DPDispatcher’s documentation
DPDispatcher is a Python package used to generate HPC (High Performance Computing) scheduler systems (Slurm/PBS/LSF/dpcloudserver) jobs input scripts and submit these scripts to HPC systems and poke until they finish.
DPDispatcher will monitor (poke) until these jobs finish and download the results files (if these jobs is running on remote systems connected by SSH).
Install DPDispatcher
DPDispatcher can installed by pip
:
pip install dpdispatcher
Getting Started
DPDispatcher provides the following classes:
Task
class, which represents a command to be run on batch job system, as well as the essential files need by the command.Submission
class, which represents a collection of jobs defined by the HPC system. And there may be common files to be uploaded by them. DPDispatcher will create and submit these jobs when asubmission
instance executerun_submission
method. This method will poke until the jobs finish and return.Job
class, a class used bySubmission
class, which represents a job on the HPC system.Submission
will generatejob
s’ submitting scripts used by HPC systems automatically with theTask
andResources
Resources
class, which represents the computing resources for each job within asubmission
.
You can use DPDispatcher in a Python script to submit five tasks:
from dpdispatcher import Machine, Resources, Task, Submission
machine = Machine.load_from_json("machine.json")
resources = Resources.load_from_json("resources.json")
task0 = Task.load_from_json("task.json")
task1 = Task(
command="cat example.txt",
task_work_path="dir1/",
forward_files=["example.txt"],
backward_files=["out.txt"],
outlog="out.txt",
)
task2 = Task(
command="cat example.txt",
task_work_path="dir2/",
forward_files=["example.txt"],
backward_files=["out.txt"],
outlog="out.txt",
)
task3 = Task(
command="cat example.txt",
task_work_path="dir3/",
forward_files=["example.txt"],
backward_files=["out.txt"],
outlog="out.txt",
)
task4 = Task(
command="cat example.txt",
task_work_path="dir4/",
forward_files=["example.txt"],
backward_files=["out.txt"],
outlog="out.txt",
)
task_list = [task0, task1, task2, task3, task4]
submission = Submission(
work_base="lammps_md_300K_5GPa/",
machine=machine,
resources=resources,
task_list=task_list,
forward_common_files=["graph.pb"],
backward_common_files=[],
)
submission.run_submission()
where machine.json
is
{
"batch_type": "Slurm",
"context_type": "SSHContext",
"local_root" : "/home/user123/workplace/22_new_project/",
"remote_root": "/home/user123/dpdispatcher_work_dir/",
"remote_profile":{
"hostname": "39.106.xx.xxx",
"username": "user123",
"port": 22,
"timeout": 10
}
}
resources.json
is
{
"number_node": 1,
"cpu_per_node": 4,
"gpu_per_node": 1,
"queue_name": "GPUV100",
"group_size": 5
}
and task.json
is
{
"command": "lmp -i input.lammps",
"task_work_path": "bct-0/",
"forward_files": [
"conf.lmp",
"input.lammps"
],
"backward_files": [
"log.lammps"
],
"outlog": "log",
"errlog": "err",
}
You may also submit mutiple GPU jobs: complex resources example
resources = Resources(
number_node=1,
cpu_per_node=4,
gpu_per_node=2,
queue_name="GPU_2080Ti",
group_size=4,
custom_flags=[
"#SBATCH --nice=100",
"#SBATCH --time=24:00:00"
],
strategy={
# used when you want to add CUDA_VISIBLE_DIVECES automatically
"if_cuda_multi_devices": True
},
para_deg=1,
# will unload these modules before running tasks
module_unload_list=["singularity"],
# will load these modules before running tasks
module_list=["singularity/3.0.0"],
# will source the environment files before running tasks
source_list=["./slurm_test.env"],
# the envs option is used to export environment variables
# And it will generate a line like below.
# export DP_DISPATCHER_EXPORT=test_foo_bar_baz
envs={"DP_DISPATCHER_EXPORT": "test_foo_bar_baz"},
)
The details of parameters can be found in Machine Parameters, Resources Parameters, and Task Parameters.
Supported contexts
Context is the way to connect to the remote server. One needs to set context_type
to one of the following values:
LazyLocal
context_type
: LazyLocal
LazyLocal
directly runs jobs in the local server and local directory.
Local
context_type
: Local
Local
runs jobs in the local server, but in a different directory. Files will be copied to the remote directory before jobs start and copied back after jobs finish.
SSH
context_type
: SSH
SSH
runs jobs in a remote server. Files will be copied to the remote directory via SSH channels before jobs start and copied back after jobs finish. To use SSH, one needs to provide necessary parameters in remote_profile
, such as username
and hostname
.
It’s suggested to generate SSH keys and transfer the public key to the remote server in advance, which is more secure than password authentication.
Note that SSH
context is non-login, so bash_profile
files will not be executed.
Bohrium
context_type
: Bohrium
Bohrium is the cloud platform for scientific computing. Read Bohrium documentation for details. To use Bohrium, one needs to provide necessary parameters in remote_profile
.
