DPDispatcher’s documentation

DPDispatcher is a Python package used to generate HPC (High Performance Computing) scheduler systems (Slurm/PBS/LSF/dpcloudserver) jobs input scripts and submit these scripts to HPC systems and poke until they finish.

DPDispatcher will monitor (poke) until these jobs finish and download the results files (if these jobs is running on remote systems connected by SSH).

Install DPDispatcher

DPDispatcher can installed by pip:

pip install dpdispatcher

Getting Started

DPDispatcher provides the following classes:

  • Task class, which represents a command to be run on batch job system, as well as the essential files need by the command.

  • Submission class, which represents a collection of jobs defined by the HPC system. And there may be common files to be uploaded by them. DPDispatcher will create and submit these jobs when a submission instance execute run_submission method. This method will poke until the jobs finish and return.

  • Job class, a class used by Submission class, which represents a job on the HPC system. Submission will generate jobs’ submitting scripts used by HPC systems automatically with the Task and Resources

  • Resources class, which represents the computing resources for each job within a submission.

You can use DPDispatcher in a Python script to submit five tasks:

from dpdispatcher import Machine, Resources, Task, Submission

machine = Machine.load_from_json('machine.json')
resources = Resources.load_from_json('resources.json')

task0 = Task.load_from_json('task.json')

task1 = Task(command='cat example.txt', task_work_path='dir1/', forward_files=['example.txt'], backward_files=['out.txt'], outlog='out.txt')
task2 = Task(command='cat example.txt', task_work_path='dir2/', forward_files=['example.txt'], backward_files=['out.txt'], outlog='out.txt')
task3 = Task(command='cat example.txt', task_work_path='dir3/', forward_files=['example.txt'], backward_files=['out.txt'], outlog='out.txt')
task4 = Task(command='cat example.txt', task_work_path='dir4/', forward_files=['example.txt'], backward_files=['out.txt'], outlog='out.txt')

task_list = [task0, task1, task2, task3, task4]

submission = Submission(work_base='lammps_md_300K_5GPa/',
    machine=machine, 
    resources=resources,
    task_list=task_list,
    forward_common_files=['graph.pb'], 
    backward_common_files=[]
)

submission.run_submission()

where machine.json is

{
    "batch_type": "Slurm",
    "context_type": "SSHContext",
    "local_root" : "/home/user123/workplace/22_new_project/",
    "remote_root": "/home/user123/dpdispatcher_work_dir/",
    "remote_profile":{
        "hostname": "39.106.xx.xxx",
        "username": "user123",
        "port": 22,
        "timeout": 10
    }
}

resources.json is

{
    "number_node": 1,
    "cpu_per_node": 4,
    "gpu_per_node": 1,
    "queue_name": "GPUV100",
    "group_size": 5
}

and task.json is

{
    "command": "lmp -i input.lammps",
    "task_work_path": "bct-0/",
    "forward_files": [
        "conf.lmp",
        "input.lammps"
    ],
    "backward_files": [
        "log.lammps"
    ],
    "outlog": "log",
    "errlog": "err",
}

You may also submit mutiple GPU jobs: complex resources example

resources = Resources(
    number_node=1,
    cpu_per_node=4,
    gpu_per_node=2,
    queue_name="GPU_2080Ti",
    group_size=4,
    custom_flags=[
        "#SBATCH --nice=100", 
        "#SBATCH --time=24:00:00"
    ],
    strategy={
        # used when you want to add CUDA_VISIBLE_DIVECES automatically
        "if_cuda_multi_devices": True 
    },
    para_deg=1,
    # will unload these modules before running tasks
    module_unload_list=["singularity"],
    # will load these modules before running tasks
    module_list=["singularity/3.0.0"],
    # will source the environment files before running tasks
    source_list=["./slurm_test.env"],
    # the envs option is used to export environment variables
    # And it will generate a line like below.
    # export DP_DISPATCHER_EXPORT=test_foo_bar_baz
    envs={"DP_DISPATCHER_EXPORT": "test_foo_bar_baz"},
)

The details of parameters can be found in Machine Parameters, Resources Parameters, and Task Parameters.

Machine parameters

Note

One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file.

machine:
type: dict
argument path: machine
batch_type:
type: str
argument path: machine/batch_type

The batch job system type. Option: DpCloudServer, Shell, SlurmJobArray, Torque, DistributedShell, Lebesgue, PBS, LSF, Slurm

local_root:
type: str
argument path: machine/local_root

The dir where the tasks and relating files locate. Typically the project dir.

remote_root:
type: str, optional
argument path: machine/remote_root

The dir where the tasks are executed on the remote machine. Only needed when context is not lazy-local.

clean_asynchronously:
type: bool, optional, default: False
argument path: machine/clean_asynchronously

Clean the remote directory asynchronously after the job finishes.

Depending on the value of context_type, different sub args are accepted.

context_type:
type: str (flag key)
argument path: machine/context_type

The connection used to remote machine. Option: SSHContext, HDFSContext, LocalContext, DpCloudServerContext, LazyLocalContext, LebesgueContext

When context_type is set to SSHContext (or its aliases sshcontext, SSH, ssh):

remote_profile:
type: dict
argument path: machine[SSHContext]/remote_profile

The information used to maintain the connection with remote machine.

hostname:
type: str
argument path: machine[SSHContext]/remote_profile/hostname

hostname or ip of ssh connection.

username:
type: str
argument path: machine[SSHContext]/remote_profile/username

username of target linux system

password:
type: str, optional
argument path: machine[SSHContext]/remote_profile/password

(deprecated) password of linux system. Please use SSH keys instead to improve security.

port:
type: int, optional, default: 22
argument path: machine[SSHContext]/remote_profile/port

ssh connection port.

key_filename:
type: NoneType | str, optional, default: None
argument path: machine[SSHContext]/remote_profile/key_filename

key filename used by ssh connection. If left None, find key in ~/.ssh or use password for login

passphrase:
type: NoneType | str, optional, default: None
argument path: machine[SSHContext]/remote_profile/passphrase

passphrase of key used by ssh connection

timeout:
type: int, optional, default: 10
argument path: machine[SSHContext]/remote_profile/timeout

timeout of ssh connection

totp_secret:
type: NoneType | str, optional, default: None
argument path: machine[SSHContext]/remote_profile/totp_secret

Time-based one time password secret. It should be a base32-encoded string extracted from the 2D code.

