: list, optional, default: []
argument path: model/descriptor[se_atten]/exclude_types

The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.

62

Chapter 5.

Training

DeePMD-kit

set_davg_zero:
type: bool, optional, default: False
argument path: model/descriptor[se_atten]/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used
attn:
type: int, optional, default: 128
argument path: model/descriptor[se_atten] /attn

The length of hidden vectors in attention layers

attn_layer:
type: int, optional, default: 2
argument path: model/descriptor[se_atten]/attn_layer

The number of attention layers

attn_dotr:
type: bool, optional, default: True
argument path: model/descriptor[se_atten]/attn_dotr

Whether to do dot product with the normalized relative coordinates

attn_mask:
type: bool, optional, default: False
argument path: model/descriptor [se_atten]/attn_mask

Whether to do mask on the diagonal in the attention matrix

fitting_net:

type: dict, optional
argument path: model/fitting_net

The fitting of physical properties.
Depending on the value of type, different sub args are accepted.

type:
type: str (flag key), default: ener
argument path: model/fitting_net/type
possible choices: ener, dipole, polar

The type of the fitting. See explanation below.

e ener: Fit an energy model (potential energy surface).

e dipole: Fit an atomic dipole model. Global dipole labels or atomic
dipole labels for all the selected atoms (see sel_type) should be pro-
vided by dipole.npy in each data system. The file either has number
of frames lines and 3 times of number of selected atoms columns, or
has number of frames lines and 3 columns. See loss parameter.

e polar: Fit an atomic polarizability model. Global polarizazbility la-
bels or atomic polarizability labels for all the selected atoms (see
sel_type) should be provided by polarizability.npy in each data sys-
tem. The file eith has number of frames lines and 9 times of num-
ber of selected atoms columns, or has number of frames lines and 9
columns. See loss parameter.

When type is set to ener:

5.3. Training Parameters 63

DeePMD-kit

numb_fparam:
type: int, optional, default: 0
argument path: model/fitting_net [ener]/numb_fparam
The dimension of the frame parameter. If set to >0, file fparam.npy
should be included to provided the input fparams.
numb_aparam:
type: int, optional, default: 0
argument path: model/fitting net [ener]/numb_aparam
The dimension of the atomic parameter. If set to >0, file aparam.npy
should be included to provided the input aparams.
neuron:

type: 1ist, optional, default: [120, 120, 120], alias: n_neuron
argument path: model/fitting net [ener]/neuron
The number of neurons in each hidden layers of the fitting net. When
two hidden layers are of the same size, a skip connection is built.
activation_function:
type: str, optional, default: tanh
argument path: model/fitting_net[ener]/activation_function
The activation function in the fitting net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,
“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.
precision:
type: str, optional, default: default
argument path: model/fitting net[ener]/precision
The precision of the fitting net parameters, supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.
resnet_dt:

type: bool, optional, default: True
argument path: model/fitting net[ener]/resnet_dt

Whether to use a “Timestep” in the skip connection

trainable:

type: bool | list, optional, default: True
argument path: model/fitting_net[ener]/trainable

Whether the parameters in the fitting net are trainable. This option

can be

e bool: True if all parameters of the fitting net are trainable, False
otherwise.

o list of bool: Specifies if each layer is trainable. Since the fitting net
is composed by hidden layers followed by a output layer, the length
of tihs list should be equal to len(neuron)+1.

rcond:

type: float, optional, default: 0.001

64 Chapter 5. Training

DeePMD-kit

argument path: model/fitting_net[ener]/rcond

The condition number used to determine the inital energy shift for
each type of atoms.
seed:
type: NoneType | int, optional
argument path: model/fitting_net [ener]/seed

Random seed for parameter initialization of the fitting net
atom_ener:

type: 1ist, optional, default: []

argument path: model/fitting_net [ener]/atom_ener

Specify the atomic energy in vacuum for each type

When type is set to dipole:

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model/fitting_net[dipole] /neuron
The number of neurons in each hidden layers of the fitting net. When
two hidden layers are of the same size, a skip connection is built.
activation_function:

type: str, optional, default: tanh
argument path:
model/fitting net[dipole]/activation_function

The activation function in the fitting net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,
“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.

resnet_dt:
type: bool, optional, default: True
argument path: model/fitting_net[dipole]/resnet_dt
Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model/fitting_net[dipole] /precision

The precision of the fitting net parameters, supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

sel_type:
type: int | NoneType | 1ist, optional, alias: dipole type
argument path: model/fitting net[dipole]/sel_type

The atom types for which the atomic dipole will be provided. If not
set, all types will be selected.

seed:

type: NoneType | int, optional

5.3. Training Parameters 65

DeePMD-kit

argument path: model/fitting_net[dipole] /seed
Random seed for parameter initialization of the fitting net
When type is set to polar:

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model/fitting_net [polar]/neuron
The number of neurons in each hidden layers of the fitting net. When
two hidden layers are of the same size, a skip connection is built.
activation_function:
type: str, optional, default: tanh
argument path: model/fitting_net [polar]/activation_function
The activation function in the fitting net. Supported activation
functions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”,
“gelu_tf”. Note that “gelu” denotes the custom operator version, and
“gelu_tf” denotes the TF standard version.
resnet_dt:
type: bool, optional, default: True
argument path: model/fitting_net [polar]/resnet_dt
Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model/fitting_net[polar]/precision
The precision of the fitting net parameters, supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

fit_diag:
type: bool, optional, default: True
argument path: model/fitting_net[polar]/fit_diag
Fit the diagonal part of the rotational invariant polarizability matrix,
which will be converted to normal polarizability matrix by contracting
with the rotation matrix.

scale:
type: float | 1ist, optional, default: 1.0
argument path: model/fitting net[polar]/scale
The output of the fitting net (polarizability matrix) will be scaled by
scale

shift_diag:
type: bool, optional, default: True
argument path: model/fitting_net[polar]/shift_diag

Whether to shift the diagonal of polar, which is beneficial to training.
Default is true.

66

Chapter 5. Training

DeePMD-kit

sel_type:
type: int | NoneType | list, optional, alias: pol_type
argument path: model/fitting_net [polar]/sel_type
The atom types for which the atomic polarizability will be provided.
If not set, all types will be selected.
seed:
type: NoneType | int, optional
argument path: model/fitting net[polar]/seed

Random seed for parameter initialization of the fitting net
fitting_net_dict:
type: dict, optional
argument path: model/fitting net_dict

The dictionary of multiple fitting nets in multi-task mode. Each fit-
ting net_dict[fitting_key] is the single definition of fitting of physical proper-
ties with user-defined name fitting_key.

modifier:
type: dict, optional
argument path: model/modifier
The modifier of model output.
Depending on the value of type, different sub args are accepted.
type:
type: str (flag key)

argument path: model/modifier/type
possible choices: dipole_charge

The type of modifier. See explanation below.

-dipole charge: Use WFCC to model the electronic structure of the sys-
tem. Correct the long-range interaction

When type is set to dipole_charge:

model_name:
type: str
argument path: model/modifier [dipole_charge] /model_name

The name of the frozen dipole model file.

model_charge_map:
type: 1list
argument path:
model/modifier [dipole_charge] /model_charge_map
The charge of the WFCC. The list length should be the same as the
sel_type.
sys_charge_map:

type: 1list

5.3. Training Parameters 67

DeePMD-kit

argument path: model/modifier[dipole_charge] /sys_charge_map

The charge of real atoms. The list length should be the same as the
type _map

ewald_beta:
type: float, optional, default: 0.4
argument path: model/modifier [dipole_charge] /ewald_beta
The splitting parameter of Ewald sum. Unit is A*-1

ewald_h:

type: float, optional, default: 1.0
argument path: model/modifier[dipole_chargel/ewald_h

The grid spacing of the FFT grid. Unit is A

compress:

learning_rate:

type: dict, optional
argument path: model/compress

Model compression configurations

Depending on the value of type, different sub args are accepted.
type:

type: str (flag key), default: se_e2_a

argument path: model/compress/type

possible choices: se_e2 a

The type of model compression, which should be consistent with the
descriptor type.

When type is set to se_e2_a (or its alias se_a):

model_file:
type: str
argument path: model/compress[se_e2_al]/model_file

The input model file, which will be compressed by the DeePMD-kit.

table_config:
type: 1list
argument path: model/compress[se_e2_al/table_config
The arguments of model compression, including extrapolate(scale of
model extrapolation), stride(uniform stride of tabulation’s first and
second table), and frequency(frequency of tabulation overflow check).
min_nbor_dist:
type: float
argument path: model/compress[se_e2_al/min_nbor_dist

The nearest distance between neighbor atoms saved in the frozen
model.

type: dict

68

Chapter 5.

Training

DeePMD-kit

argument path: learning_rate
The definitio of learning rate
scale_by_worker:
type: str, optional, default: 1inear
argument path: learning_rate/scale_by_worker

When parallel training or batch size scaled, how to alter learning rate. Valid
values are linear'(default), ‘sqrt or none.

Depending on the value of type, different sub args are accepted.
type:

type: str (flag key), default: exp
argument path: learning_rate/type
possible choices: ezp

The type of the learning rate.
When type is set to exp:
start_1r:
type: float, optional, default: 0.001
argument path: learning_rate[expl/start_1lr
The learning rate the start of the training,.
stop_1r:
type: float, optional, default: 1e-08
argument path: learning_rate[expl/stop_lr
The desired learning rate at the end of the training.
decay_steps:
type: int, optional, default: 5000
argument path: learning rate[exp] /decay_steps
The learning rate is decaying every this number of training steps.
loss:
type: dict, optional
argument path: loss
The definition of loss function. The loss type should be set to tensor, ener or left unset.
Depending on the value of type, different sub args are accepted.
type:

type: str (flag key), default: ener

argument path: loss/type

possible choices: ener, tensor

The type of the loss. When the fitting type is ener, the loss type should be set

to ener or left unset. When the fitting type is dipole or polar, the loss type
should be set to tensor.