HDFS
context_type
: HDFS
The Hadoop Distributed File System (HDFS) is a distributed file system. Read Support DPDispatcher on Yarn for details.
Supported batch job systems
Batch job system is a system to process batch jobs. One needs to set batch_type
to one of the following values:
Bash
batch_type
: Shell
When batch_type
is set to Shell
, dpdispatcher will generate a bash script to process jobs. No extra packages are required for Shell
.
Due to lack of scheduling system, Shell
runs all jobs at the same time. To avoid running multiple jobs at the same time, one could set group_size
to 0
(means infinity) to generate only one job with multiple tasks.
Slurm
batch_type
: Slurm
, SlurmJobArray
Slurm is a job scheduling system used by lots of HPCs. One needs to make sure slurm has been setup in the remote server and the related environment is activated.
When SlurmJobArray
is used, dpdispatcher submits Slurm jobs with job arrays. In this way, a dpdispatcher task
maps to a Slurm job and a dpdispatcher job
maps to a Slurm job array. Millions of Slurm jobs can be submitted quickly and Slurm can execute all Slurm jobs at the same time. One can use group_size
to control how many Slurm jobs are contained in a Slurm job array.
OpenPBS or PBSPro
batch_type
: PBS
OpenPBS is an open-source job scheduling of the Linux Foundation and PBS Profession is its commercial solution. One needs to make sure OpenPBS has been setup in the remote server and the related environment is activated.
Note that do not use PBS
for Torque.
TORQUE
batch_type
: Torque
The Terascale Open-source Resource and QUEue Manager (TORQUE) is a distributed resource manager based on standard OpenPBS. However, not all OpenPBS flags are still supported in TORQUE. One needs to make sure TORQUE has been setup in the remote server and the related environment is activated.
LSF
batch_type
: LSF
IBM Spectrum LSF Suites is a comprehensive workload management solution used by HPCs. One needs to make sure LSF has been setup in the remote server and the related environment is activated.
Bohrium
batch_type
: Bohrium
Bohrium is the cloud platform for scientific computing. Read Bohrium documentation for details.
DistributedShell
batch_type
: DistributedShell
DistributedShell
is used to submit yarn jobs. Read Support DPDispatcher on Yarn for details.
Machine parameters
Note
One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file.
- machine:
- type:
dict
argument path:machine
- batch_type:
- type:
str
argument path:machine/batch_type
The batch job system type. Option: Bohrium, DistributedShell, Shell, Slurm, SlurmJobArray, LSF, Torque, PBS
- local_root:
- type:
NoneType
|str
argument path:machine/local_root
The dir where the tasks and relating files locate. Typically the project dir.
- remote_root:
- type:
NoneType
|str
, optionalargument path:machine/remote_root
The dir where the tasks are executed on the remote machine. Only needed when context is not lazy-local.
- clean_asynchronously:
- type:
bool
, optional, default:False
argument path:machine/clean_asynchronously
Clean the remote directory asynchronously after the job finishes.
Depending on the value of context_type, different sub args are accepted.
- context_type:
- type:
str
(flag key)argument path:machine/context_type
The connection used to remote machine. Option: HDFSContext, LazyLocalContext, SSHContext, LocalContext, BohriumContext
When context_type is set to
BohriumContext
(or its aliasesbohriumcontext
,Bohrium
,bohrium
,DpCloudServerContext
,dpcloudservercontext
,DpCloudServer
,dpcloudserver
,LebesgueContext
,lebesguecontext
,Lebesgue
,lebesgue
):- remote_profile:
- type:
dict
argument path:machine[BohriumContext]/remote_profile
The information used to maintain the connection with remote machine.
- email:
- type:
str
, optionalargument path:machine[BohriumContext]/remote_profile/email
Email
- password:
- type:
str
argument path:machine[BohriumContext]/remote_profile/password
Password
- program_id:
- type:
int
, alias: project_idargument path:machine[BohriumContext]/remote_profile/program_id
Program ID
- keep_backup:
- type:
bool
, optionalargument path:machine[BohriumContext]/remote_profile/keep_backup
keep download and upload zip
- input_data:
- type:
dict
argument path:machine[BohriumContext]/remote_profile/input_data
Configuration of job
When context_type is set to
HDFSContext
(or its aliaseshdfscontext
,HDFS
,hdfs
):- remote_profile:
- type:
dict
, optionalargument path:machine[HDFSContext]/remote_profile
The information used to maintain the connection with remote machine. This field is empty for this context.
When context_type is set to
LocalContext
(or its aliaseslocalcontext
,Local
,local
):- remote_profile:
- type:
dict
, optionalargument path:machine[LocalContext]/remote_profile
The information used to maintain the connection with remote machine. This field is empty for this context.
When context_type is set to
SSHContext
(or its aliasessshcontext
,SSH
,ssh
):- remote_profile:
- type:
dict
argument path:machine[SSHContext]/remote_profile
The information used to maintain the connection with remote machine.
- hostname:
- type:
str
argument path:machine[SSHContext]/remote_profile/hostname
hostname or ip of ssh connection.