When context_type is set to LazyLocalContext (or its aliases lazylocalcontext, LazyLocal, lazylocal):

remote_profile:
type: dict, optional
argument path: machine[LazyLocalContext]/remote_profile

The information used to maintain the connection with remote machine. This field is empty for this context.

When context_type is set to LocalContext (or its aliases localcontext, Local, local):

remote_profile:
type: dict, optional
argument path: machine[LocalContext]/remote_profile

The information used to maintain the connection with remote machine. This field is empty for this context.

When context_type is set to DpCloudServerContext (or its aliases dpcloudservercontext, DpCloudServer, dpcloudserver):

remote_profile:
type: dict
argument path: machine[DpCloudServerContext]/remote_profile

The information used to maintain the connection with remote machine.

email:
type: str
argument path: machine[DpCloudServerContext]/remote_profile/email

Email

password:
type: str
argument path: machine[DpCloudServerContext]/remote_profile/password

Password

program_id:
type: int
argument path: machine[DpCloudServerContext]/remote_profile/program_id

Program ID

input_data:
type: dict
argument path: machine[DpCloudServerContext]/remote_profile/input_data

Configuration of job

When context_type is set to HDFSContext (or its aliases hdfscontext, HDFS, hdfs):

remote_profile:
type: dict, optional
argument path: machine[HDFSContext]/remote_profile

The information used to maintain the connection with remote machine. This field is empty for this context.

When context_type is set to LebesgueContext (or its aliases lebesguecontext, Lebesgue, lebesgue):

remote_profile:
type: dict
argument path: machine[LebesgueContext]/remote_profile

The information used to maintain the connection with remote machine.

email:
type: str
argument path: machine[LebesgueContext]/remote_profile/email

Email

password:
type: str
argument path: machine[LebesgueContext]/remote_profile/password

Password

program_id:
type: int
argument path: machine[LebesgueContext]/remote_profile/program_id

Program ID

input_data:
type: dict
argument path: machine[LebesgueContext]/remote_profile/input_data

Configuration of job

Resources parameters

Note

One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file for.

resources:
type: dict
argument path: resources
number_node:
type: int
argument path: resources/number_node

The number of node need for each job

cpu_per_node:
type: int
argument path: resources/cpu_per_node

cpu numbers of each node assigned to each job.

gpu_per_node:
type: int
argument path: resources/gpu_per_node

gpu numbers of each node assigned to each job.

queue_name:
type: str
argument path: resources/queue_name

The queue name of batch job scheduler system.

group_size:
type: int
argument path: resources/group_size

The number of tasks in a job. 0 means infinity.

custom_flags:
type: list, optional
argument path: resources/custom_flags

The extra lines pass to job submitting script header

strategy:
type: dict, optional
argument path: resources/strategy

strategies we use to generation job submitting scripts.

if_cuda_multi_devices:
type: bool, optional, default: False
argument path: resources/strategy/if_cuda_multi_devices
ratio_unfinished:
type: float, optional, default: 0.0
argument path: resources/strategy/ratio_unfinished
para_deg:
type: int, optional, default: 1
argument path: resources/para_deg

Decide how many tasks will be run in parallel.

source_list:
type: list, optional, default: []
argument path: resources/source_list

The env file to be sourced before the command execution.

module_purge:
type: bool, optional, default: False
argument path: resources/module_purge

Remove all modules on HPC system before module load (module_list)

module_unload_list:
type: list, optional, default: []
argument path: resources/module_unload_list

The modules to be unloaded on HPC system before submitting jobs

module_list:
type: list, optional, default: []
argument path: resources/module_list

The modules to be loaded on HPC system before submitting jobs

envs:
type: dict, optional, default: {}
argument path: resources/envs

The environment variables to be exported on before submitting jobs

wait_time:
type: int | float, optional, default: 0
argument path: resources/wait_time

The waitting time in second after a single task submitted

Depending on the value of batch_type, different sub args are accepted.

batch_type:
type: str (flag key)
argument path: resources/batch_type

The batch job system type loaded from machine/batch_type.

When batch_type is set to SlurmJobArray (or its alias slurmjobarray):

kwargs:
type: dict, optional
argument path: resources[SlurmJobArray]/kwargs

Extra arguments.

custom_gpu_line:
type: NoneType | str, optional, default: None
argument path: resources[SlurmJobArray]/kwargs/custom_gpu_line

Custom GPU configuration, starting with #SBATCH

When batch_type is set to PBS (or its alias pbs):

kwargs:
type: dict, optional
argument path: resources[PBS]/kwargs

This field is empty for this batch.

When batch_type is set to Slurm (or its alias slurm):

kwargs:
type: dict, optional
argument path: resources[Slurm]/kwargs

Extra arguments.

custom_gpu_line:
type: NoneType | str, optional, default: None
argument path: resources[Slurm]/kwargs/custom_gpu_line

Custom GPU configuration, starting with #SBATCH

When batch_type is set to Torque (or its alias torque):

kwargs:
type: dict, optional
argument path: resources[Torque]/kwargs

This field is empty for this batch.

When batch_type is set to DpCloudServer (or its alias dpcloudserver):

kwargs:
type: dict, optional
argument path: resources[DpCloudServer]/kwargs

This field is empty for this batch.

When batch_type is set to Lebesgue (or its alias lebesgue):

kwargs:
type: dict, optional
argument path: resources[Lebesgue]/kwargs

This field is empty for this batch.

When batch_type is set to DistributedShell (or its alias distributedshell):

kwargs:
type: dict, optional
argument path: resources[DistributedShell]/kwargs

This field is empty for this batch.

When batch_type is set to Shell (or its alias shell):

kwargs:
type: dict, optional
argument path: resources[Shell]/kwargs

This field is empty for this batch.