5.3. Training Parameters 69

DeePMD-kit

When type is set to ener:

start_pref_e:

type: float | int, optional, default: 0.02
argument path: loss[ener]/start_pref_e

The prefactor of energy loss at the start of the training. Should be larger
than or equal to 0. If set to none-zero value, the energy label should be pro-
vided by file energy.npy in each data system. If both start pref energy and
limit pref energy are set to 0, then the energy will be ignored.

limit_pref_e:

type: float | int, optional, default: 1.0
argument path: loss[ener]/limit_pref_e

The prefactor of energy loss at the limit of the training, Should be larger than
or equal to 0. i.e. the training step goes to infinity.

start_pref_f:

type: float | int, optional, default: 1000
argument path: loss[ener]/start_pref_f

The prefactor of force loss at the start of the training. Should be larger than or
equal to 0. If set to none-zero value, the force label should be provided by file
force.npy in each data system. If both start_pref force and limit_pref force
are set to 0, then the force will be ignored.

limit_pref_f:

type: float | int, optional, default: 1.0
argument path: loss[ener]/limit_pref_f

The prefactor of force loss at the limit of the training, Should be larger than
or equal to 0. i.e. the training step goes to infinity.

start_pref_v:

type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_v

The prefactor of virial loss at the start of the training. Should be larger than or
equal to 0. If set to none-zero value, the virial label should be provided by file
virial.npy in each data system. If both start_pref virial and limit_pref virial
are set to 0, then the virial will be ignored.

limit_pref_v:

type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_v

The prefactor of virial loss at the limit of the training, Should be larger than
or equal to 0. i.e. the training step goes to infinity.

start_pref_ae:

type: float | int, optional, default: 0.0

70

Chapter 5. Training

DeePMD-kit

argument path: loss[ener]/start_pref_ae

The prefactor of atom ener loss at the start of the training. Should be
larger than or equal to 0. If set to none-zero value, the atom ener la-
bel should be provided by file atom_ener.npy in each data system. If
both start pref atom ener and limit pref atom ener are set to 0, then the
atom_ener will be ignored.

limit_pref_ae:
type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_ae

The prefactor of atom_ener loss at the limit of the training, Should be larger
than or equal to 0. i.e. the training step goes to infinity.

start_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_pf

The prefactor of atom_pref loss at the start of the training. Should be
larger than or equal to 0. If set to none-zero value, the atom_ pref la-
bel should be provided by file atom pref.npy in each data system. If
both start_pref atom_pref and limit_pref atom_pref are set to 0, then the
atom_pref will be ignored.

limit_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_pf

The prefactor of atom_pref loss at the limit of the training, Should be larger
than or equal to 0. i.e. the training step goes to infinity.

relative_f£f:
type: float | NoneType, optional
argument path: loss[ener] /relative_f

If provided, relative force error will be used in the loss. The difference of force
will be normalized by the magnitude of the force in the label with a shift given
by relative f,i.e. DF_ i/ (|| F || + relative f) with DF denoting the difference
between prediction and label and || F || denoting the L2 norm of the label.

enable_atom_ener_coeff:
type: bool, optional, default: False
argument path: loss[ener]/enable_atom_ener_coeff

If true, the energy will be computed as sum_ic i E i. ¢_ishould be provided
by file atom_ener coeff.npy in each data system, otherwise it’s 1.

When type is set to tensor:
pref:

type: float | int
argument path: loss[tensor] /pref

5.3. Training Parameters 71

DeePMD-kit

The prefactor of the weight of global loss. It should be larger than or equal to
0. If controls the weight of loss corresponding to global label, i.e. ‘polarizabil-
ity npy" or dipole.npy, whose shape should be #frames x [9 or 3]. If it’s larger
than 0.0, this npy should be included.

pref_atomic:

loss_dict:

type: float | int
argument path: loss[tensor] /pref_atomic

The prefactor of the weight of atomic loss. It should be larger than or
equal to 0. If controls the weight of loss corresponding to atomic label,
i.e. atomic polarizability.npy or atomic_dipole.npy, whose shape should be
#frames x ([9 or 3] x #selected atoms). If it’s larger than 0.0, this npy should
be included. Both pref and pref atomic should be provided, and either can be
set to 0.0.

type: dict, optional

argument path: loss_dict

The dictionary of definitions of multiple loss functions in multi-task mode.

Each

loss_dict[fitting_key], with user-defined name fitting_key in model/fitting net_dict, is the
single definition of loss function, whose type should be set to tensor, ener or left unset.

training:
type: dict
argument path: training
The training options.
training_data:
type: dict, optional
argument path: training/training data
Configurations of training data.
systems:
type: str|list
argument path: training/training_data/systems
The data systems for training. This key can be provided with a list
that specifies the systems, or be provided with a string by which the
prefix of all systems are given and the list of the systems is automat-
ically generated.
set_prefix:
type: str, optional, default: set
argument path: training/training data/set_prefix
The prefix of the sets in the systems.
batch_size:
type: int | str | list, optional, default: auto
argument path: training/training_data/batch_size
This key can be
72 Chapter 5. Training

DeePMD-kit

o list: the length of which is the same as the systems. The batch size
of each system is given by the elements of the list.

o int: all systems use the same batch size.

e string “auto”: automatically determines the batch size so that the
batch_size times the number of atoms in the system is no less than
32.

e string “auto:N”: automatically determines the batch size so that
the batch_size times the number of atoms in the system is no less
than N.

auto_prob:

type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/training_data/auto_prob

Determine the probability of systems automatically. The method is

assigned by this key and can be

¢ “prob_uniform” : the probability all the systems are equal, namely
1.0/self.get_nsystems()

e “prob_sys size” : the probability of a system is proportional to the
number of batches in the system

e “prob_sys size;stt idx:end idx:weight;stt_idx:end_idx:weight;. .”
: the list of systems is devided into blocks. A block is specified by
stt_idx:end_idx:weight, where stt_idx is the starting index of the
system, end_idx is then ending (not including) index of the system,
the probabilities of the systems in this block sums up to weight,
and the relatively probabilities within this block is proportional to
the number of batches in the system.

sys_probs:

type: NoneType | list, optional, default: None, alias: sys_weights
argument path: training/training_data/sys_probs

A list of float if specified. Should be of the same length as systems,
specifying the probability of each system.

validation_data:

type: dict | NoneType, optional, default: None

argument path: training/validation_data

Configurations of validation data. Similar to that of training data, except that

anumb_btch argument may be configured

systems:

type: str|list
argument path: training/validation_data/systems

The data systems for validation. This key can be provided with a list
that specifies the systems, or be provided with a string by which the
prefix of all systems are given and the list of the systems is automat-
ically generated.

set_prefix:

type: str, optional, default: set
argument path: training/validation_data/set_prefix

The prefix of the sets in the systems.

5.3. Training Parameters

73

DeePMD-kit

batch_size:
type: int | str | list, optional, default: auto
argument path: training/validation_data/batch_size

This key can be

o list: the length of which is the same as the systems. The batch size
of each system is given by the elements of the list.

o int: all systems use the same batch size.

e string “auto”: automatically determines the batch size so that the
batch_size times the number of atoms in the system is no less than
32.

e string “auto:N”: automatically determines the batch size so that
the batch_size times the number of atoms in the system is no less
than N.

auto_prob:
type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/validation_data/auto_prob

Determine the probability of systems automatically. The method is

assigned by this key and can be

e “prob_uniform” : the probability all the systems are equal, namely
1.0/self.get_nsystems()

¢ “prob_sys_size” : the probability of a system is proportional to the
number of batches in the system

e “prob sys size;stt idx:end idx:weight;stt idx:end idx:weight;...”
: the list of systems is devided into blocks. A block is specified by
stt_idx:end_idx:weight, where stt_idx is the starting index of the
system, end_idx is then ending (not including) index of the system,
the probabilities of the systems in this block sums up to weight,
and the relatively probabilities within this block is proportional to
the number of batches in the system.

sys_probs:
type: NoneType | list, optional, default: None, alias: sys_weights
argument path: training/validation_data/sys_probs

A list of float if specified. Should be of the same length as systems,
specifying the probability of each system.

numb_btch:
type: int, optional, default: 1, alias: numb_batch
argument path: training/validation_data/numb_btch

An integer that specifies the number of systems to be sampled for
each validation period.

mixed_precision:
type: dict, optional
argument path: training/mixed_precision
Configurations of mixed precision.

output_prec:

type: str, optional, default: float32

74 Chapter 5. Training

DeePMD-kit

argument path: training/mixed_precision/output_prec

The precision for mixed precision params. ” “The trainable variables
precision during the mixed precision training process, ” “supported
options are float32 only currently.

compute_prec:
type: str
argument path: training/mixed_precision/compute_prec

The precision for mixed precision compute. ” “The compute precision
during the mixed precision training process, “” “supported options
are float16 and bfloat16 currently.

numb_steps:

type: int, alias: stop_batch

argument path: training/numb_steps

Number of training batch. Each training uses one batch of data.
seed:

type: NoneType | int, optional

argument path: training/seed

The random seed for getting frames from the training data set.
disp_file:

type: str, optional, default: 1curve.out

argument path: training/disp_file

The file for printing learning curve.
disp_freq:

type: int, optional, default: 1000

argument path: training/disp_freq

The frequency of printing learning curve.
save_freq:

type: int, optional, default: 1000

argument path: training/save_freq

The frequency of saving check point.
save_ckpt:

type: str, optional, default: model. ckpt

argument path: training/save_ckpt

The file name of saving check point.
disp_training:

type: bool, optional, default: True

argument path: training/disp_training

Displaying verbose information during training,.

5.3.

Training Parameters 75

DeePMD-kit

time_training:
type: bool, optional, default: True
argument path: training/time_training
Timing durining training.

profiling:
type: bool, optional, default: False
argument path: training/profiling
Profiling during training.

profiling file:
type: str, optional, default: timeline. json
argument path: training/profiling file
Output file for profiling.

enable_profiler:
type: bool, optional, default: False
argument path: training/enable_profiler

Enable TensorFlow Profiler (available in TensorFlow 2.3) to analyze perfor-
mance. The log will be saved to tensorboard log dir.

tensorboard:
type: bool, optional, default: False
argument path: training/tensorboard
Enable tensorboard
tensorboard_log_dir:
type: str, optional, default: log
argument path: training/tensorboard_log_dir
The log directory of tensorboard outputs
tensorboard_freq:
type: int, optional, default: 1
argument path: training/tensorboard_freq
The frequency of writing tensorboard events.
data_dict:
type: dict, optional
argument path: training/data_dict

The dictionary of multi DataSystems in multi-task mode. Each
data_dict[fitting_key], with user-defined name fitting key in
model/fitting net_dict, contains training data and optional validation
data definitions.

76 Chapter 5. Training

DeePMD-kit

nvnmd :

fitting_weight:
type: dict, optional
argument path: training/fitting_weight

Each fitting weight[fitting key], with user-defined name fitting key in
model/fitting net_dict, is the training weight of fitting net fitting key. Fit-
ting nets with higher weights will be selected with higher probabilities to be
trained in one step. Weights will be normalized and minus ones will be ig-
nored. If not set, each fitting net will be equally selected when training.

type: dict, optional
argument path: nvnmd

The nvnmd options.
net_size:

type: int

argument path: nvnmd/net_size

configuration the number of nodes of fitting net, just can be set as 128
map_file:

type: str

argument path: nvnmd/map_file

A file containing the mapping tables to replace the calculation of embedding
nets

config file:
type: str
argument path: nvnmd/config_file

A file containing the parameters about how to implement the model in certain
hardware

weight_file:
type: str
argument path: nvnmd/weight_file
a *.npy file containing the weights of the model

enable:

type: bool

argument path: nvnmd/enable

enable the nvnmd training
restore_descriptor:

type: bool

argument path: nvnmd/restore_descriptor

enable to restore the parameter of embedding net from weight.npy

5.3. Training Parameters 77

DeePMD-kit

restore_fitting_net:

type: bool

argument path: nvnmd/restore_fitting_net

enable to restore the parameter of fitting net from weight.npy
quantize_descriptor:

type: bool

argument path: nvnmd/quantize_descriptor

enable the quantizatioin of descriptor
quantize_fitting net:

type: bool

argument path: nvnmd/quantize_fitting net

enable the quantizatioin of fitting net

5.4 Parallel training

Currently, parallel training is enabled in a synchronized way with help of Horovod. Depending on the num-
ber of training processes (according to MPI context) and the number of GPU cards available, DeePMD-kit
will decide whether to launch the training in parallel (distributed) mode or in serial mode. Therefore, no
additional options are specified in your JSON/Y AML input file.