- username:
- type:
str
argument path:machine[SSHContext]/remote_profile/username
username of target linux system
- password:
- type:
str
, optionalargument path:machine[SSHContext]/remote_profile/password
(deprecated) password of linux system. Please use SSH keys instead to improve security.
- port:
- type:
int
, optional, default:22
argument path:machine[SSHContext]/remote_profile/port
ssh connection port.
- key_filename:
- type:
NoneType
|str
, optional, default:None
argument path:machine[SSHContext]/remote_profile/key_filename
key filename used by ssh connection. If left None, find key in ~/.ssh or use password for login
- passphrase:
- type:
NoneType
|str
, optional, default:None
argument path:machine[SSHContext]/remote_profile/passphrase
passphrase of key used by ssh connection
- timeout:
- type:
int
, optional, default:10
argument path:machine[SSHContext]/remote_profile/timeout
timeout of ssh connection
- totp_secret:
- type:
NoneType
|str
, optional, default:None
argument path:machine[SSHContext]/remote_profile/totp_secret
Time-based one time password secret. It should be a base32-encoded string extracted from the 2D code.
- tar_compress:
- type:
bool
, optional, default:True
argument path:machine[SSHContext]/remote_profile/tar_compress
The archive will be compressed in upload and download if it is True. If not, compression will be skipped.
- look_for_keys:
- type:
bool
, optional, default:True
argument path:machine[SSHContext]/remote_profile/look_for_keys
enable searching for discoverable private key files in ~/.ssh/
When context_type is set to
LazyLocalContext
(or its aliaseslazylocalcontext
,LazyLocal
,lazylocal
):- remote_profile:
- type:
dict
, optionalargument path:machine[LazyLocalContext]/remote_profile
The information used to maintain the connection with remote machine. This field is empty for this context.
Resources parameters
Note
One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file for.
- resources:
- type:
dict
argument path:resources
- number_node:
- type:
int
, optional, default:1
argument path:resources/number_node
The number of node need for each job
- cpu_per_node:
- type:
int
, optional, default:1
argument path:resources/cpu_per_node
cpu numbers of each node assigned to each job.
- gpu_per_node:
- type:
int
, optional, default:0
argument path:resources/gpu_per_node
gpu numbers of each node assigned to each job.
- queue_name:
- type:
str
, optional, default: (empty string)argument path:resources/queue_name
The queue name of batch job scheduler system.
- group_size:
- type:
int
argument path:resources/group_size
The number of tasks in a job. 0 means infinity.
- custom_flags:
- type:
list
, optionalargument path:resources/custom_flags
The extra lines pass to job submitting script header
- strategy:
- type:
dict
, optionalargument path:resources/strategy
strategies we use to generation job submitting scripts.
- if_cuda_multi_devices:
- type:
bool
, optional, default:False
argument path:resources/strategy/if_cuda_multi_devices
If there are multiple nvidia GPUS on the node, and we want to assign the tasks to different GPUS.If true, dpdispatcher will manually export environment variable CUDA_VISIBLE_DEVICES to different task.Usually, this option will be used with Task.task_need_resources variable simultaneously.
- ratio_unfinished:
- type:
float
, optional, default:0.0
argument path:resources/strategy/ratio_unfinished
The ratio of jobs that can be unfinished.
- para_deg:
- type:
int
, optional, default:1
argument path:resources/para_deg
Decide how many tasks will be run in parallel.
- source_list:
- type:
list
, optional, default:[]
argument path:resources/source_list
The env file to be sourced before the command execution.
- module_purge:
- type:
bool
, optional, default:False
argument path:resources/module_purge
Remove all modules on HPC system before module load (module_list)
- module_unload_list:
- type:
list
, optional, default:[]
argument path:resources/module_unload_list
The modules to be unloaded on HPC system before submitting jobs
- module_list:
- type:
list
, optional, default:[]
argument path:resources/module_list
The modules to be loaded on HPC system before submitting jobs
- envs:
- type:
dict
, optional, default:{}
argument path:resources/envs
The environment variables to be exported on before submitting jobs
- prepend_script:
- type:
list
, optional, default:[]
argument path:resources/prepend_script
Optional script run before jobs submitted.
- append_script:
- type:
list
, optional, default:[]
argument path:resources/append_script
Optional script run after jobs submitted.
- wait_time:
- type:
int
|float
, optional, default:0
argument path:resources/wait_time
The waitting time in second after a single task submitted
Depending on the value of batch_type, different sub args are accepted.
- batch_type:
- type:
str
(flag key)argument path:resources/batch_type
The batch job system type loaded from machine/batch_type.
When batch_type is set to
Torque
(or its aliastorque
):- kwargs:
- type:
dict
, optionalargument path:resources[Torque]/kwargs
This field is empty for this batch.
When batch_type is set to
Shell
(or its aliasshell
):- kwargs:
- type:
dict
, optionalargument path:resources[Shell]/kwargs
This field is empty for this batch.
When batch_type is set to
Slurm
(or its aliasslurm
):- kwargs:
- type:
dict
, optionalargument path:resources[Slurm]/kwargs
Extra arguments.