When batch_type is set to LSF (or its alias lsf):

kwargs:
type: dict
argument path: resources[LSF]/kwargs

Extra arguments.

gpu_usage:
type: bool, optional, default: False
argument path: resources[LSF]/kwargs/gpu_usage

Choosing if GPU is used in the calculation step.

gpu_new_syntax:
type: bool, optional, default: False
argument path: resources[LSF]/kwargs/gpu_new_syntax

For LFS >= 10.1.0.3, new option -gpu for #BSUB could be used. If False, and old syntax would be used.

gpu_exclusive:
type: bool, optional, default: True
argument path: resources[LSF]/kwargs/gpu_exclusive

Only take effect when new syntax enabled. Control whether submit tasks in exclusive way for GPU.

custom_gpu_line:
type: NoneType | str, optional, default: None
argument path: resources[LSF]/kwargs/custom_gpu_line

Custom GPU configuration, starting with #BSUB

Task parameters

Note

One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file.

task:
type: dict
argument path: task
command:
type: str
argument path: task/command

A command to be executed of this task. The expected return code is 0.

task_work_path:
type: str
argument path: task/task_work_path

The dir where the command to be executed.

forward_files:
type: list
argument path: task/forward_files

The files to be uploaded in task_work_path before the task exectued.

backward_files:
type: list
argument path: task/backward_files

The files to be download to local_root in task_work_path after the task finished

outlog:
type: NoneType | str
argument path: task/outlog

The out log file name. redirect from stdout

errlog:
type: NoneType | str
argument path: task/errlog

The err log file name. redirect from stderr

DPDispatcher API

dpdispatcher package

dpdispatcher.info()[source]

Subpackages

dpdispatcher.dpcloudserver package
Submodules
dpdispatcher.dpcloudserver.api module
class dpdispatcher.dpcloudserver.api.API(email, password)[source]

Bases: object

Methods

check_job_has_uploaded

download

download_from_url

get

get_job_result_url

get_jobs

get_tasks

get_tasks_list

job_create

post

refresh_token

upload

check_job_has_uploaded(job_id)[source]
download(oss_file, save_file, endpoint, bucket_name)[source]
download_from_url(url, save_file)[source]
get(url, params, retry=0)[source]
get_job_result_url(job_id)[source]
get_jobs(page=1, per_page=10)[source]
get_tasks(job_id, group_id, page=1, per_page=10)[source]
get_tasks_list(group_id, per_page=30)[source]
job_create(job_type, oss_path, input_data, program_id=None, group_id=None)[source]
post(url, params, retry=0)[source]
refresh_token()[source]
upload(oss_task_zip, zip_task_file, endpoint, bucket_name)[source]
dpdispatcher.dpcloudserver.config module
dpdispatcher.dpcloudserver.retcode module
class dpdispatcher.dpcloudserver.retcode.RETCODE[source]

Bases: object

DATAERR = '2002'
DBERR = '2000'
IOERR = '2003'
NODATA = '2300'
OK = '0000'
PARAMERR = '2101'
PWDERR = '2104'
REQERR = '2200'
ROLEERR = '2103'
THIRDERR = '2001'
TOKENINVALID = '2100'
UNDERDEBUG = '2301'
UNKOWNERR = '2400'
USERERR = '2102'
VERIFYERR = '2105'
dpdispatcher.dpcloudserver.temp_test module
dpdispatcher.dpcloudserver.zip_file module
dpdispatcher.dpcloudserver.zip_file.unzip_file(zip_file, out_dir='./')[source]
dpdispatcher.dpcloudserver.zip_file.zip_file_list(root_path, zip_filename, file_list=[])[source]

Submodules

dpdispatcher.JobStatus module

class dpdispatcher.JobStatus.JobStatus(value)[source]

Bases: IntEnum

An enumeration.

completing = 6
finished = 5
running = 3
terminated = 4
unknown = 100
unsubmitted = 1
waiting = 2

dpdispatcher.arginfo module

dpdispatcher.base_context module

class dpdispatcher.base_context.BaseContext(*args, **kwargs)[source]

Bases: object

Methods

machine_arginfo()

Generate the machine arginfo.

machine_subfields()

Generate the machine subfields.

bind_submission

check_finish

clean

download

kill

load_from_dict

read_file

upload

write_file

bind_submission(submission)[source]
check_finish(proc)[source]
abstract clean()[source]
abstract download(submission, check_exists=False, mark_failure=True, back_error=False)[source]
kill(proc)[source]
classmethod load_from_dict(context_dict)[source]
classmethod machine_arginfo() Argument[source]

Generate the machine arginfo.

Returns
Argument

machine arginfo

classmethod machine_subfields() List[Argument][source]

Generate the machine subfields.

Returns
list[Argument]

machine subfields

options = {'DpCloudServerContext', 'HDFSContext', 'LazyLocalContext', 'LebesgueContext', 'LocalContext', 'SSHContext'}
abstract read_file(fname)[source]
subclasses_dict = {'DpCloudServer': <class 'dpdispatcher.dp_cloud_server_context.DpCloudServerContext'>, 'DpCloudServerContext': <class 'dpdispatcher.dp_cloud_server_context.DpCloudServerContext'>, 'HDFS': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'HDFSContext': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'LazyLocal': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'LazyLocalContext': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'Lebesgue': <class 'dpdispatcher.dp_cloud_server_context.LebesgueContext'>, 'LebesgueContext': <class 'dpdispatcher.dp_cloud_server_context.LebesgueContext'>, 'Local': <class 'dpdispatcher.local_context.LocalContext'>, 'LocalContext': <class 'dpdispatcher.local_context.LocalContext'>, 'SSH': <class 'dpdispatcher.ssh_context.SSHContext'>, 'SSHContext': <class 'dpdispatcher.ssh_context.SSHContext'>, 'dpcloudserver': <class 'dpdispatcher.dp_cloud_server_context.DpCloudServerContext'>, 'dpcloudservercontext': <class 'dpdispatcher.dp_cloud_server_context.DpCloudServerContext'>, 'hdfs': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'hdfscontext': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'lazylocal': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'lazylocalcontext': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'lebesgue': <class 'dpdispatcher.dp_cloud_server_context.LebesgueContext'>, 'lebesguecontext': <class 'dpdispatcher.dp_cloud_server_context.LebesgueContext'>, 'local': <class 'dpdispatcher.local_context.LocalContext'>, 'localcontext': <class 'dpdispatcher.local_context.LocalContext'>, 'ssh': <class 'dpdispatcher.ssh_context.SSHContext'>, 'sshcontext': <class 'dpdispatcher.ssh_context.SSHContext'>}
abstract upload(submission)[source]
abstract write_file(fname, write_str)[source]

dpdispatcher.distributed_shell module

class dpdispatcher.distributed_shell.DistributedShell(*args, **kwargs)[source]