5.4.1 Tuning learning rate

Horovod works in the data-parallel mode, resulting in a larger global batch size. For example, the real batch
size is 8 when batch_size is set to 2 in the input file and you launch 4 workers. Thus, learning rate is auto-
matically scaled by the number of workers for better convergence. Technical details of such heuristic rule
are discussed at Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.

The number of decay steps required to achieve the same accuracy can decrease by the number of cards (e.g.,
1/2 of steps in the above case), but needs to be scaled manually in the input file.

In some cases, it won’t work well when scaling the learning rate by worker count in a 1inear way. Then you
can try sqrt or none by setting argument scale by worker like below.

"learning_rate" :{
"scale_by_worker": '"none",

"type“ o exp

78 Chapter 5. Training

https://github.com/horovod/horovod
https://arxiv.org/abs/1706.02677

DeePMD-kit

5.4.2 Scaling test

Testing examples/water/se_e2_a on an 8-GPU host, linear acceleration can be observed with the increasing
number of cards.

Num of GPU cards | Seconds every 100 samples | Samples per second | Speed up
1 1.4515 68.89 1.00
2 1.5962 62.65*2 1.82
4 1.7635 56.71%4 3.29
8 1.7267 57.91*8 6.72

5.4.3 How to use

Training workers can be launched with horovodrun. The following command launches 4 processes on the
same host:

CUDA_VISIBLE DEVICES=4,5,6,7 horovodrun -np 4 \
dp train --mpi-log=workers input.json

Need to mention, the environment variable \CUDA_VISIBLE DEVICES" must be set to control parallelism
on the occupied host where one process is bound to one GPU card.

To maximize the performance, one should follow FAQ: How to control the parallelism of a job to control the
number of threads.

When using MPI with Horovod, horovodrun is a simple wrapper around mpirun. In the case where fine-
grained control over options is passed to mpirun, mpirun can be invoked directly, and it will be detected
automatically by Horovod, e.g.,

CUDA_VISIBLE_DEVICES=4,5,6,7 mpirun -1 -launcher=fork -hosts=localhost -np 4 \
dp train --mpi-log=workers input.json

this is sometimes necessary for an HPC environment.

Whether distributed workers are initiated can be observed in the “Summary of the training” section in the
log (world size > 1,and distributed).

[0] DEEPMD INFO ---Summary of the training--—-------———-—————————————————————
[0] DEEPMD INFO distributed

[0] DEEPMD INFO world size: 4

[0] DEEPMD INFO my rank: 0

[0] DEEPMD INFO node list: ['exp-13-57']

[0] DEEPMD INFO running on: exp-13-57

[0] DEEPMD INFO computing device: gpu:0

[0] DEEPMD INFO CUDA_VISIBLE_DEVICES: 0,1,2,3

[0] DEEPMD INFO Count of visible GPU: 4

[0] DEEPMD INFO num_intra_threads: 0

[0] DEEPMD INFO num_inter_threads: 0

[0] DEEPMD INFO — —==— === oo o

5.4. Parallel training 79

https://horovod.readthedocs.io/en/stable/mpi_include.html

DeePMD-kit

5.4.4 Logging

What’s more, 2 command-line arguments are defined to control the logging behavior when performing par-
allel training with MPI.

optional arguments:

-1 LOG_PATH, --log-path LOG_PATH
set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m {master,collect,workers}, --mpi-log {master,collect,workers}
Set the manner of logging when running with MPI.
'master' logs only on main process, 'collect'
broadcasts logs from workers to master and 'workers'
means each process will output its own log (default:
master)

5.5 Multi-task training

Training on multiple data sets (each data set contains several data systems) can be performed in multi-task
mode, with one common descriptor and multiple specific fitting nets for each data set. One can simply switch
the following parameters in training input script to perform multi-task mode:

o fitting net —> fitting net_dict, each key of which can be one individual fitting net.

e training data, validation data —> data_dict, each key of which can be one individual data set con-
tains several data systems for corresponding fitting net, the keys must be consistent with those in fit-
ting net_dict.

¢ loss —> loss_dict, each key of which can be one individual loss setting for corresponding fitting net, the
keys must be consistent with those in fitting net dict, if not set, the corresponding fitting net will use
the default loss.

o (Optional) fitting weight, each key of which can be a non-negative integer or float, deciding the chosen
probability for corresponding fitting net in training, if not set or invalid, the corresponding fitting net
will not be used.

The training procedure will automatically choose single-task or multi-task mode, based on the above param-
eters. Note that parameters of single-task mode and multi-task mode can not be mixed.

The supported descriptors for multi-task mode are listed:
e se a(se e2 a)
e se r(se e2r)
e se at (se_e3)
e se atten
e hybrid
The supported fitting nets for multi-task mode are listed:
e ener
e dipole
e polar

The output of dp freeze command in multi-task mode can be seen in freeze command.

80 Chapter 5. Training

DeePMD-kit

5.6 TensorBoard Usage

TensorBoard provides the visualization and tooling needed for machine learning experimentation. Full in-
structions for TensorBoard can be found here.

5.6.1 Highlighted features

DeePMD-kit can now use most of the interesting features enabled by TensorBoard!
¢ Tracking and visualizing metrics, such as 12 loss, 12 energy loss and 12_force loss
¢ Visualizing the model graph (ops and layers)
» Viewing histograms of weights, biases, or other tensors as they change over time.

¢ Viewing summaries of trainable variables

5.6.2 How to use Tensorboard with DeePMD-kit

Before running TensorBoard, make sure you have generated summary data in a log directory by modifying
the input script, setting tensorboard to true in the training subsection will enable the TensorBoard data
analysis. eg. water_se_a.json.

"training" : {
"systems": [*../data/"],
"set_prefix": "set",
"stop_batch": 1000000,
"batch_size": 1,
"seed": 1,
"_comment": " display and restart",
"_comment": " frequencies counted in batch",
"disp_file": "lcurve.out",
"disp_freq": 100,
"numb_test": 10,
"save_freq": 1000,
"save_ckpt": "model.ckpt",

"disp_training":true,
"time_training":true,
"tensorboard": true,
"tensorboard_log_dir":"log",
"tensorboard_freq": 1000,

"profiling": false,
"profiling_file":"timeline.json",
" _comment": "that's all"

Once you have event files, run TensorBoard and provide the log directory. This should print that Tensor-
Board has started. Next, connect to http://tensorboard _server ip:6006.

TensorBoard requires a logdir to read logs from. For info on configuring TensorBoard, run TensorBoard
—help. One can easily change the log name with “tensorboard log_dir” and the sampling frequency with
“tensorboard_freq”.

5.6. TensorBoard Usage 81

https://tensorflow.google.cn/tensorboard

DeePMD-kit

tensorboard --logdir path/to/logs

5.6.3 Examples

Tracking and visualizing loss metrics(red:train, blue:test)

12_loss

2.5

0 50k 100k

12_ener_loss

0.014

0.012

0.01

8e-3

6e-3

4e-3

2e-3

150k

200k

250k

300k

350k

400k 450k

0 50k 100k

150k

200k

250K

300k

350k

400k 450k

82

Chapter 5. Training

DeePMD-kit

12_force_loss

0.08
0.07
0.06
0.05
0.04

0.03
0.02

0.01

100k

400k

12_pref_f...
Mul19

concat_1
axis O—pC_

mullo-18]
strided_slic..

450k

Shape[0-5]

000w strid

“

| Reshape_9

150k 200k 250K 300k 350k
Visualizing DeePMD-kit model graph
o o
g gradients_1 » gradients_1
gradients gradients
layer_1_type_0 train_step. train_step
- save save
o 1
o nt
% gradients_1 gradients_1
gradients gradients
layer_0.type.0 § i s1ep T step
- save save
\ 1 more 1 more
Reshape.. gradients_1 Reshape. gradients_1
shape gradients shape gradients
¥ §
mulo1s] Slice_2 gadene mulprs] S
i - o R
muio1s) - —(Reshape_13 ! const2
+
o_desofi... gradients.1
qnd\em; Reshapel2...
~
“~concat
axis O—pC_ .
- -
mulfo-18] i gradients 1 mulfo-1g] gradients 1 mull0-18] i
svidedsic.. - _ReShAPE_TT 7 (i e sie.. - _REShape_8 [T el e sie. -\ REShape_12
g S oo
e ~ o
gradients_1 = gradients_1
filter_type_1 gradients filter_type_0 gradients
ain_step wanstep
save save
Reshape... Reshape_7
shape 0>+ gradients shape O-—»C__>—» " gradients.
H
mull0-18] Slice_1 gradients mul[0-18] —-{
mulo-18] ——G
Reshape_3 o.rméd
sl —.(Reshape_1) mul018] -(Reshape_2)—. DescrptSeh ahape DescrptSeh strided_slc Reshape_4 Descrptser |
“fmdzbox Lok . tndeo thox Reshape_5

5.6. TensorBoard Usage

83

DeePMD-kit

Viewing histograms of weights, biases, or other tensors as they change over time

filter_type_0/result

PREVIOUS PAGE

filter_type_1

PREVIOUS PAGE

filter_type_1/bias_1_0_1/histogram

-

\
A
L=

. [N

P (i
N

o

-0.5

iy

(@4

VR
)

o
n
o

40000

80000

120000
160000
200000
240000
280000

40000

80000

120000
160000
200000
240000
280000

Page2 of2
NEXT PAGE
NEXT PAGE
filter_type_1/bias_1_1_1/histogram (train.

.
7y

o -

\ \ N &
S S - 40000
= 7A=Y /
A A &
] E A 160000
~"V W N 200000
B— V E //\/ 240000
==/ S .‘ —— 280000
15 05 05 15 25
ra
Ld
filter_type_1/bias_3_0_1/histogram (train.
A

Ao
= s -

S\

2z A

filter_type_1/bias_2_0_1/histogram train.