- custom_gpu_line:
- type:
NoneType
|str
, optional, default:None
argument path:resources[Slurm]/kwargs/custom_gpu_line
Custom GPU configuration, starting with #SBATCH
When batch_type is set to
Bohrium
(or its aliasesbohrium
,Lebesgue
,lebesgue
,DpCloudServer
,dpcloudserver
):- kwargs:
- type:
dict
, optionalargument path:resources[Bohrium]/kwargs
This field is empty for this batch.
When batch_type is set to
PBS
(or its aliaspbs
):- kwargs:
- type:
dict
, optionalargument path:resources[PBS]/kwargs
This field is empty for this batch.
When batch_type is set to
SlurmJobArray
(or its aliasslurmjobarray
):- kwargs:
- type:
dict
, optionalargument path:resources[SlurmJobArray]/kwargs
Extra arguments.
- custom_gpu_line:
- type:
NoneType
|str
, optional, default:None
argument path:resources[SlurmJobArray]/kwargs/custom_gpu_line
Custom GPU configuration, starting with #SBATCH
When batch_type is set to
DistributedShell
(or its aliasdistributedshell
):- kwargs:
- type:
dict
, optionalargument path:resources[DistributedShell]/kwargs
This field is empty for this batch.
When batch_type is set to
LSF
(or its aliaslsf
):- kwargs:
- type:
dict
argument path:resources[LSF]/kwargs
Extra arguments.
- gpu_usage:
- type:
bool
, optional, default:False
argument path:resources[LSF]/kwargs/gpu_usage
Choosing if GPU is used in the calculation step.
- gpu_new_syntax:
- type:
bool
, optional, default:False
argument path:resources[LSF]/kwargs/gpu_new_syntax
For LFS >= 10.1.0.3, new option -gpu for #BSUB could be used. If False, and old syntax would be used.
- gpu_exclusive:
- type:
bool
, optional, default:True
argument path:resources[LSF]/kwargs/gpu_exclusive
Only take effect when new syntax enabled. Control whether submit tasks in exclusive way for GPU.
- custom_gpu_line:
- type:
NoneType
|str
, optional, default:None
argument path:resources[LSF]/kwargs/custom_gpu_line
Custom GPU configuration, starting with #BSUB
Task parameters
Note
One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file.
- task:
- type:
dict
argument path:task
- command:
- type:
str
argument path:task/command
A command to be executed of this task. The expected return code is 0.
- task_work_path:
- type:
str
argument path:task/task_work_path
The dir where the command to be executed.
- forward_files:
- type:
list
argument path:task/forward_files
The files to be uploaded in task_work_path before the task exectued.
- backward_files:
- type:
list
argument path:task/backward_files
The files to be download to local_root in task_work_path after the task finished
- outlog:
- type:
NoneType
|str
argument path:task/outlog
The out log file name. redirect from stdout
- errlog:
- type:
NoneType
|str
argument path:task/errlog
The err log file name. redirect from stderr
DPDispatcher API
dpdispatcher package
Subpackages
dpdispatcher.dpcloudserver package
Submodules
dpdispatcher.dpcloudserver.client module
dpdispatcher.dpcloudserver.config module
dpdispatcher.dpcloudserver.retcode module
- class dpdispatcher.dpcloudserver.retcode.RETCODE[source]
Bases:
object
- DATAERR = '2002'
- DBERR = '2000'
- IOERR = '2003'
- NODATA = '2300'
- OK = '0000'
- PARAMERR = '2101'
- PWDERR = '2104'
- REQERR = '2200'
- ROLEERR = '2103'
- THIRDERR = '2001'
- TOKENINVALID = '2100'
- UNDERDEBUG = '2301'
- UNKOWNERR = '2400'
- USERERR = '2102'
- VERIFYERR = '2105'
dpdispatcher.dpcloudserver.temp_test module
dpdispatcher.dpcloudserver.zip_file module
Submodules
dpdispatcher.JobStatus module
dpdispatcher.arginfo module
dpdispatcher.base_context module
- class dpdispatcher.base_context.BaseContext(*args, **kwargs)[source]
Bases:
object
Methods
Generate the machine arginfo.
Generate the machine subfields.
bind_submission
check_finish
clean
download
kill
load_from_dict
read_file
upload
write_file
- classmethod machine_arginfo() Argument [source]
Generate the machine arginfo.
- Returns:
- Argument
machine arginfo
- classmethod machine_subfields() List[Argument] [source]
Generate the machine subfields.