Bases: Machine

Methods

do_submit(job)

submit th job to yarn using distributed shell

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

check_finish_tag(job)[source]
check_status(job)[source]
do_submit(job)[source]

submit th job to yarn using distributed shell

Parameters
jobJob class instance

job to be submitted

Returns
job_id: string

submit process id

gen_script_end(job)[source]
gen_script_env(job)[source]
gen_script_header(job)[source]

dpdispatcher.dp_cloud_server module

class dpdispatcher.dp_cloud_server.DpCloudServer(*args, **kwargs)[source]

Bases: Machine

Methods

do_submit(job)

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_local_script

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

map_dp_job_state

serialize

sub_script_cmd

sub_script_head

check_finish_tag(job)[source]
check_if_recover(submission)[source]
check_status(job)[source]
do_submit(job)[source]

submit a single job, assuming that no job is running there.

gen_local_script(job)[source]
gen_script(job)[source]
gen_script_header(job)[source]
static map_dp_job_state(status)[source]
class dpdispatcher.dp_cloud_server.Lebesgue(*args, **kwargs)[source]

Bases: DpCloudServer

Methods

do_submit(job)

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_local_script

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

map_dp_job_state

serialize

sub_script_cmd

sub_script_head

dpdispatcher.dp_cloud_server_context module

class dpdispatcher.dp_cloud_server_context.DpCloudServerContext(*args, **kwargs)[source]

Bases: BaseContext

Methods

machine_arginfo()

Generate the machine arginfo.

machine_subfields()

Generate the machine subfields.

bind_submission

check_file_exists

check_finish

check_home_file_exits

clean

download

kill

load_from_dict

read_file

read_home_file

upload

write_file

write_home_file

write_local_file

bind_submission(submission)[source]
check_file_exists(fname)[source]
check_home_file_exits(fname)[source]
clean()[source]
download(submission)[source]
kill(cmd_pipes)[source]
classmethod load_from_dict(context_dict)[source]
classmethod machine_subfields() List[Argument][source]

Generate the machine subfields.

Returns
list[Argument]

machine subfields

read_file(fname)[source]
read_home_file(fname)[source]
upload(submission)[source]
write_file(fname, write_str)[source]
write_home_file(fname, write_str)[source]
write_local_file(fname, write_str)[source]
class dpdispatcher.dp_cloud_server_context.LebesgueContext(*args, **kwargs)[source]

Bases: DpCloudServerContext

Methods

machine_arginfo()

Generate the machine arginfo.

machine_subfields()

Generate the machine subfields.

bind_submission

check_file_exists

check_finish

check_home_file_exits

clean

download

kill

load_from_dict

read_file

read_home_file

upload

write_file

write_home_file

write_local_file

dpdispatcher.dpdisp module

dpdispatcher.dpdisp.main()[source]

dpdispatcher.hdfs_cli module

class dpdispatcher.hdfs_cli.HDFS[source]

Bases: object

Fundamental class for HDFS basic manipulation

Methods

copy_from_local(local_path, to_uri)

Returns: True on success Raises: on unexpected error

exists(uri)

Check existence of hdfs uri Returns: True on exists Raises: RuntimeError

mkdir(uri)

Make new hdfs directory Returns: True on success Raises: RuntimeError

remove(uri)

Check existence of hdfs uri Returns: True on exists Raises: RuntimeError

copy_to_local

move

read_hdfs_file

static copy_from_local(local_path, to_uri)[source]

Returns: True on success Raises: on unexpected error

static copy_to_local(from_uri, local_path)[source]
static exists(uri)[source]

Check existence of hdfs uri Returns: True on exists Raises: RuntimeError

static mkdir(uri)[source]

Make new hdfs directory Returns: True on success Raises: RuntimeError

static move(from_uri, to_uri)[source]
static read_hdfs_file(uri)[source]
static remove(uri)[source]

Check existence of hdfs uri Returns: True on exists Raises: RuntimeError

dpdispatcher.hdfs_context module

class dpdispatcher.hdfs_context.HDFSContext(*args, **kwargs)[source]

Bases: BaseContext

Methods

download(submission[, check_exists, ...])

download backward files from HDFS root dir

machine_arginfo()

Generate the machine arginfo.

machine_subfields()

Generate the machine subfields.

upload(submission[, dereference])

upload forward files and forward command files to HDFS root dir

bind_submission

check_file_exists

check_finish

clean

get_job_root

kill

load_from_dict

read_file

write_file

bind_submission(submission)[source]
check_file_exists(fname)[source]
clean()[source]
download(submission, check_exists=False, mark_failure=True, back_error=False)[source]

download backward files from HDFS root dir

Parameters
submissionSubmission class instance

represents a collection of tasks, such as backward file names

Returns
none
get_job_root()[source]
kill(job_id)[source]
classmethod load_from_dict(context_dict)[source]
read_file(fname)[source]
upload(submission, dereference=True)[source]

upload forward files and forward command files to HDFS root dir

Parameters
submissionSubmission class instance

represents a collection of tasks, such as forward file names

Returns
none
write_file(fname, write_str)[source]

dpdispatcher.lazy_local_context module

class dpdispatcher.lazy_local_context.LazyLocalContext(*args, **kwargs)[source]

Bases: BaseContext

Methods

machine_arginfo()

Generate the machine arginfo.

machine_subfields()

Generate the machine subfields.