¥

A

%ks

= 80000
%\i = 120000

—3 160000
Z\/—= 200000
7= — 200000
8- 7= — 280000

1.0 2.0 3.0

filter_type_1/bias_3_1_1/histogram train.

gé’
= e
/%/A\/é\%é%— 80000

84

Chapter 5. Training

DeePMD-kit

filter_type_ O 13
PREVIOUS PAGE NEXT PAGE
filter_type_0/bias_1_0_1/histogram [train. filter_type_0/bias_1_1_1/histogram (train| filter_type_0/bias_2_0_1/histogram train,
I [b [[[[] % } } { i { {
1.5 | 154 2 1
| |]
0.5 | 05 _
i i [
0.5 - 05 4—— 4]
1.5 15 B | | | | | | |
! N S S S -
0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k

T
0 50k 100k 150k 200k 250k 300k

ra
La

ra
La

filter_type_0/bias_2_1_1/histogram (train. filter_type_0/bias_3_0_1/histogram (train| filter_type_0/bias_3_1_1/histogram [train,
[[I I I [I I [I [I | I
O 5 o D I) e A o O O O S
| 15 15
i 05— 051
0 05— 05 4 -
-1 1.5 i 15
R | | [| | | [|
i N S S S o ! o
0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k
r1 ra r1
L4 La La
filter_type_0/matrix_1_0_1/histogram [train. filter_type_0/matrix_1_1_1/histogram (train. filter_type_0/matrix_2_0_1/histogram train,
R 08
04 - | 15
i 04 05
ol L —
| . 1 05
0.4 1 e
o I —— o 25
0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300l 0 50k 100k 150k 200k 250k 300k
r ra ra
[] Ld Ld

5.6. TensorBoard Usage 85

DeePMD-kit

Viewing summaries of trainable variables

I filter_type_0 “
PREVIOUS PAGE NEXT PAGE
bias_1_0_1/max_1 bias_1_0_1/mean_1 bias_1_0_1/min_1
tag: filter_type_0/bias_1_0_1/max_1 tag: filter_type_0/bias_1_0_1/mean_1 tag: filter_type_0/bias_1_0_1/min_1
B -1.25
1.3
0.108
23 -1.35
0.104 14
28 0.1 1.45
5 -1.5
2.3 0.096
0 40K 80k 120K 160k 0 40k 80k 120k 160k 0 40k 80k 120k 160k
r E E] i runtodownload w cSV JSON © 1 E E] ! wntodownload v csvJUSON L] = El i runto download w SV JSON
bias_1_0_1/stddev_1 bias_1_1_1/max_1 bias_1_1_1/mean_1
tag: filter_type_0/bias_1_0_1/stddev_1 tag: filter_type_0/bias_1_1_1/max_1 tag: filter_type_0/bias_1_1_1/mean_1
081 0.0865
222
0.0855
0.79
2.8 0.0845
7 0.0835
0.77 214
0.0825
076 21 0.0815
0 40k 80k 120k 160k 0 40k 80k 120k 160k 0 40k 80k 120k 160k
nEED S wntodownload v csvuson [= [2] ¥ wntodownload v csvuson [= [1] ¥ runto download + CSV JSON
bias_1_1_1/min_1 bias_1_1_1/stddev_1 bias_2_0_1/max_1
tag: filter_type_0/bias_1_1_1/min_1 tag: filter_type_0/bias_1_1_1/stddev_1 tag: filter_type_0/bias_2_0_1/max_1
162 0.825
242
0.815
1.64 2.38
0.805 .
1.66 2.34
0.795 23

5.6.4 Attention

Allowing the tensorboard analysis will takes extra execution time.(eg, 15% increasing @Nvidia GTX 1080Ti
double precision with default water sample)

TensorBoard can be used in Google Chrome or Firefox. Other browsers might work, but there may be bugs
or performance issues.

5.7 Known limitations of using GPUs

If you use DeePMD-kit in a GPU environment, the acceptable value range of some variables is additionally
restricted compared to the CPU environment due to the software’s GPU implementations:

1. The number of atom types of a given system must be less than 128.

2. The maximum distance between an atom and its neighbors must be less than 128. It can be controlled
by setting the rcut value of training parameters.

86 Chapter 5. Training

DeePMD-kit

3. Theoretically, the maximum number of atoms that a single GPU can accept is about 10,000,000. How-
ever, this value is limited by the GPU memory size currently, usually within 1000,000 atoms even in the
model compression mode.

4. The total sel value of training parameters(in model/descriptor section) must be less than 4096.

5. The size of the last layer of the embedding net must be less than 1024 during the model compression
process.

5.8 Finetune the pretrained model

Pretraining-and-finetuning is a widely used approach in other fields such as Computer Vision (CV) or Nat-
ural Language Processing (NLP) to vastly reduce the training cost, while it’s not trivial in potential models.
Compositions and configurations of data samples or even computational parameters in upstream software
(such as VASP) may be different between the pretrained and target datasets, leading to energy shifts or other
diversities of training data.

Recently the emerging of methods such as DPA-1 has brought us to a new stage where we can perform similar
pretraining-finetuning approaches. DPA-1 can hopefully learn the common knowledge in the pretrained
dataset (especially the force information) and thus reduce the computational cost in downstream training
tasks. If you have a pretrained model pretrained.pb (here we support models using se_atten descriptor
and ener fitting net) on a large dataset (for example, OC2M in DPA-1 paper), a finetuning strategy can be
performed by simply running;:

$ dp train input.json --finetune pretrained.pb

The command above will change the energy bias in the last layer of the fitting net in pretrained.pb, ac-
cording to the training dataset in input.json.

Warning: Note that the elements in the training dataset must be contained in the pretrained dataset.

The finetune procedure will inherit the model structures in pretrained.pb, and thus it will ignore the model
parameters in input. json, such as descriptor, fitting net, type embedding and type map. However, you
can still set the trainable parameters in each part of input. json to control the training procedure.

To obtain a more simplified script, for example, you can change the model part in input. json to perform
finetuning;:

"model": {
"type_map" : [uon s "H"] s
"type_embedding": {"trainable": true},
"descriptor" : {3},

"fitting_net" : {}

5.8. Finetune the pretrained model 87

https://arxiv.org/abs/2208.08236
https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md
https://arxiv.org/abs/2208.08236

DeePMD-kit

88

Chapter 5. Training

CHAPTER
SIX

FREEZE AND COMPRESS

6.1 Freeze a model

The trained neural network is extracted from a checkpoint and dumped into a protobuf(.pb) file. This process
is called “freezing” a model. The idea and part of our code are from Morgan. To freeze a model, typically
one does

$ dp freeze -o graph.pb

in the folder where the model is trained. The output model is called graph . pb.

In multi-task mode, this process will output several models, each of which contains the common descriptor
and one of the user-defined fitting nets in fitting net_dict, let’s name it fitting_key, together frozen in
graph_{fitting_key}.pb. Those frozen models are exactly the same as single-task output with fitting net
fitting_key.

6.2 Compress a model

Once the frozen model is obtained from DeePMD-kit, we can get the neural network structure and its param-
eters (weights, biases, etc.) from the trained model, and compress it in the following way:

’dp compress —-i graph.pb -o graph-compress.pb

where -1i gives the original frozen model, -o gives the compressed model. Several other command line options
can be passed to dp compress, which can be checked with

’$ dp compress --help

An explanation will be provided

usage: dp compress [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m {master,collect,workers}] [-i INPUT] [-o OUTPUT]
[-s STEP] [-e EXTRAPOLATE] [-f FREQUENCY]
[-c CHECKPOINT_FOLDER]

optional arguments:
-h, --help show this help message and exit
-v {DEBUG, 3, INFO,2,WARNING, 1,ERROR,0}, --log-level {DEBUG,3,INFO0,2,WARNING,1,ERROR,O}
set verbosity level by string or number, O=ERROR,
1=WARNING, 2=INFO and 3=DEBUG (default: INFO)
-1 LOG_PATH, --log-path LOG_PATH

(continues on next page)

89

https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

DeePMD-kit

(continued from previous page)

set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m {master,collect,workers}, --mpi-log {master,collect,workers}

Set the manner of logging when running with MPI.
'master' logs only on main process, 'collect'
broadcasts logs from workers to master and 'workers'
means each process will output its own log (default:
master)

-i INPUT, --input INPUT
The original frozen model, which will be compressed by
the code (default: frozen_model.pb)

-o OUTPUT, --output OUTPUT
The compressed model (default:
frozen_model_compressed.pb)

-s STEP, --step STEP Model compression uses fifth-order polynomials to
interpolate the embedding-net. It introduces two
tables with different step size to store the
parameters of the polynomials. The first table covers
the range of the training data, while the second table
is an extrapolation of the training data. The domain
of each table is uniformly divided by a given step
size. And the step(parameter) denotes the step size of
the first table and the second table will use 10 *
step as it's step size to save the memory. Usually the
value ranges from 0.1 to 0.001. Smaller step means
higher accuracy and bigger model size (default: 0.01)

—-e EXTRAPOLATE, --extrapolate EXTRAPOLATE
The domain range of the first table is automatically
detected by the code: [d_low, d_up]. While the second
table ranges from the first table's upper
boundary(d_up) to the extrapolate(parameter) * d_up:
[d_up, extrapolate * d_up] (default: 5)

-f FREQUENCY, --frequency FREQUENCY
The frequency of tabulation overflow check(Whether the
input environment matrix overflow the first or second
table range). By default do not check the overflow
(default: -1)

—-c CHECKPOINT_FOLDER, --checkpoint-folder CHECKPOINT_FOLDER
path to checkpoint folder (default: .)

-t TRAINING_SCRIPT, --training-script TRAINING_SCRIPT
The training script of the input frozen model
(default: None)

Parameter explanation

Model compression, which includes tabulating the embedding net. The table is composed of fifth-order poly-
nomial coefficients and is assembled from two sub-tables. For model descriptor with se_e2_a type, the first
sub-table takes the stride(parameter) as its uniform stride, while the second sub-table takes 10 * stride as its
uniform stride; For model descriptor with se_e3 type, the first sub-table takes 10 * stride as it’s uniform stride,
while the second sub-table takes 100 * stride as it’s uniform stride. The range of the first table is automati-
cally detected by DeePMD-kit, while the second table ranges from the first table’s upper boundary(upper) to
the extrapolate(parameter) * upper. Finally, we added a check frequency parameter. It indicates how often
the program checks for overflow(if the input environment matrix overflows the first or second table range)
during the MD inference.

Justification of model compression

90 Chapter 6. Freeze and Compress

DeePMD-kit

Model compression, with little loss of accuracy, can greatly speed up MD inference time. According to differ-
ent simulation systems and training parameters, the speedup can reach more than 10 times at both CPU and
GPU devices. At the same time, model compression can greatly change memory usage, reducing as much as
20 times under the same hardware conditions.

Acceptable original model version

The model compression interface requires the version of DeePMD-kit used in the original model gen-
eration should be 2.0.0-alpha.0 or above. If one has a frozen 1.2 or 1.3 model, one can upgrade it
through the dp convert-from interface. (eg: dp convert-from 1.2/1.3 -i old_frozen_model.pb -o
new_frozen_model.pb)

Acceptable descriptor type

Descriptors with se_e2_a, se_e3, and se_e2_r types are supported by the model compression feature. Hybrid
mixed with the above descriptors is also supported.