- Returns:
- list[Argument]
machine subfields
- options = {'BohriumContext', 'HDFSContext', 'LazyLocalContext', 'LocalContext', 'SSHContext'}
- subclasses_dict = {'Bohrium': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'BohriumContext': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'DpCloudServer': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'DpCloudServerContext': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'HDFS': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'HDFSContext': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'LazyLocal': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'LazyLocalContext': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'Lebesgue': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'LebesgueContext': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'Local': <class 'dpdispatcher.local_context.LocalContext'>, 'LocalContext': <class 'dpdispatcher.local_context.LocalContext'>, 'SSH': <class 'dpdispatcher.ssh_context.SSHContext'>, 'SSHContext': <class 'dpdispatcher.ssh_context.SSHContext'>, 'bohrium': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'bohriumcontext': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'dpcloudserver': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'dpcloudservercontext': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'hdfs': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'hdfscontext': <class 'dpdispatcher.hdfs_context.HDFSContext'>, 'lazylocal': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'lazylocalcontext': <class 'dpdispatcher.lazy_local_context.LazyLocalContext'>, 'lebesgue': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'lebesguecontext': <class 'dpdispatcher.dp_cloud_server_context.BohriumContext'>, 'local': <class 'dpdispatcher.local_context.LocalContext'>, 'localcontext': <class 'dpdispatcher.local_context.LocalContext'>, 'ssh': <class 'dpdispatcher.ssh_context.SSHContext'>, 'sshcontext': <class 'dpdispatcher.ssh_context.SSHContext'>}
dpdispatcher.distributed_shell module
- class dpdispatcher.distributed_shell.DistributedShell(*args, **kwargs)[source]
Bases:
Machine
Methods
do_submit
(job)submit th job to yarn using distributed shell
resources_arginfo
()Generate the resources arginfo.
resources_subfields
()Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
dpdispatcher.dp_cloud_server module
- class dpdispatcher.dp_cloud_server.Bohrium(*args, **kwargs)[source]
Bases:
Machine
Methods
do_submit
(job)submit a single job, assuming that no job is running there.
resources_arginfo
()Generate the resources arginfo.
resources_subfields
()Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
gen_command_env_cuda_devices
gen_local_script
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
map_dp_job_state
serialize
sub_script_cmd
sub_script_head
dpdispatcher.dp_cloud_server_context module
- class dpdispatcher.dp_cloud_server_context.BohriumContext(*args, **kwargs)[source]
Bases:
BaseContext
Methods
machine_arginfo
()Generate the machine arginfo.
Generate the machine subfields.
bind_submission
check_file_exists
check_finish
check_home_file_exits
clean
download
kill
load_from_dict
read_file
read_home_file
upload
upload_job
write_file
write_home_file
write_local_file
- dpdispatcher.dp_cloud_server_context.DpCloudServerContext
alias of
BohriumContext
- dpdispatcher.dp_cloud_server_context.LebesgueContext
alias of
BohriumContext
dpdispatcher.dpdisp module
dpdispatcher.hdfs_cli module
- class dpdispatcher.hdfs_cli.HDFS[source]
Bases:
object
Fundamental class for HDFS basic manipulation
Methods
copy_from_local
(local_path, to_uri)Returns: True on success Raises: on unexpected error
exists
(uri)Check existence of hdfs uri Returns: True on exists Raises: RuntimeError
mkdir
(uri)Make new hdfs directory Returns: True on success Raises: RuntimeError
remove
(uri)Check existence of hdfs uri Returns: True on exists Raises: RuntimeError
copy_to_local
move
read_hdfs_file
- static copy_from_local(local_path, to_uri)[source]
Returns: True on success Raises: on unexpected error
dpdispatcher.hdfs_context module
- class dpdispatcher.hdfs_context.HDFSContext(*args, **kwargs)[source]
Bases:
BaseContext
Methods
check_file_exists
(fname)check whether the given file exists, often used in checking whether the belonging job has finished
download
(submission[, check_exists, ...])download backward files from HDFS root dir
machine_arginfo
()Generate the machine arginfo.
machine_subfields
()Generate the machine subfields.
upload
(submission[, dereference])upload forward files and forward command files to HDFS root dir
bind_submission
check_finish
clean
get_job_root
kill
load_from_dict
read_file
write_file
- check_file_exists(fname)[source]
check whether the given file exists, often used in checking whether the belonging job has finished
- Parameters:
- fnamestring
file name to be checked
- Returns:
- status: boolean
- download(submission, check_exists=False, mark_failure=True, back_error=False)[source]
download backward files from HDFS root dir
- Parameters:
- submissionSubmission class instance
represents a collection of tasks, such as backward file names
- Returns:
- none
dpdispatcher.lazy_local_context module
- class dpdispatcher.lazy_local_context.LazyLocalContext(*args, **kwargs)[source]
Bases:
BaseContext
Methods
machine_arginfo
()Generate the machine arginfo.
machine_subfields
()Generate the machine subfields.
bind_submission
block_call
block_checkcall
call
check_file_exists
check_finish
clean
download
get_job_root
get_return
kill
load_from_dict
read_file
upload
write_file
dpdispatcher.local_context module
- class dpdispatcher.local_context.LocalContext(*args, **kwargs)[source]
Bases:
BaseContext
Methods
machine_arginfo
()Generate the machine arginfo.
machine_subfields
()Generate the machine subfields.
bind_submission
block_call
block_checkcall
call
check_file_exists
check_finish
clean
download
get_job_root
get_return
kill
load_from_dict
read_file
upload
write_file
dpdispatcher.lsf module
- class dpdispatcher.lsf.LSF(*args, **kwargs)[source]
Bases:
Machine
LSF batch
Methods
default_resources
(resources)resources_arginfo
()Generate the resources arginfo.
Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
deserialize
do_submit
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
- check_status(**kwargs)
- do_submit(**kwargs)
submit a single job, assuming that no job is running there.
dpdispatcher.machine module
- class dpdispatcher.machine.Machine(*args, **kwargs)[source]
Bases:
object
A machine is used to handle the connection with remote machines.
- Parameters:
- contextSubClass derived from BaseContext
The context is used to mainatin the connection with remote machine.
Methods
do_submit
(job)submit a single job, assuming that no job is running there.
Generate the resources arginfo.
Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
- options = {'Bohrium', 'DistributedShell', 'LSF', 'PBS', 'Shell', 'Slurm', 'SlurmJobArray', 'Torque'}
- classmethod resources_arginfo() Argument [source]
Generate the resources arginfo.
- Returns:
- Argument
resources arginfo
- classmethod resources_subfields() List[Argument] [source]
Generate the resources subfields.
- Returns:
- list[Argument]
resources subfields
- subclasses_dict = {'Bohrium': <class 'dpdispatcher.dp_cloud_server.Bohrium'>, 'DistributedShell': <class 'dpdispatcher.distributed_shell.DistributedShell'>, 'DpCloudServer': <class 'dpdispatcher.dp_cloud_server.Bohrium'>, 'LSF': <class 'dpdispatcher.lsf.LSF'>, 'Lebesgue': <class 'dpdispatcher.dp_cloud_server.Bohrium'>, 'PBS': <class 'dpdispatcher.pbs.PBS'>, 'Shell': <class 'dpdispatcher.shell.Shell'>, 'Slurm': <class 'dpdispatcher.slurm.Slurm'>, 'SlurmJobArray': <class 'dpdispatcher.slurm.SlurmJobArray'>, 'Torque': <class 'dpdispatcher.pbs.Torque'>, 'bohrium': <class 'dpdispatcher.dp_cloud_server.Bohrium'>, 'distributedshell': <class 'dpdispatcher.distributed_shell.DistributedShell'>, 'dpcloudserver': <class 'dpdispatcher.dp_cloud_server.Bohrium'>, 'lebesgue': <class 'dpdispatcher.dp_cloud_server.Bohrium'>, 'lsf': <class 'dpdispatcher.lsf.LSF'>, 'pbs': <class 'dpdispatcher.pbs.PBS'>, 'shell': <class 'dpdispatcher.shell.Shell'>, 'slurm': <class 'dpdispatcher.slurm.Slurm'>, 'slurmjobarray': <class 'dpdispatcher.slurm.SlurmJobArray'>, 'torque': <class 'dpdispatcher.pbs.Torque'>}
dpdispatcher.pbs module
- class dpdispatcher.pbs.PBS(*args, **kwargs)[source]
Bases:
Machine
Methods
do_submit
(job)submit a single job, assuming that no job is running there.
resources_arginfo
()Generate the resources arginfo.
resources_subfields
()Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
- class dpdispatcher.pbs.Torque(*args, **kwargs)[source]
Bases:
PBS
Methods
do_submit
(job)submit a single job, assuming that no job is running there.
resources_arginfo
()Generate the resources arginfo.
resources_subfields
()Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
dpdispatcher.shell module
- class dpdispatcher.shell.Shell(*args, **kwargs)[source]
Bases:
Machine
Methods
do_submit
(job)submit a single job, assuming that no job is running there.
resources_arginfo
()Generate the resources arginfo.
resources_subfields
()Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
dpdispatcher.slurm module
- class dpdispatcher.slurm.Slurm(*args, **kwargs)[source]
Bases:
Machine
Methods
resources_arginfo
()Generate the resources arginfo.
Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
do_submit
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
- check_status(**kwargs)
- do_submit(**kwargs)
submit a single job, assuming that no job is running there.
- class dpdispatcher.slurm.SlurmJobArray(*args, **kwargs)[source]
Bases:
Slurm
Slurm with job array enabled for multiple tasks in a job
Methods
resources_arginfo
()Generate the resources arginfo.
resources_subfields
()Generate the resources subfields.
arginfo
bind_context
check_finish_tag
check_if_recover
check_status
default_resources
deserialize
do_submit
gen_command_env_cuda_devices
gen_script
gen_script_command
gen_script_custom_flags_lines
gen_script_end
gen_script_env
gen_script_header
gen_script_wait
load_from_dict
load_from_json
serialize
sub_script_cmd
sub_script_head
- check_status(**kwargs)
dpdispatcher.ssh_context module
- class dpdispatcher.ssh_context.SSHContext(*args, **kwargs)[source]
Bases:
BaseContext
- Attributes:
- sftp
- ssh
Methods
block_checkcall
(cmd[, asynchronously, ...])Run command with arguments.
machine_arginfo
()Generate the machine arginfo.