bind_submission

block_call

block_checkcall

call

check_file_exists

check_finish

clean

download

get_job_root

get_return

kill

load_from_dict

read_file

upload

write_file

bind_submission(submission)[source]
block_call(cmd)[source]
block_checkcall(cmd)[source]
call(cmd)[source]
check_file_exists(fname)[source]
check_finish(proc)[source]
clean()[source]
download(jobs, check_exists=False, mark_failure=True, back_error=False)[source]
get_job_root()[source]
get_return(proc)[source]
kill(job_id)[source]
classmethod load_from_dict(context_dict)[source]
read_file(fname)[source]
upload(jobs, dereference=True)[source]
write_file(fname, write_str)[source]
class dpdispatcher.lazy_local_context.SPRetObj(ret)[source]

Bases: object

Methods

read

readlines

read()[source]
readlines()[source]

dpdispatcher.local_context module

class dpdispatcher.local_context.LocalContext(*args, **kwargs)[source]

Bases: BaseContext

Methods

machine_arginfo()

Generate the machine arginfo.

machine_subfields()

Generate the machine subfields.

bind_submission

block_call

block_checkcall

call

check_file_exists

check_finish

clean

download

download_

get_job_root

get_return

kill

load_from_dict

read_file

upload

upload_

write_file

bind_submission(submission)[source]
block_call(cmd)[source]
block_checkcall(cmd)[source]
call(cmd)[source]
check_file_exists(fname)[source]
check_finish(proc)[source]
clean()[source]
download(submission, check_exists=False, mark_failure=True, back_error=False)[source]
download_(job_dirs, remote_down_files, check_exists=False, mark_failure=True, back_error=False)[source]
get_job_root()[source]
get_return(proc)[source]
kill(job_id)[source]
classmethod load_from_dict(context_dict)[source]
read_file(fname)[source]
upload(submission)[source]
upload_(job_dirs, local_up_files, dereference=True)[source]
write_file(fname, write_str)[source]
class dpdispatcher.local_context.SPRetObj(ret)[source]

Bases: object

Methods

read

readlines

read()[source]
readlines()[source]

dpdispatcher.lsf module

class dpdispatcher.lsf.LSF(*args, **kwargs)[source]

Bases: Machine

LSF batch

Methods

default_resources(resources)

do_submit(job)

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

check_finish_tag(job)[source]
check_status(job)[source]
default_resources(resources)[source]
do_submit(job)[source]

submit a single job, assuming that no job is running there.

gen_script(job)[source]
gen_script_header(job)[source]
classmethod resources_subfields() List[Argument][source]

Generate the resources subfields.

Returns
list[Argument]

resources subfields

sub_script_cmd(res)[source]
sub_script_head(res)[source]

dpdispatcher.machine module

class dpdispatcher.machine.Machine(*args, **kwargs)[source]

Bases: object

A machine is used to handle the connection with remote machines.

Parameters
contextSubClass derived from BaseContext

The context is used to mainatin the connection with remote machine.

Methods

do_submit(job)

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

classmethod arginfo()[source]
bind_context(context)[source]
abstract check_finish_tag(**kwargs)[source]
check_if_recover(submission)[source]
abstract check_status(job)[source]
default_resources(res)[source]
classmethod deserialize(machine_dict)[source]
abstract do_submit(job)[source]

submit a single job, assuming that no job is running there.

gen_command_env_cuda_devices(resources)[source]
gen_script(job)[source]
gen_script_command(job)[source]
gen_script_custom_flags_lines(job)[source]
gen_script_end(job)[source]
gen_script_env(job)[source]
abstract gen_script_header(job)[source]
gen_script_wait(resources)[source]
classmethod load_from_dict(machine_dict)[source]
classmethod load_from_json(json_path)[source]
options = {'DistributedShell', 'DpCloudServer', 'LSF', 'Lebesgue', 'PBS', 'Shell', 'Slurm', 'SlurmJobArray', 'Torque'}
classmethod resources_arginfo() Argument[source]

Generate the resources arginfo.

Returns
Argument

resources arginfo

classmethod resources_subfields() List[Argument][source]

Generate the resources subfields.

Returns
list[Argument]

resources subfields

serialize(if_empty_remote_profile=False)[source]
sub_script_cmd(res)[source]
sub_script_head(res)[source]
subclasses_dict = {'DistributedShell': <class 'dpdispatcher.distributed_shell.DistributedShell'>, 'DpCloudServer': <class 'dpdispatcher.dp_cloud_server.DpCloudServer'>, 'LSF': <class 'dpdispatcher.lsf.LSF'>, 'Lebesgue': <class 'dpdispatcher.dp_cloud_server.Lebesgue'>, 'PBS': <class 'dpdispatcher.pbs.PBS'>, 'Shell': <class 'dpdispatcher.shell.Shell'>, 'Slurm': <class 'dpdispatcher.slurm.Slurm'>, 'SlurmJobArray': <class 'dpdispatcher.slurm.SlurmJobArray'>, 'Torque': <class 'dpdispatcher.pbs.Torque'>, 'distributedshell': <class 'dpdispatcher.distributed_shell.DistributedShell'>, 'dpcloudserver': <class 'dpdispatcher.dp_cloud_server.DpCloudServer'>, 'lebesgue': <class 'dpdispatcher.dp_cloud_server.Lebesgue'>, 'lsf': <class 'dpdispatcher.lsf.LSF'>, 'pbs': <class 'dpdispatcher.pbs.PBS'>, 'shell': <class 'dpdispatcher.shell.Shell'>, 'slurm': <class 'dpdispatcher.slurm.Slurm'>, 'slurmjobarray': <class 'dpdispatcher.slurm.SlurmJobArray'>, 'torque': <class 'dpdispatcher.pbs.Torque'>}

dpdispatcher.pbs module

class dpdispatcher.pbs.PBS(*args, **kwargs)[source]

Bases: Machine

Methods

do_submit(job)

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

check_finish_tag(job)[source]
check_status(job)[source]
default_resources(resources)[source]
do_submit(job)[source]

submit a single job, assuming that no job is running there.

gen_script(job)[source]
gen_script_header(job)[source]
class dpdispatcher.pbs.Torque(*args, **kwargs)[source]

Bases: PBS

Methods

do_submit(job)

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

check_status(job)[source]

dpdispatcher.shell module

class dpdispatcher.shell.Shell(*args, **kwargs)[source]

Bases: Machine

Methods

do_submit(job)

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

check_finish_tag(job)[source]
check_status(job)[source]
default_resources(resources)[source]
do_submit(job)[source]

submit a single job, assuming that no job is running there.

gen_script(job)[source]
gen_script_header(job)[source]

dpdispatcher.slurm module

class dpdispatcher.slurm.Slurm(*args, **kwargs)[source]

Bases: Machine

Methods

do_submit(job[, retry, max_retry])

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

check_finish_tag(job)[source]
check_status(job, retry=0, max_retry=3)[source]
default_resources(resources)[source]
do_submit(job, retry=0, max_retry=3)[source]

submit a single job, assuming that no job is running there.

gen_script(job)[source]
gen_script_header(job)[source]
classmethod resources_subfields() List[Argument][source]

Generate the resources subfields.