Available activation functions for descriptor:
¢ tanh
o gelu
e relu
e relu6
e softplus

e sigmoid

6.2. Compress a model 91

DeePMD-kit

92

Chapter 6. Freeze and Compress

CHAPTER
SEVEN

TEST

7.1 Test a model

The frozen model can be used in many ways. The most straightforward test can be performed using dp test.
A typical usage of dp test is

’dp test -m graph.pb -s /path/to/system -n 30

where -m gives the tested model, -s the path to the tested system and -n the number of tested frames. Several
other command line options can be passed to dp test, which can be checked with

’$ dp test --help

An explanation will be provided

usage: dp test [-h] [-m MODEL] [-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST]
[-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE]

optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Frozen model file to import
-s SYSTEM, --system SYSTEM
The system dir
-S SET_PREFIX, --set-prefix SET_PREFIX
The set prefix
-n NUMB_TEST, --numb-test NUMB_TEST
The number of data for test
-r RAND_SEED, --rand-seed RAND_SEED
The random seed
--shuffle-test Shuffle test data
—-d DETAIL_FILE, --detail-file DETAIL_FILE
The prefix to files where details of energy, force and virial accuracy/
—accuracy per atom will be written
-a, —-atomic Test the accuracy of atomic label, i.e. energy / temsor (dipole, polar)

93

DeePMD-kit

7.2 Calculate Model Deviation

One can also use a subcommand to calculate the deviation of predicted forces or virials for a bunch of models
in the following way:

’dp model-devi -m graph.000.pb graph.001.pb graph.002.pb graph.003.pb -s ./data -o model_devi.out

where -m specifies graph files to be calculated, -s gives the data to be evaluated, -o the file to which model
deviation results is dumped. Here is more information on this sub-command:

usage: dp model-devi [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}]
[-1 LOG_PATH] [-m MODELS [MODELS ...]] [-s SYSTEM]
[-S SET_PREFIX] [-o OUTPUT] [-f FREQUENCY] [-i ITEMS]

optional arguments:

-h, --help show this help message and exit

-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}, --log-level {DEBUG,3,INF0,2,WARNING,1,ERROR,O}
set verbosity level by string or number, O=ERROR,
1=WARNING, 2=INFO and 3=DEBUG (default: INFO)

-1 LOG_PATH, --log-path LOG_PATH
set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m MODELS [MODELS ...], --models MODELS [MODELS ...]
Frozen models file to import (default:
['graph.000.pb', 'graph.001.pb', 'graph.002.pb',
'graph.003.pb'])

-s SYSTEM, --system SYSTEM
The system directory, not support recursive detection.
(default: .)

-8 SET_PREFIX, --set-prefix SET_PREFIX
The set prefix (default: set)

-o OUTPUT, --output OUTPUT
The output file for results of model deviation
(default: model_devi.out)

-f FREQUENCY, --frequency FREQUENCY
The trajectory frequency of the system (default: 1)

For more details concerning the definition of model deviation and its application, please refer to Yuzhi Zhang,
Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent
learning platform for the generation of reliable deep learning based potential energy models, Computer
Physics Communications, 2020, 253, 107206.

94 Chapter 7. Test

https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107206

CHAPTER

EIGHT

INFERENCE

Note that the model for inference is required to be compatible with the DeePMD-kit package. See Model
compatibility for details.

8.1 Python interface

One may use the python interface of DeePMD-kit for model inference, an example is given as follows

from deepmd.infer import DeepPot

import numpy as np

dp = DeepPot('graph.pb')

coord = mnp.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])

atype = [1,0,1]

e, £, v = dp.eval(coord, cell, atype)

where e, £ and v are predicted energy, force and virial of the system, respectively.

Furthermore, one can use the python interface to calculate model deviation.

from deepmd.infer import calc_model_devi
from deepmd.infer import DeepPot as DP
import numpy as np

coord = mnp.array([[1,0,0], [0,0,1.5], [1,0,3]]1).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])

atype = [1,0,1]

graphs = [DP("graph.000.pb"), DP("graph.001.pb")]

model_devi = calc_model_devi(coord, cell, atype, graphs)

Note that if the model inference or model deviation is performed cyclically, one should avoid calling the
same model multiple times. Otherwise, tensorFlow will never release the memory and this may lead to an
out-of-memory (OOM) error.

95

../troubleshooting/model-compatability.html
../troubleshooting/model-compatability.html

DeePMD-kit

8.2 C/C++ interface

8.2.1 C++ interface

The C++ interface of DeePMD-Kkit is also available for the model interface, which is considered faster than
the Python interface. An example infer_water.cpp is given below:

#include "deepmd/DeepPot.h"

int main(){
deepmd: :DeepPot dp ("graph.pb");
std: :vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
std::vector<int > atype = {1, 0, 1};
double e;
std: :vector<double > f, v;
dp.compute (e, f, v, coord, atype, cell);

where e, f and v are predicted energy, force and virial of the system, respectively. See deepmd : : DeepPot for
details.

You can compile infer_water.cpp using gcc:

gcc infer_water.cpp -L $deepmd_root/lib -L $tensorflow_root/1lib -I $deepmd_root/include -W1l,--no-
—as-needed -ldeepmd_cc -lstdc++ -ltensorflow_cc -W1l,-rpath=$deepmd_root/lib -W1l,-rpath=
—$tensorflow_root/lib -o infer_water

and then run the program:

./infer_water

8.2.2 C interface

Although C is harder to write, the C library will not be affected by different versions of C++ compilers.

An example infer_water.c is given below:

#include <stdio.h>
#include <stdlib.h>
#include "deepmd/c_api.h"

int main(){
const char* model = "graph.pb";
double coord[] = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
double cell[] = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
int atypell = {1, 0, 1};
// init C pointers with given memory
double* e = malloc(sizeof (*xe));
double* f = malloc(sizeof (*f) * 9); // natoms * 3
double* v = malloc(sizeof (*v) * 9);
double* ae = malloc(sizeof (*xae) * 9); // natoms
double* av = malloc(sizeof (xav) * 27); // natoms * 9
// DP model
DP_DeepPot* dp = DP_NewDeepPot (model) ;

(continues on next page)

96 Chapter 8. Inference

DeePMD-kit

(continued from previous page)

DP_DeepPotCompute (dp, 3, coord, atype, cell, e, f, v, ae, av);

// print results

printf ("energy: %f\n", *e);

for (int ii = 0; ii < 9; ++ii)
printf("forcel[%d]: %f\n", ii, f£[iil);

for (int ii = 0; ii < 9; ++ii)
printf("forcel}d]: %f\n", ii, v[iil);

// free memory

free(e);

free(f);

free(v);

free(ae);

free(av);

free(dp);

where e, f and v are predicted energy, force and virial of the system, respectively. ae and av are atomic
energy and atomic virials, respectively. See DP_DeepPotCompute () for details.

You can compile infer_water. c using gcc:

gcc infer_water.c -L $deepmd_root/lib -L $tensorflow_root/lib -I $deepmd_root/include -Wl,--no-as-
—needed -ldeepmd_c -Wl,-rpath=$deepmd_root/1lib -W1l,-rpath=$tensorflow_root/lib -o infer_water

and then run the program:

./infer_water

8.2.3 Header-only C++ library interface (recommended)

The header-only C++ library is built based on the C library. Thus, it has the same ABI compatibility as the
C library but provides a powerful C++ interface. To use it, include deepmd/deepmd. hpp.

#include "deepmd/deepmd.hpp"

int main(){
deepmd: :hpp: :DeepPot dp ("graph.pb");
std: :vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.3};
std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
std::vector<int > atype = {1, 0, 1};
double e;
std: :vector<double > f, v;
dp.compute (e, f, v, coord, atype, cell);

Note that the feature of the header-only C++ library is still limited compared to the original C++ library.
See deepmd: :hpp: :DeepPot for details.

You can compile infer_water_hpp.cpp using gcc:

gcc infer_water_hpp.hpp -L $deepmd_root/1lib -L $tensorflow_root/lib -I $deepmd_root/include -W1,--
—no-as-needed -ldeepmd_c -W1l,-rpath=$deepmd_root/lib -W1l,-rpath=$tensorflow_root/lib -o infer_
—water_hpp

and then run the program:

8.2. C/C++ interface 97

DeePMD-kit

./infer_water_hpp

In some cases, one may want to pass the custom neighbor list instead of the native neighbor list. The above
code can be revised as follows:

// neighbor list
std: :vector<std::vector<int >> nlist_vec = {
{1, 2},
{0, 2},
{0, 1%}
};
std::vector<int> ilist(3), numneigh(3);
std: :vector<int*> firstneigh(3);
InputNlist nlist(3, &ilist[0], &numneigh([0], &firstneighl[0]);
convert_nlist(nlist, nlist_vec);
dp.compute (e, f, v, coord, atype, cell, 0, nlist, 0);

Here, nlist_vec means the neighbors of atom 0 are atom 1 and atom 2, the neighbors of atom 1 are atom 0
and atom 2, and the neighbors of atom 2 are atom 0 and atom 1.

98 Chapter 8. Inference

CHAPTER
NINE

COMMAND LINE INTERFACE

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dy-
namics

usage: dp [-h] [--version]
{config,transfer,train,freeze,test,compress,doc-train-input,model-devi,convert-from,
—neighbor-stat,train-nvnmd}

9.1 Named Arguments

--version show program’s version number and exit

9.2 Valid subcommands

command Possible choices: config, transfer, train, freeze, test, compress, doc-train-
input, model-devi, convert-from, neighbor-stat, train-nvnmd

9.3 Sub-commands

9.3.1 config

fast configuration of parameter file for smooth model

dp config [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-o OUTPUT]

99

DeePMD-kit

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-0, --output the output json file
Default: “input.json”

9.3.2 transfer

pass parameters to another model

dp transfer [-h] [-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-r RAW_MODEL] [-0 OLD_MODEL] [-o OUTPUT]

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-1, --raw-model the model receiving parameters
Default: “raw_frozen_model.pb”

-0, --old-model the model providing parameters
Default: “old_frozen model.pb”

-0, --output the model after passing parameters

Default: “frozen_model.pb”

9.3.3 train

train a model

dp train [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m {master,collect,workers}]
[-i INIT_MODEL | -r RESTART | -f INIT_FRZ_MODEL | -t FINETUNE]
[-o OUTPUT] [--skip-neighbor-stat]
INPUT

100 Chapter 9. Command line interface

DeePMD-kit

Positional Arguments

INPUT the input parameter file in json or yaml format

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-m, --mpi-log Possible choices: master, collect, workers

Set the manner of logging when running with MPI. ‘master’ logs only on
main process, ‘collect’ broadcasts logs from workers to master and ‘work-
ers’ means each process will output its own log

Default: “master”
-i, --init-model Initialize the model by the provided checkpoint.
-r, —-restart Restart the training from the provided checkpoint.
-f, --init-frz-model Initialize the training from the frozen model.
-t, --finetune Finetune the frozen pretrained model.
-0, --output The output file of the parameters used in training.
Default: “out.json”

--skip-neighbor-stat Skip calculating neighbor statistics. Sel checking, automatic sel, and
model compression will be disabled.