Generate the machine subfields.
bind_submission
block_call
call
check_file_exists
check_finish
clean
close
download
get_job_root
get_return
kill
load_from_dict
read_file
upload
write_file
- block_checkcall(cmd, asynchronously=False, stderr_whitelist=None)[source]
Run command with arguments. Wait for command to complete. If the return code was zero then return, otherwise raise RuntimeError.
- Parameters:
- cmdstr
The command to run.
- asynchronouslybool, optional, default=False
Run command asynchronously. If True, nohup will be used to run the command.
- classmethod machine_subfields() List[Argument] [source]
Generate the machine subfields.
- Returns:
- list[Argument]
machine subfields
- property sftp
- property ssh
- class dpdispatcher.ssh_context.SSHSession(hostname, username, password=None, port=22, key_filename=None, passphrase=None, timeout=10, totp_secret=None, tar_compress=True, look_for_keys=True)[source]
Bases:
object
- Attributes:
- remote
- rsync_available
sftp
Returns sftp.
Methods
inter_handler
(title, instructions, prompt_list)inter_handler: the callback for paramiko.transport.auth_interactive
arginfo
close
ensure_alive
exec_command
get
get_ssh_client
put
- exec_command(**kwargs)
- inter_handler(title, instructions, prompt_list)[source]
inter_handler: the callback for paramiko.transport.auth_interactive
The prototype for this function is defined by Paramiko, so all of the arguments need to be there, even though we don’t use ‘title’ or ‘instructions’.
The function is expected to return a tuple of data containing the responses to the provided prompts. Experimental results suggests that there will be one call of this function per prompt, but the mechanism allows for multiple prompts to be sent at once, so it’s best to assume that that can happen.
Since tuples can’t really be built on the fly, the responses are collected in a list which is then converted to a tuple when it’s time to return a value.
Experiments suggest that the username prompt never happens. This makes sense, but the Username prompt is included here just in case.
- property sftp
Returns sftp. Open a new one if not existing.
dpdispatcher.submission module
- class dpdispatcher.submission.Job(job_task_list, *, resources, machine=None)[source]
Bases:
object
Job is generated by Submission automatically. A job ususally has many tasks and it may request computing resources from job scheduler systems. Each Job can generate a script file to be submitted to the job scheduler system or executed locally.
- Parameters:
- job_task_listlist of Task
the tasks belonging to the job
- resourcesResources
the machine resources. Passed from Submission when it constructs jobs.
- machinemachine
machine object to execute the job. Passed from Submission when it constructs jobs.
Methods
deserialize
(job_dict[, machine])convert the job_dict to a Submission class object
get the jobs.
serialize
([if_static])convert the Task class instance to a dictionary.
get_hash
handle_unexpected_job_state
job_to_json
register_job_id
submit_job
- classmethod deserialize(job_dict, machine=None)[source]
convert the job_dict to a Submission class object
- Parameters:
- submission_dictdict
path-like, the base directory of the local tasks
- Returns:
- submissionJob
the Job class instance converted from the job_dict
- get_job_state()[source]
get the jobs. Usually, this method will query the database of slurm or pbs job scheduler system and get the results.
Notes
this method will not submit or resubmit the jobs if the job is unsubmitted.
- class dpdispatcher.submission.Resources(number_node, cpu_per_node, gpu_per_node, queue_name, group_size, *, custom_flags=[], strategy={'if_cuda_multi_devices': False, 'ratio_unfinished': 0.0}, para_deg=1, module_unload_list=[], module_purge=False, module_list=[], source_list=[], envs={}, prepend_script=[], append_script=[], wait_time=0, **kwargs)[source]
Bases:
object
Resources is used to describe the machine resources we need to do calculations.
- Parameters:
- number_nodeint
The number of node need for each job.
- cpu_per_nodeint
cpu numbers of each node.
- gpu_per_nodeint
gpu numbers of each node.
- queue_namestr
The queue name of batch job scheduler system.
- group_sizeint
The number of tasks in a job.
- custom_flagslist of Str
The extra lines pass to job submitting script header
- strategydict
strategies we use to generation job submitting scripts. if_cuda_multi_devices : bool
If there are multiple nvidia GPUS on the node, and we want to assign the tasks to different GPUS. If true, dpdispatcher will manually export environment variable CUDA_VISIBLE_DEVICES to different task. Usually, this option will be used with Task.task_need_resources variable simultaneously.
- ratio_unfinishedfloat
The ratio of jobs that can be unfinished.
- para_degint
Decide how many tasks will be run in parallel. Usually run with strategy[‘if_cuda_multi_devices’]
- source_listlist of Path
The env file to be sourced before the command execution.
- wait_timeint
The waitting time in second after a single task submitted. Default: 0.
Methods
arginfo
deserialize
load_from_dict
load_from_json
serialize
- class dpdispatcher.submission.Submission(work_base, machine=None, resources=None, forward_common_files=[], backward_common_files=[], *, task_list=[])[source]
Bases:
object
A submission represents a collection of tasks. These tasks usually locate at a common directory. And these Tasks may share common files to be uploaded and downloaded.
- Parameters:
- work_basePath
the base directory of the local tasks. It is usually the dir name of project .