Returns
list[Argument]

resources subfields

class dpdispatcher.slurm.SlurmJobArray(*args, **kwargs)[source]

Bases: Slurm

Slurm with job array enabled for multiple tasks in a job

Methods

do_submit(job[, retry, max_retry])

submit a single job, assuming that no job is running there.

resources_arginfo()

Generate the resources arginfo.

resources_subfields()

Generate the resources subfields.

arginfo

bind_context

check_finish_tag

check_if_recover

check_status

default_resources

deserialize

gen_command_env_cuda_devices

gen_script

gen_script_command

gen_script_custom_flags_lines

gen_script_end

gen_script_env

gen_script_header

gen_script_wait

load_from_dict

load_from_json

serialize

sub_script_cmd

sub_script_head

check_finish_tag(job)[source]
check_status(job, retry=0, max_retry=3)[source]
gen_script_command(job)[source]
gen_script_end(job)[source]
gen_script_header(job)[source]

dpdispatcher.ssh_context module

class dpdispatcher.ssh_context.SSHContext(*args, **kwargs)[source]

Bases: BaseContext

Attributes
sftp
ssh

Methods

block_checkcall(cmd[, asynchronously, ...])

Run command with arguments.

machine_arginfo()

Generate the machine arginfo.

machine_subfields()

Generate the machine subfields.

bind_submission

block_call

call

check_file_exists

check_finish

clean

close

download

get_job_root

get_return

kill

load_from_dict

read_file

upload

write_file

bind_submission(submission)[source]
block_call(cmd)[source]
block_checkcall(cmd, asynchronously=False, stderr_whitelist=None)[source]

Run command with arguments. Wait for command to complete. If the return code was zero then return, otherwise raise RuntimeError.

Parameters
cmd: str

The command to run.

asynchronously: bool, optional, default=False

Run command asynchronously. If True, nohup will be used to run the command.

call(cmd)[source]
check_file_exists(fname)[source]
check_finish(cmd_pipes)[source]
clean()[source]
close()[source]
download(submission, check_exists=False, mark_failure=True, back_error=False)[source]
get_job_root()[source]
get_return(cmd_pipes)[source]
kill(cmd_pipes)[source]
classmethod load_from_dict(context_dict)[source]
classmethod machine_subfields() List[Argument][source]

Generate the machine subfields.

Returns
list[Argument]

machine subfields

read_file(fname)[source]
property sftp
property ssh
upload(submission, dereference=True)[source]
write_file(fname, write_str)[source]
class dpdispatcher.ssh_context.SSHSession(hostname, username, password=None, port=22, key_filename=None, passphrase=None, timeout=10, totp_secret=None)[source]

Bases: object

Attributes
remote
rsync_available
sftp

Returns sftp.

Methods

exec_command(cmd[, retry])

Calling self.ssh.exec_command but has an exception check.

arginfo

close

ensure_alive

get

get_ssh_client

put

static arginfo()[source]
close()[source]
ensure_alive(max_check=10, sleep_time=10)[source]
exec_command(cmd, retry=0)[source]

Calling self.ssh.exec_command but has an exception check.

get(from_f, to_f)[source]
get_ssh_client()[source]
put(from_f, to_f)[source]
property remote: str
property rsync_available: bool
property sftp

Returns sftp. Open a new one if not existing.

dpdispatcher.submission module

class dpdispatcher.submission.Job(job_task_list, *, resources, machine=None)[source]

Bases: object

Job is generated by Submission automatically. A job ususally has many tasks and it may request computing resources from job scheduler systems. Each Job can generate a script file to be submitted to the job scheduler system or executed locally.

Parameters
job_task_listlist of Task

the tasks belonging to the job

resourcesResources

the machine resources. Passed from Submission when it constructs jobs.

machinemachine

machine object to execute the job. Passed from Submission when it constructs jobs.

Methods

deserialize(job_dict[, machine])

convert the job_dict to a Submission class object

get_job_state()

get the jobs.

serialize([if_static])

convert the Task class instance to a dictionary.

get_hash

handle_unexpected_job_state

job_to_json

register_job_id

submit_job

classmethod deserialize(job_dict, machine=None)[source]

convert the job_dict to a Submission class object

Parameters
submission_dictdict

path-like, the base directory of the local tasks

Returns
submissionJob

the Job class instance converted from the job_dict

get_hash()[source]
get_job_state()[source]

get the jobs. Usually, this method will query the database of slurm or pbs job scheduler system and get the results.

Notes

this method will not submit or resubmit the jobs if the job is unsubmitted.

handle_unexpected_job_state()[source]
job_to_json()[source]
register_job_id(job_id)[source]
serialize(if_static=False)[source]

convert the Task class instance to a dictionary.

Parameters
if_staticbool

whether dump the job runtime infomation (job_id, job_state, fail_count, job_uuid etc.) to the dictionary.

Returns
task_dictdict

the dictionary converted from the Task class instance

submit_job()[source]
class dpdispatcher.submission.Resources(number_node, cpu_per_node, gpu_per_node, queue_name, group_size, *, custom_flags=[], strategy={'if_cuda_multi_devices': False, 'ratio_unfinished': 0.0}, para_deg=1, module_unload_list=[], module_purge=False, module_list=[], source_list=[], envs={}, wait_time=0, **kwargs)[source]

Bases: object

Resources is used to describe the machine resources we need to do calculations.