Default: False

examples: dp train input.json dp train input.json -restart model.ckpt dp train input.json —init-model
model.ckpt

9.3.4 freeze

freeze the model

dp freeze [-h] [-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-c CHECKPOINT_FOLDER] [-o OUTPUT] [-n NODE_NAMES] [-w NVNMD_WEIGHT]

9.3. Sub-commands 101

DeePMD-kit

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-¢, --checkpoint-folder path to checkpoint folder
Default: «.”
-0, --output name of graph, will output to the checkpoint folder
Default: “frozen_model.pb”
-n, --node-names the frozen nodes, if not set, determined from the model type
-w, -nvnmd-weight the name of weight file (.npy), if set, save the model’s weight into the file

examples: dp freeze dp freeze -o graph.pb

9.3.5 test

test the model

dp test [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH] [-m MODEL]
[-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST] [-r RAND_SEED]
[--shuffle-test] [-d DETAIL_FILE] [-a]

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-m, --model Frozen model file to import

Default: “frozen_model.pb”

-s, —-system The system dir. Recursively detect systems in this directory
Default: «.”
-S, --set-prefix The set prefix

Default: “set”
-n, --numb-test The number of data for test
Default: 100

-1, --rand-seed The random seed

102 Chapter 9. Command line interface

DeePMD-kit

--shuffle-test

-d, --detail-file

-a, --atomic

Shuflle test data
Default: False

The prefix to files where details of energy, force and virial accu-
racy/accuracy per atom will be written

Test the accuracy of atomic label, i.e. energy / tensor (dipole, polar)

Default: False

examples: dp test -m graph.pb -s /path/to/system -n 30

9.3.6 compress

compress a model

dp compress [-h] [-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m {master,collect,workers}] [-i INPUT] [-o OUTPUT] [-s STEP]
[-e EXTRAPOLATE] [-f FREQUENCY] [-c CHECKPOINT_FOLDER]
[-t TRAINING_SCRIPT]

Named Arguments

-v, --log-level

-1, --log-path

-m, --mpi-log

-i, —-input
-0, --output
-s, --step

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

Possible choices: master, collect, workers

Set the manner of logging when running with MPI. ‘master’ logs only on
main process, ‘collect’ broadcasts logs from workers to master and ‘work-
ers’ means each process will output its own log

Default: “master”

The original frozen model, which will be compressed by the code
Default: “frozen_model.pb”

The compressed model

Default: “frozen_model compressed.pb”

Model compression uses fifth-order polynomials to interpolate the
embedding-net. It introduces two tables with different step size to store
the parameters of the polynomials. The first table covers the range of the
training data, while the second table is an extrapolation of the training
data. The domain of each table is uniformly divided by a given step size.
And the step(parameter) denotes the step size of the first table and the sec-
ond table will use 10 * step as it’s step size to save the memory. Usually the
value ranges from 0.1 to 0.001. Smaller step means higher accuracy and
bigger model size

Default: 0.01

9.3. Sub-commands

103

DeePMD-kit

-e, ——extrapolate The domain range of the first table is automatically detected by the code:
[d_low, d_up]. While the second table ranges from the first table’s upper
boundary(d_up) to the extrapolate(parameter) * d_up: [d_up, extrapolate
*d up]

Default: 5

-f, --frequency The frequency of tabulation overflow check(Whether the input environ-
ment matrix overflow the first or second table range). By default do not
check the overflow

Default: -1
-¢, --checkpoint-folder path to checkpoint folder
Default: “model-compression”
-t, --training-script The training script of the input frozen model

examples: dp compress dp compress -i graph.pb -o compressed.pb

9.3.7 doc-train-input

print the documentation (in rst format) of input training parameters.

dp doc-train-input [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[--out-type OUT_TYPE]

Named Arguments

-v, —-log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

--out-type The output type
Default: “rst”

9.3.8 model-devi

calculate model deviation

dp model-devi [-h] [-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m MODELS [MODELS ...]1 [-s SYSTEM] [-S SET_PREFIX] [-o OUTPUT]
[-f FREQUENCY]

104 Chapter 9. Command line interface

DeePMD-kit

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-m, --models Frozen models file to import

Default: [‘graph.000.pb’, ‘graph.001.pb’, ‘graph.002.pb’, ‘graph.003.pb’]

-s, --system The system directory. Recursively detect systems in this directory.
Default: «.”
-S, --set-prefix The set prefix

Default: “set”

-0, --output The output file for results of model deviation
Default: “model_devi.out”

-f, --frequency The trajectory frequency of the system
Default: 1

examples: dp model-devi -m graph.000.pb graph.001.pb graph.002.pb graph.003.pb -s ./data -o
model_devi.out

9.3.9 convert-from

convert lower model version to supported version

dp convert-from [-h] [-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-i INPUT_MODEL] [-o OUTPUT_MODEL]
{0.12,1.0,1.1,1.2,1.3,2.0,pbtxt}

Positional Arguments

FROM Possible choices: 0.12, 1.0, 1.1, 1.2, 1.3, 2.0, pbtxt

The original model compatibility

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

9.3. Sub-commands 105

DeePMD-kit

-i, —-input-model the input model

Default: “frozen_model.pb”
-0, —-output-model the output model

Default: “convert_out.pb”

examples: dp convert-from 1.0 -i graph.pb -o graph_new.pb

9.3.10 neighbor-stat

Calculate neighbor statistics

dp neighbor-stat [-h] [-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-s SYSTEM] -r RCUT -t TYPE_MAP [TYPE_MAP ...] [--one-typel

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-s, —-system The system dir. Recursively detect systems in this directory
Default: «.”

-1, --rcut cutoff radius

-t, --type-map type map

--one-type treat all types as a single type. Used with se atten descriptor.

Default: False

examples: dp neighbor-stat -s data -r 6.0 -t O H

9.3.11 train-nvhmd

train nvnmd model

dp train-nvnmd [-h] [-v {DEBUG,3,INF0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-s {s1,s2}]
INPUT

106 Chapter 9. Command line interface

DeePMD-kit

Positional Arguments

INPUT

Named Arguments

-v, --log-level

-1, --log-path

-s, --step

the input parameter file in json format

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

Possible choices: s1, s2
steps to train model of NVNMD: sl (train CNN), s2 (train QNN)
Default: “s1”

9.3. Sub-commands

107

DeePMD-kit

108 Chapter 9. Command line interface

CHAPTER

TEN

INTEGRATE WITH THIRD-PARTY PACKAGES

Note that the model for inference is required to be compatible with the DeePMD-kit package. See Model
compatibility for details.

10.1 Use deep potential with ASE

Deep potential can be set up as a calculator with ASE to obtain potential energies and forces.

from ase import Atoms
from deepmd.calculator import DP

water = Atoms('H20',
positions=[(0.7601, 1.9270, 1),
(1.9575, 1, 1),
(1., 1., 1)1,
cell=[100, 100, 1007,
calculator=DP(model="frozen_model.pb"))
print(water.get_potential_energy())
print (water.get_forces())

Optimization is also available:

from ase.optimize import BFGS
dyn = BFGS(water)
dyn.run(fmax=1e-6)

print (water.get_positions())

10.2 Run MD with LAMMPS

Running an MD simulation with LAMMPS is simpler. In the LAMMPS input file, one needs to specify the
pair style as follows

pair_style deepmd graph.pb
pair_coeff * ok

where graph.pb is the file name of the frozen model. It should be noted that LAMMPS counts atom types
starting from 1, therefore, all LAMMPS atom types will be firstly subtracted by 1, and then passed into the
DeePMD-kit engine to compute the interactions.

109

../troubleshooting/model-compatability.html
../troubleshooting/model-compatability.html

DeePMD-kit

10.3 LAMMPS commands

10.3.1 Enable DeePMD-kit plugin (plugin mode)

If you are using the plugin mode, enable DeePMD-kit package in LAMMPS with plugin command:

’plugin load libdeepmd_lmp.so

After LAMMPS version patch_24Mar2022, another way to load plugins is to set the environmental variable
LAMMPS_PLUGIN_PATH:

’LAMMPS_PLUGIN_PATH=$deepmd_root/lib/deepmd_lmp

where $deepmd_root is the directory to install C++ interface.

The built-in mode doesn’t need this step.

10.3.2 pair_style deepmd

The DeePMD-kit package provides the pair_style deepmd

pair_style deepmd models ... keyword value ...

e deepmd = style of this pair_style

» models = frozen model(s) to compute the interaction. If multiple models are provided, then only the
first model serves to provide energy and force prediction for each timestep of molecular dynamics, and
the model deviation will be computed among all models every out_freq timesteps.

¢ keyword = out _file or out_freq or fparam or atomic or relative or relative_v or aparam or ttm

Examples

pair_style deepmd graph.pb
pair_style deepmd graph.pb fparam 1.2
pair_style deepmd graph_O.pb graph_1.pb graph_2.pb out_file md.out out_freq 10 atomic relative 1.0

Description

Evaluate the interaction of the system by using Deep Potential or Deep Potential Smooth Edition. It is noticed
that deep potential is not a “pairwise” interaction, but a multi-body interaction.

This pair style takes the deep potential defined in a model file that usually has the .pb extension. The model
can be trained and frozen by package DeePMD-kit.

The model deviation evalulates the consistency of the force predictions from multiple models. By default,
only the maximal, minimal and average model deviations are output. If the key atomic is set, then the model
deviation of force prediction of each atom will be output.

By default, the model deviation is output in absolute value. If the keyword relative is set, then the relative
model deviation of the force will be output, including values output by the keyword atomic. The relative
model deviation of the force on atom ¢ is defined by

= |l)ﬂ
o fil

Ey

110 Chapter 10. Integrate with third-party packages

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.143001
https://dl.acm.org/doi/10.5555/3327345.3327356
https://github.com/deepmodeling/deepmd-kit

DeePMD-kit

where Dy, is the absolute model deviation of the force on atom ¢, f; is the norm of the force and / is provided as
the parameter of the keyword relative. If the keyword relative_v is set, then the relative model deviation
of the virial will be output instead of the absolute value, with the same definition of that of the force:

_ 1Dy,
i 1

If the keyword fparam is set, the given frame parameter(s) will be fed to the model. If the keyword aparam
is set, the given atomic parameter(s) will be fed to the model, where each atom is assumed to have the same

atomic parameter(s). If the keyword ttm is set, electronic temperatures from fix ttm command will be fed to
the model as the atomic parameters.

Restrictions

¢ The deepmd pair style is provided in the USER-DEEPMD package, which is compiled from the DeePMD-
kit, visit the DeePMD-kit website for more information.

10.3.3 Compute tensorial properties

The DeePMD-kit package provides the compute deeptensor/atom for computing atomic tensorial properties.

compute ID group-ID deeptensor/atom model_file

¢ ID: user-assigned name of the computation
e group-ID: ID of the group of atoms to compute
e deeptensor/atom: the style of this compute

e model file: the name of the binary model file.

Examples

’compute dipole all deeptensor/atom dipole.pb

The result of the compute can be dumped to trajectory file by

’dump 1 all custom 100 water.dump id type c_dipole[1] c_dipole[2] c_dipole[3]

Restrictions

e The deeptensor/atom compute is provided in the USER-DEEPMD package, which is compiled from
the DeePMD-Kkit, visit the DeePMD-kit website for more information.

10.3. LAMMPS commands 111

https://docs.lammps.org/fix_ttm.html
https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling/deepmd-kit

DeePMD-kit

10.3.4 Long-range interaction

The reciprocal space part of the long-range interaction can be calculated by LAMMPS command
kspace_style. To use it with DeePMD-kit, one writes

pair_style deepmd graph.pb
pair_coeff * *

kspace_style pppm 1.0e-5
kspace_modify gewald 0.45

Please notice that the DeePMD does nothing to the direct space part of the electrostatic interaction, because
this part is assumed to be fitted in the DeePMD model (the direct space cut-off is thus the cut-off of the
DeePMD model). The splitting parameter gewald is modified by the kspace_modify command.

10.3.5 Use of the centroid/stress/atom to get the full 3x3 “atomic-virial”

The DeePMD-kit allows also the computation of per-atom stress tensor defined as:

dem,

dr,,

dvatom = Z(rn — T

Where r,, is the atomic position of nth atom, v,, velocity of the atom and Céfj" the derivative of the atomic

energy.

In LAMMPS one can get the per-atom stress using the command centroid/stress/atom:

compute ID group-ID centroid/stress/atom NULL virial

see LAMMPS doc page for more details on the meaning of the keywords.

Examples

In order of computing the 9-component per-atom stress

compute stress all centroid/stress/atom NULL virial

Thus c_stress is an array with 9 components in the order xx,yy,zz,xy,xz,yz,yx,zx, 2y.

If you use this feature please cite D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, S. Baroni - arXiv preprint
arXiv:2108.10850, 2021

10.3.6 Computation of heat flux

Using a per-atom stress tensor one can, for example, compute the heat flux defined as:
J= Zenvn + Z(rm — rn)de—mvn

to compute the heat flux with LAMMPS:

compute ke_ID all ke/atom

compute pe_ID all pe/atom

compute stress_ID group-ID centroid/stress/atom NULL virial
compute flux_ ID all heat/flux ke_ID pe_ID stress_ID

112 Chapter 10. Integrate with third-party packages

https://github.com/deepmodeling/deepmd-kit
https://docs.lammps.org/compute_stress_atom.html#thompson2
https://arxiv.org/abs/2108.10850
https://arxiv.org/abs/2108.10850

DeePMD-kit

Examples

compute ke all ke/atom

compute pe all pe/atom

compute stress all centroid/stress/atom NULL virial
compute flux all heat/flux ke pe stress

c_flux is a global vector of length 6. The first three components are the x, y and z components of the full
heat flux vector. The others are the components of the so-called convective portion, see LAMMPS doc page
for more detailes.

If you use these features please cite D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, S. Baroni - arXiv preprint
arXiv:2108.10850, 2021

10.4 Run path-integral MD with i-Pl

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions of
atoms, while the DeePMD-kit provides a client named dp_ipi (or dp_ipi_low for low precision) that com-
putes the interactions (including energy, forces and virials). The server and client communicate via the Unix
domain socket or the Internet socket. Installation instructions for i-PI can be found here. The client can be
started by

i-pi input.xml &
dp_ipi water.json

It is noted that multiple instances of the client allow for computing, in parallel, the interactions of multiple
replicas of the path-integral MD.

water. json is the parameter file for the client dp_ipi, and an example is provided:

{
"verbose": false,
"use_unix": true,
"port": 31415,
"host": "localhost",
"graph_file": "graph.pb",
"coord_file": "conf.xyz",
"atom_type" : {
"ow": 0,
"HW1": 1,
"HW2" : 1
}
}

The option use_unix is set to true to activate the Unix domain socket, otherwise, the Internet socket is used.

The option port should be the same as that in input.xml:

<port>31415</port>

The option graph_file provides the file name of the frozen model.

The dp_ipi gets the atom names from an XY7Z file provided by coord_file (meanwhile ignores all coordi-
nates in it) and translates the names to atom types by rules provided by atom_type.

10.4. Run path-integral MD with i-PI 113

https://docs.lammps.org/compute_heat_flux.html
https://arxiv.org/abs/2108.10850
https://arxiv.org/abs/2108.10850
https://en.wikipedia.org/wiki/XYZ_file_format

DeePMD-kit

10.5 Running MD with GROMACS

10.5.1 DP/MM Simulation

This part gives a simple tutorial on how to run a DP/MM simulation for methane in water, which means using
DP for methane and TIP3P for water. All relevant files can be found in examples/methane.

Topology Preparation

Similar to QM/MM simulation, the internal interactions (including bond, angle, dihedrals, LJ, Columb) of the
region described by a neural network potential (NNP) have to be turned off. In GROMACS, bonded interac-
tions can be turned off by modifying [bonds], [angles], [dihedrals] and [pairs] sections. And

LJ and Columb interactions must be turned off by [exclusions] section.

For example, if one wants to simulate ethane in water, using DeepPotential for methane and TTP3P for water,
the topology of methane should be like the following (as presented in examples/methane/methane.itp):

[atomtypes 1]

;name btype mass charge ptype sigma epsilon
c3 c3 0.0 0.0 A 0.339771 0.451035
hc hc 0.0 0.0 A 0.260018 0.087027

[moleculetype]

;name nrexcl
methane 3

[atoms]

; nr type resnr residue atom cgnr charge mass
1 c3 1 MOL Ci 1 -0.1068 12.010
2 hc 1 MOL H1 2 0.0267 1.008
3 hc 1 MOL H2 3 0.0267 1.008
4 hc 1 MOL H3 4 0.0267 1.008
5 hc 1 MOL H4 5 0.0267 1.008

[bonds]

; i J func b0 kb

1 2 5
1 3 5
1 4 5
1 5 5

[exclusions]

; ai ajl aj2 aj3 ajé
1 2 3 4 5
2 1 3 4 5
3 1 2 4 5
4 1 2 3 5
5 1 2 3 4

For comparison, the original topology file generated by acpype will be:

; methane_GMX.itp created by acpype (v: 2021-02-05T22:15:50CET) on Wed Sep

[atomtypes 1]
;name bond_type mass charge ptype sigma epsilon

8 01:21:53 2021

Amb

(continues on next page)

114 Chapter 10. Integrate with third-party packages

DeePMD-kit

(continued from previous page)

c3 c3 0.00000 0.00000 A 3.39771e-01 4.51035e-01 ; 1.91 0.1078
hc hc 0.00000 0.00000 A 2.60018e-01 8.70272e-02 ; 1.46 0.0208

[moleculetype]

;name nrexcl

methane 3

[atoms]

; nr type resi res atom cgnr charge mass ; qtot bond_type
1 c3 1 MOL C1 1 -0.106800 12.01000 ; qtot -0.107
2 hc 1 MOL H1 2 0.026700 1.00800 ; gtot -0.080
3 hc 1 MOL H2 3 0.026700 1.00800 ; gtot -0.053
4 hc 1 MOL H3 4 0.026700 1.00800 ; gtot -0.027
5 hc 1 MOL H4 5 0.026700 1.00800 ; gtot 0.000

[bonds]

; ai aj funct «r k
1 2 1 1.0970e-01 3.1455e+05 ; Cl1 - H1
1 3 1 1.0970e-01 3.1455e+05 ; Cl1 - H2
1 4 1 1.0970e-01 3.1455e+05 ; Cl - H3
1 5 1 1.0970e-01 3.1455e+05 ; Cl - H4

[angles 1]

; ai aj ak funct theta cth
2 1 3 1 1.0758e+02 3.2635e+02 ; H1 - C1 - H2
2 1 4 1 1.0758e+02 3.2635e+02 ; H1 - C1 - H3
2 1 5 1 1.0758e+02 3.2635e+02 ; H1 - C1 - H4
3 1 4 1 1.0758e+02 3.2635e+02 ; H2 - C1 - H3
3 1 5 1 1.0758e+02 3.2635e+02 ; H2 - C1 - H4
4 1 5 1 1.0758e+02 3.2635e+02 ; H3 - C1 - H4

DeepMD Settings

Before running simulations, we need to tell GROMACS to use DeepPotential by setting the environment
variable GMX_DEEPMD_INPUT_JSON:

export GMX_DEEPMD_INPUT_JSON=input.json

Then, in your working directories, we have to write input . json file:

{
"graph_file": "/path/to/graph.pb",
"type_file": "type.raw",
"index_file": "index.raw",
"lambda": 1.0,
"pbc": false

}

Here is an explanation for these settings:
e graph_file: The graph file (with suffix .pb) generated by dp freeze command

e type_file: File to specify DP atom types (in space-separated format). Here, type . raw looks like

10000

10.5. Running MD with GROMACS 115

DeePMD-kit

e index_file: File containing indices of DP atoms (in space-separated format), which should be consis-
tent with the indices’ order in .gro file but starting from zero. Here, index.raw looks like

01234

¢ lambda: Optional, default 1.0. Used in alchemical calculations.
e pbc: Optional, default true. If true, the GROMACS periodic condition is passed to DeepMD.
Run Simulation

Finally, you can run GROMACS using gmx mdrun as usual.

10.5.2 All-atom DP Simulation

This part gives an example of how to simulate all atoms described by a DeepPotential with Gromacs, taking
water as an example. Instead of using [exclusions] to turn off the non-bonded energies, we can simply
do this by setting LJ parameters (i.e. epsilon and sigma) and partial charges to 0, as shown in examples/
water/gmx/water. top:

[atomtypes 1]

; name at.num mass charge ptype sigma epsilon
HW 1 1.008 0.0000 A 0.00000e+00 0.00000e+00
ow 8 16.00 0.0000 A 0.00000e+00 0.00000e+00

As mentioned in the above section, input.json and relevant files (index.raw, type.raw) should also
be created. Then, we can start the simulation under the NVT ensemble and plot the radial distribu-
tion function (RDF) by gmx rdf command. We can see that the RDF given by Gromacs+DP matches
perfectly with Lammps+DP, which further provides an evidence on the validity of our simulation.

NVT_500ps
A —— lammps+DP
351 i gromacs+DP
—— gromacs+TIP3P
3.0 A
2.5 A
< 2.0 1
[e]
I
O
>
1.5
\
\\ -
1.0 A - —— = =
0.5 A
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0
r (nm)

However, we still recommend you run an all-atom DP simulation using LAMMPS since it is more stable and
efficient.

116 Chapter 10. Integrate with third-party packages

DeePMD-kit

10.6 Interfaces out of DeePMD-kit

The codes of the following interfaces are not a part of the DeePMD-kit package and maintained by other
repositories. We list these interfaces here for user convenience.

10.6.1 dpdata

dpdata provides the predict method for System class:

import dpdata
dsys = dpdata.LabeledSystem('OUTCAR')
dp_sys = dsys.predict("frozen_model_compressed.pb")

By inferring with the DP model frozen_model_compressed.pb, dpdata will generate a new labeled system
dp_sys with inferred energies, forces, and virials.

10.6.2 OpenMM plugin for DeePMD-kit

An OpenMM plugin is provided from JingHuangLab/openmm_ deepmd plugin, written by the Huang Lab at
Westlake University.