Parameters
number_nodeint

The number of node need for each job.

cpu_per_nodeint

cpu numbers of each node.

gpu_per_nodeint

gpu numbers of each node.

queue_namestr

The queue name of batch job scheduler system.

group_sizeint

The number of tasks in a job.

custom_flagslist of Str

The extra lines pass to job submitting script header

strategydict

strategies we use to generation job submitting scripts. if_cuda_multi_devices : bool

If there are multiple nvidia GPUS on the node, and we want to assign the tasks to different GPUS. If true, dpdispatcher will manually export environment variable CUDA_VISIBLE_DEVICES to different task. Usually, this option will be used with Task.task_need_resources variable simultaneously.

ratio_unfinishedfloat

The ratio of jobs that can be unfinished.

para_degint

Decide how many tasks will be run in parallel. Usually run with strategy[‘if_cuda_multi_devices’]

source_listlist of Path

The env file to be sourced before the command execution.

wait_timeint

The waitting time in second after a single task submitted. Default: 0.

Methods

arginfo

deserialize

load_from_dict

load_from_json

serialize

static arginfo(detail_kwargs=True)[source]
classmethod deserialize(resources_dict)[source]
classmethod load_from_dict(resources_dict)[source]
classmethod load_from_json(json_file)[source]
serialize()[source]
class dpdispatcher.submission.Submission(work_base, machine=None, resources=None, forward_common_files=[], backward_common_files=[], *, task_list=[])[source]

Bases: object

A submission represents a collection of tasks. These tasks usually locate at a common directory. And these Tasks may share common files to be uploaded and downloaded.

Parameters
work_basePath

the base directory of the local tasks. It is usually the dir name of project .

machineMachine

machine class object (for example, PBS, Slurm, Shell) to execute the jobs. The machine can still be bound after the instantiation with the bind_submission method.

resourcesResources

the machine resources (cpu or gpu) used to generate the slurm/pbs script

forward_common_fileslist

the common files to be uploaded to other computers before the jobs begin

backward_common_fileslist

the common files to be downloaded from other computers after the jobs finish

task_listlist of Task

a list of tasks to be run.

Methods

bind_machine(machine)

bind this submission to a machine.

check_all_finished()

check whether all the jobs in the submission.

deserialize(submission_dict[, machine])

convert the submission_dict to a Submission class object

generate_jobs()

After tasks register to the self.belonging_tasks, This method generate the jobs and add these jobs to self.belonging_jobs.

handle_unexpected_submission_state()

handle unexpected job state of the submission.

run_submission(*[, exit_on_submit, clean])

main method to execute the submission.

serialize([if_static])

convert the Submission class instance to a dictionary.

update_submission_state()

check whether all the jobs in the submission.

check_ratio_unfinished

clean_jobs

download_jobs

get_hash

register_task

register_task_list

remove_unfinished_jobs

submission_from_json

submission_to_json

try_recover_from_json

upload_jobs

bind_machine(machine)[source]

bind this submission to a machine. update the machine’s context remote_root and local_root.

Parameters
machineMachine

the machine to bind with

check_all_finished()[source]

check whether all the jobs in the submission.

Notes

This method will not handle unexpected job state in the submission.

check_ratio_unfinished(ratio_unfinished)[source]
clean_jobs()[source]
classmethod deserialize(submission_dict, machine=None)[source]

convert the submission_dict to a Submission class object

Parameters
submission_dictdict

path-like, the base directory of the local tasks

Returns
submissionSubmission

the Submission class instance converted from the submission_dict

download_jobs()[source]
generate_jobs()[source]

After tasks register to the self.belonging_tasks, This method generate the jobs and add these jobs to self.belonging_jobs. The jobs are generated by the tasks randomly, and there are self.resources.group_size tasks in a task. Why we randomly shuffle the tasks is under the consideration of load balance. The random seed is a constant (to be concrete, 42). And this insures that the jobs are equal when we re-run the program.

get_hash()[source]
handle_unexpected_submission_state()[source]

handle unexpected job state of the submission. If the job state is unsubmitted, submit the job. If the job state is terminated (killed unexpectly), resubmit the job. If the job state is unknown, raise an error.

register_task(task)[source]
register_task_list(task_list)[source]
remove_unfinished_jobs()[source]
run_submission(*, exit_on_submit=False, clean=True)[source]

main method to execute the submission. First, check whether old Submission exists on the remote machine, and try to recover from it. Second, upload the local files to the remote machine where the tasks to be executed. Third, run the submission defined previously. Forth, wait until the tasks in the submission finished and download the result file to local directory. if exit_on_submit is True, submission will exit.

serialize(if_static=False)[source]

convert the Submission class instance to a dictionary.

Parameters
if_staticbool

whether dump the job runtime infomation (like job_id, job_state, fail_count) to the dictionary.

Returns
submission_dictdict

the dictionary converted from the Submission class instance

classmethod submission_from_json(json_file_name='submission.json')[source]
submission_to_json()[source]
try_recover_from_json()[source]
update_submission_state()[source]

check whether all the jobs in the submission.

Notes

this method will not handle unexpected (like resubmit terminated) job state in the submission.

upload_jobs()[source]
class dpdispatcher.submission.Task(command, task_work_path, forward_files=[], backward_files=[], outlog='log', errlog='err')[source]

Bases: object

A task is a sequential command to be executed, as well as the files it depends on to transmit forward and backward.

Parameters
commandStr

the command to be executed.

task_work_pathPath

the directory of each file where the files are dependent on.

forward_fileslist of Path

the files to be transmitted to remote machine before the command execute.

backward_fileslist of Path

the files to be transmitted from remote machine after the comand finished.

outlogStr

the filename to which command redirect stdout

errlogStr

the filename to which command redirect stderr

Methods

deserialize(task_dict)

convert the task_dict to a Task class object

arginfo

get_hash

load_from_dict

load_from_json

serialize

static arginfo()[source]
classmethod deserialize(task_dict)[source]

convert the task_dict to a Task class object

Parameters
task_dictdict

the dictionary which contains the task information

Returns
taskTask

the Task class instance converted from the task_dict

get_hash()[source]
classmethod load_from_dict(task_dict: dict) Task[source]
classmethod load_from_json(json_file)[source]
serialize()[source]

dpdispatcher.utils module

dpdispatcher.utils.generate_totp(secret: str, period: int = 30, token_length: int = 6) int[source]

Generate time-based one time password (TOTP) from the secret.

Some HPCs use TOTP for two-factor authentication for safety.

Parameters
secret: str

The encoded secret provided by the HPC. It’s usually extracted from a 2D code and base32 encoded.

period: int, default=30

Time period where the code is valid in seconds.

token_length: int, default=6

The token length.

Returns
token: int

The generated token.

References

https://github.com/lepture/otpauth/blob/49914d83d36dbcd33c9e26f65002b21ce09a6303/otpauth.py#L143-L160

dpdispatcher.utils.get_sha256(filename)[source]

Get sha256 of a file.

Parameters
filename: str

The filename.

Returns
sha256: str

The sha256.

dpdispatcher.utils.rsync(from_file: str, to_file: str)[source]

Call rsync to transfer files.

Parameters
from_file: str

SRC

to_file: str

DEST

Raises
RuntimeError

when return code is not 0

dpdispatcher.utils.run_cmd_with_all_output(cmd, shell=True)[source]

Running the DeePMD-kit on the Expanse cluster

Expanse is a cluster operated by the San Diego Supercomputer Center. Here we provide an example to run jobs on the expanse.

The machine parameters are provided below. Expanse uses the SLURM workload manager for job scheduling. remote_root has been created in advance. It’s worth metioned that we do not recommend to use the password, so SSH keys are used instead to improve security.

 1{
 2  "batch_type": "Slurm",
 3  "local_root": "./",
 4  "remote_root": "/expanse/lustre/scratch/njzjz/temp_project/dpgen_workdir",
 5  "clean_asynchronously": true,
 6  "context_type": "SSHContext",
 7  "remote_profile": {
 8    "hostname": "login.expanse.sdsc.edu",
 9    "username": "njzjz",
10    "port": 22
11  }
12}

Expanse’s standard compute nodes are each powered by two 64-core AMD EPYC 7742 processors and contain 256 GB of DDR4 memory. Here, we request one node with 32 cores and 16 GB memory from the shared partition. Expanse does not support --gres=gpu:0 command, so we use custom_gpu_line to customize the statement.

 1{
 2  "number_node": 1,
 3  "cpu_per_node": 1,
 4  "gpu_per_node": 0,
 5  "queue_name": "shared",
 6  "group_size": 1,
 7  "custom_flags": [
 8    "#SBATCH -c 32",
 9    "#SBATCH --mem=16G",
10    "#SBATCH --time=48:00:00",
11    "#SBATCH --account=rut149",
12    "#SBATCH --requeue"
13  ],
14  "source_list": [
15    "activate /home/njzjz/deepmd-kit"
16  ],
17  "envs": {
18    "OMP_NUM_THREADS": 4,
19    "TF_INTRA_OP_PARALLELISM_THREADS": 4,
20    "TF_INTER_OP_PARALLELISM_THREADS": 8,
21    "DP_AUTO_PARALLELIZATION": 1
22  },
23  "batch_type": "Slurm",
24  "kwargs": {
25    "custom_gpu_line": "#SBATCH --gpus=0"
26  }
27}

The following task parameter runs a DeePMD-kit task, forwarding an input file and backwarding graph files. Here, the data set will be used among all the tasks, so it is not included in the forward_files. Instead, it should be included in the submission’s forward_common_files.

 1{
 2    "command": "dp train input.json && dp freeze && dp compress",
 3    "task_work_path": "model1/",
 4    "forward_files": [
 5      "input.json"
 6    ],
 7    "backward_files": [
 8      "frozen_model.pb",
 9      "frozen_model_compressed.pb"
10    ],
11    "outlog": "log",
12    "errlog": "err"
13}

Running Gaussian 16 with failure allowed

Typically, a task will retry three times if the exit code is not zero. Sometimes, one may allow non-zero code. For example, when running large amounts of Gaussian 16 single-point calculation tasks, some of the Gaussian 16 tasks may throw SCF errors and return a non-zero code. One can append ||: to the command:

 1{
 2    "command": "g16 < input > output ||:",
 3    "task_work_path": "p1/",
 4    "forward_files": [
 5      "input"
 6    ],
 7    "backward_files": [
 8      "output"
 9    ]
10}

This command ensures the task will always provide zero code.

Running multiple MD tasks on a GPU workstation

In this example, we are going to show how to run multiple MD tasks on a GPU workstation. This workstation does not install any job scheduling packages installed, so we will use Shell as batch_type.

 1{
 2  "batch_type": "Shell",
 3  "local_root": "./",
 4  "remote_root": "/data2/jinzhe/dpgen_workdir",
 5  "clean_asynchronously": true,
 6  "context_type": "SSHContext",
 7  "remote_profile": {
 8    "hostname": "mandu.iqb.rutgers.edu",
 9    "username": "jz748",
10    "port": 22
11  }
12}

The workstation has 48 cores of CPUs and 8 RTX3090 cards. Here we hope each card runs 6 tasks at the same time, as each task does not consume too many GPU resources. Thus, strategy/if_cuda_multi_devices is set to true and para_deg is set to 6.

 1{
 2  "number_node": 1,
 3  "cpu_per_node": 48,
 4  "gpu_per_node": 8,
 5  "queue_name": "shell",
 6  "group_size": 0,
 7  "strategy": {
 8    "if_cuda_multi_devices": true
 9  },
10  "source_list": [
11    "activate /home/jz748/deepmd-kit"
12  ],
13  "envs": {
14    "OMP_NUM_THREADS": 1,
15    "TF_INTRA_OP_PARALLELISM_THREADS": 1,
16    "TF_INTER_OP_PARALLELISM_THREADS": 1
17  },
18  "para_deg": 6
19}

Note that group_size should be set to 0 (means infinity) to ensure there is only one job and avoid running multiple jobs at the same time.

Indices and tables