10.6.3 AMBER interface to DeePMD-kit

An AMBER interface to DeePMD-kit is written by the [York Lab from Rutgers University. It is open-source
at GitLab RutgersLBSR/AmberDPRc. Details can be found in this paper.

10.6.4 DP-GEN

DP-GEN provides a workflow to generate accurate DP models by calling DeePMD-kit’s command line inter-
face (CLI) in the local or remote server. Details can be found in this paper.

10.6.5 MLatom

Mlatom provides an interface to the DeePMD-kit within MLatom’s workflow by calling DeePMD-kit’s CLI.
Details can be found in this paper.

10.6. Interfaces out of DeePMD-kit 117

https://github.com/deepmodeling/dpdata
https://github.com/openmm/openmm
https://github.com/JingHuangLab/openmm_deepmd_plugin
http://www.compbiophysics.org/
https://ambermd.org/
https://theory.rutgers.edu/
https://gitlab.com/RutgersLBSR/AmberDPRc/
https://doi.org/10.1021/acs.jctc.1c00201
https://github.com/deepmodeling/dpgen
https://doi.org/10.1016/j.cpc.2020.107206
http://mlatom.com/
https://doi.org/10.1007/s41061-021-00339-5

DeePMD-kit

118 Chapter 10. Integrate with third-party packages

CHAPTER
ELEVEN

USE NVNMD

11.1 Introduction

NVNMD stands for non-von Neumann molecular dynamics.

This is the training code we used to generate the results in our paper entitled “Accurate and Efficient Molec-
ular Dynamics based on Machine Learning and non von Neumann Architecture”, which has been accepted
by npj Computational Materials (DOT: 10.1038/s41524-022-00773-z).

Any user can follow two consecutive steps to run molecular dynamics (MD) on the proposed NVNMD com-
puter, which has been released online: (i) to train a machine learning (ML) model that can decently reproduce
the potential energy surface (PES); and (ii) to deploy the trained ML model on the proposed NVNMD com-
puter, then run MD there to obtain the atomistic trajectories.

11.2 Training

Our training procedure consists of not only continuous neural network (CNN) training but also quantized
neural network (QNN) training which uses the results of CNN as inputs. It is performed on CPU or GPU by
using the training codes we open-sourced online.

To train an ML model that can decently reproduce the PES, a training and testing data set should be prepared
first. This can be done by using either the state-of-the-art active learning tools or the outdated (i.e., less
efficient) brute-force density functional theory (DFT)-based ab-initio molecular dynamics (AIMD) sampling.

If you just want to simply test the training function, you can use the example in the $deepmd_source_dir/
examples/nvnmd directory. If you want to fully experience training and running MD functions, you can
download the complete example from the website.

Then, copy the data set to the working directory

mkdir -p $workspace
cd $workspace
mkdir -p data
cp -r $dataset data

where $dataset is the path to the data set and $workspace is the path to the working directory.

119

https://www.nature.com/articles/s41524-022-00773-z
https://github.com/LiuGroupHNU/nvnmd-example

DeePMD-kit

11.2.1 Input script

Create and go to the training directory.

mkdir train
cd train

Then copy the input script train_cnn. json and train_gnn. json to the directory train

cp -r $deepmd_source_dir/examples/nvnmd/train/train_cnn.json train_cnn.json
cp -r $deepmd_source_dir/examples/nvnmd/train/train_gnn. json train_gnn.json

The structure of the input script is as follows

{
"nvnmd" : {3},
"learning_rate" : {},
"loss" : {3},
"training": {}

}

nvhmd

The “nvnmd” section is defined as

{
"net_size":128,
"sel":[60, 60],
"rcut":6.0,
"rcut_smth":0.5
}

where items are defined as:

Iltem Mean Optional Value

net_size the size of nueral network 128

sel the number of neighbors integer list of lengths 1 to 4 are acceptable
rcut the cutoff radial (0, 8.0]

rcut_smth | the smooth cutoff parameter | (0, 8.0]

learning__rate

The “learning_rate” section is defined as

{
"type“ . l|eXp|l s
"start_lr": le-3,
"stop_lr": 3e-8,
"decay_steps": 5000
}

where items are defined as:

120

Chapter 11. Use NVNMD

DeePMD-kit

Item Mean Optional Value

type learning rate variant type exp

start_Ir the learning rate at the beginning of the training a positive real number
stop_Ir the desired learning rate at the end of the training a positive real number
decay_stops | the learning rate is decaying every {decay stops} training steps | a positive integer

loss

The “loss” section is defined as

{
"start_pref_e": 0.02,
"limit_pref_e": 2,
"start_pref_£f": 1000,
"limit_pref_£f": 1,
"start_pref_v": O,
"limit_pref_v": O

}

where items are defined as:

Item Mean

Optional Value

start_pref e

the loss factor of energy at the beginning of the training

zero or positive real number

limit_pref e

the loss factor of energy at the end of the training

zero or positive real number

start_pref f

the loss factor of force at the beginning of the training

zero or positive real number

limit_pref f

the loss factor of force at the end of the training

zero or positive real number

start_pref v

the loss factor of virial at the beginning of the training

zero or positive real number

limit_pref v

the loss factor of virial at the end of the training

zero or positive real number

training

The “training” section is defined as

{
"seed": 1,
"stop_batch": 1000000,
"numb_test": 1,
"disp_file": "lcurve.out",
"disp_freq": 1000,
"save_ckpt": "model.ckpt",
"save_freq": 10000,
"training_data":{
"systems": ["systeml_path", "system2_path", "..."],
"set_prefix": "set",
"batch_size": ["batch_size_of_systeml", "batch_size_of_system2",
}
}

”n]

where items are defined as:

11.2. Training

121

DeePMD-kit

Item Mean Optional Value
seed the randome seed a integer
stop_batch | the total training steps a positive integer
numb_test | the accuracy is test by using {numb_test} sample | a positive integer
disp file the log file where the training message display a string
disp_freq display frequency a positive integer
save ckpt | check point file a string

save freq | save frequency a positive integer
systems a list of data directory which contains the dataset | string list
set_prefix | the prefix of dataset a string
batch_size | a list of batch size of corresponding dataset a integer list

11.2.2 Training

Training can be invoked by

stepl: train CNN
dp train-nvnmd train_cnn.json -s sl
step2: train QNN
dp train-nvnmd train_gnn.json -s s2

After the training process, you will get two folders: nvnmd_cnn and nvnmd_qnn. The nvamd_cnn contains the
model after continuous neural network (CNN) training. The nvnmd_gnn contains the model after quantized
neural network (QNN) training. The binary file nvnmd_gnn/model . pb is the model file that is used to perform
NVNMD in the server [http://nvnmd.picp.vip].

11.3 Testing

The frozen model can be used in many ways. The most straightforward testing can be invoked by

mkdir test
dp test -m ./nvnmd_gnn/frozen_model.pb -s path/to/system -d ./test/detail -n 99999 -1 test/output.
—log

where the frozen model file to import is given via the -m command line flag, the path to the testing data set
is given via the -s command line flag, and the file containing details of energy, forces and virials accuracy is
given via the -d command line flag, the amount of data for testing is given via the -n command line flag.

11.4 Running MD

After CNN and QNN training, you can upload the ML model to our online NVNMD system and run MD there.

122 Chapter 11. Use NVNMD

DeePMD-kit

11.4.1 Account application

The server website of NVNMD is available at http://nvnmd.picp.vip. You can visit the URL and enter the
login interface (Figure.1).

NVNMD

User guide
Switch to Chinese
Username

Password

Login

To apply for an account,please email:
jie_liu@hnu.edu.cn, livjie@uw.edu

To obtain an account, please send your application to the email (jie liu@hnu.edu.cn, liujie@uw.edu). The
username and password will be sent to you by email.

11.4.2 Adding task

After successfully obtaining the account, enter the username and password in the login interface, and click
“Login” to enter the homepage (Figure.2).

NVNMD

Current user:test! Logout
Remaining calculation time:6:22:29
Add a new task

Operation records

Calculation records Refresh
Clear calculation records

Submission time Task name Input script Calculation status Cancel calculation Calculation time Download results Delete record

The homepage displays the remaining calculation time and all calculation records not deleted. Click Add a
new task to enter the interface for adding a new task (Figure.3).

11.4. Running MD 123

DeePMD-kit

NVNMD

Current user:test! Return to home page

Remaining calculation time:6:22:29

Task name test

Upload mode @ w
Input script Browse... | inimp
Model file Browse... model.pb
Data files

Browse... | coord.Imp

Submit

e Task name: name of the task

¢ Upload mode: two modes of uploading results to online data storage, including Manual upload and
Automatic upload. Results need to be uploaded manually to online data storage with Manual upload
mode and will be uploaded automatically with Automatic upload mode.

e Input script: input file of the MD simulation.

In the input script, one needs to specify the pair style as follows

pair_style nvnmd model.pb
pair_coeff * *

* Model file: the ML model named model . pb obtained by QNN training.

¢ Data files: data files containing the information required for running an MD simulation (e.g., coord.lmp
containing initial atom coordinates).

Next, you can click Submit to submit the task and then automatically return to the homepage (Figure.4).

NVNMD

Current user:test1 Logout
Remaining calculation time:6:22:29
Add a new task

Operation records

Calculation records Refresh
Clear calculation records

Submission time Task name Input script Calculation Cancel Calculation time Download Delete record
status calculation results
2022-05-17 21:31:20 test in.Imp Running Cancel

Then, click Refresh to view the latest status of all calculation tasks.

124 Chapter 11. Use NVNMD

DeePMD-kit

11.4.3 Cancelling calculation

For the task whose calculation status is Pending and Running, you can click the corresponding Cancel on the

homepage to stop the calculation (Figure.5).

NVNMD

Current user:test1 Logout
Remaining calculation time:6:21:09
Add a new task

Operation records

Calculation records Refresh
Clear calculation records

Submission time Task name Input script Calculation Cancel Calculation time
stafus calculation
2022-05-17 21:31:20 test in.Imp Cancelled 0:01:20

11.4.4 Downloading results

Download Delete record

results

Package Delete

Separate files

For the task whose calculation status is Completed, Failed and Cancelled, you can click the corresponding
Package or Separate files in the Download results bar on the homepage to download results.

Click Package to download a zipped package of all files including input files and output results (Figure.6).

NVNMD

Current user:test! Return to home page

Remaining calculation time:6:21:09

Files
Name Size Download directly Download frem enline data
storage
output.zip 1.2 MB Download

Click Separate files to download the required separate files (Figure.7).

Upload to online data storage®

Upload

11.4. Running MD

125

DeePMD-kit

NVNMD

Current user:test! Return to home page

Remaining calculation time:6:21:09

Files
Name Size Download directly Download from online data Upload to online data storage®
storage

coord.Imp 15.4 KB Download Upload
in.Imp 3.1 KB Download Upload
lammps.xyz 2.1 MB Download Upload
log.lammps 14.0 KB Download Upload
model.pb 8.1 MB Download Upload
result.out 13.5KB Download