- machineMachine
machine class object (for example, PBS, Slurm, Shell) to execute the jobs. The machine can still be bound after the instantiation with the bind_submission method.
- resourcesResources
the machine resources (cpu or gpu) used to generate the slurm/pbs script
- forward_common_fileslist
the common files to be uploaded to other computers before the jobs begin
- backward_common_fileslist
the common files to be downloaded from other computers after the jobs finish
- task_listlist of Task
a list of tasks to be run.
Methods
bind_machine
(machine)bind this submission to a machine.
check whether all the jobs in the submission.
deserialize
(submission_dict[, machine])convert the submission_dict to a Submission class object
After tasks register to the self.belonging_tasks, This method generate the jobs and add these jobs to self.belonging_jobs.
handle unexpected job state of the submission.
run_submission
(*[, dry_run, exit_on_submit, ...])main method to execute the submission.
serialize
([if_static])convert the Submission class instance to a dictionary.
check whether all the jobs in the submission.
check_ratio_unfinished
clean_jobs
download_jobs
get_hash
register_task
register_task_list
remove_unfinished_jobs
submission_from_json
submission_to_json
try_recover_from_json
upload_jobs
- bind_machine(machine)[source]
bind this submission to a machine. update the machine’s context remote_root and local_root.
- Parameters:
- machineMachine
the machine to bind with
- check_all_finished()[source]
check whether all the jobs in the submission.
Notes
This method will not handle unexpected job state in the submission.
- classmethod deserialize(submission_dict, machine=None)[source]
convert the submission_dict to a Submission class object
- Parameters:
- submission_dictdict
path-like, the base directory of the local tasks
- Returns:
- submissionSubmission
the Submission class instance converted from the submission_dict
- generate_jobs()[source]
After tasks register to the self.belonging_tasks, This method generate the jobs and add these jobs to self.belonging_jobs. The jobs are generated by the tasks randomly, and there are self.resources.group_size tasks in a task. Why we randomly shuffle the tasks is under the consideration of load balance. The random seed is a constant (to be concrete, 42). And this insures that the jobs are equal when we re-run the program.
- handle_unexpected_submission_state()[source]
handle unexpected job state of the submission. If the job state is unsubmitted, submit the job. If the job state is terminated (killed unexpectly), resubmit the job. If the job state is unknown, raise an error.
- run_submission(*, dry_run=False, exit_on_submit=False, clean=True)[source]
main method to execute the submission. First, check whether old Submission exists on the remote machine, and try to recover from it. Second, upload the local files to the remote machine where the tasks to be executed. Third, run the submission defined previously. Forth, wait until the tasks in the submission finished and download the result file to local directory. If dry_run is True, submission will be uploaded but not be executed and exit. If exit_on_submit is True, submission will exit.
- serialize(if_static=False)[source]
convert the Submission class instance to a dictionary.
- Parameters:
- if_staticbool
whether dump the job runtime infomation (like job_id, job_state, fail_count) to the dictionary.
- Returns:
- submission_dictdict
the dictionary converted from the Submission class instance
- class dpdispatcher.submission.Task(command, task_work_path, forward_files=[], backward_files=[], outlog='log', errlog='err')[source]
Bases:
object
A task is a sequential command to be executed, as well as the files it depends on to transmit forward and backward.
- Parameters:
- commandStr
the command to be executed.
- task_work_pathPath
the directory of each file where the files are dependent on.
- forward_fileslist of Path
the files to be transmitted to remote machine before the command execute.
- backward_fileslist of Path
the files to be transmitted from remote machine after the comand finished.
- outlogStr
the filename to which command redirect stdout
- errlogStr
the filename to which command redirect stderr
Methods
deserialize
(task_dict)convert the task_dict to a Task class object
arginfo
get_hash
load_from_dict
load_from_json
serialize
dpdispatcher.utils module
- exception dpdispatcher.utils.RetrySignal[source]
Bases:
Exception
Exception to give a signal to retry the function.
- dpdispatcher.utils.generate_totp(secret: str, period: int = 30, token_length: int = 6) str [source]
Generate time-based one time password (TOTP) from the secret.
Some HPCs use TOTP for two-factor authentication for safety.
- Parameters:
- secretstr
The encoded secret provided by the HPC. It’s usually extracted from a 2D code and base32 encoded.
- periodint, default=30
Time period where the code is valid in seconds.
- token_lengthint, default=6
The token length.
- Returns:
- token: str
The generated token.
References
- dpdispatcher.utils.get_sha256(filename)[source]
Get sha256 of a file.
- Parameters:
- filenamestr
The filename.
- Returns:
- sha256: str
The sha256.
- dpdispatcher.utils.retry(max_retry: int = 3, sleep: ~typing.Union[int, float] = 60, catch_exception: ~typing.Type[BaseException] = <class 'dpdispatcher.utils.RetrySignal'>) Callable [source]
Retry the function until it succeeds or fails for certain times.
- Parameters:
- max_retryint, default=3
The maximum retry times. If None, it will retry forever.
- sleepint or float, default=60
The sleep time in seconds.
- catch_exceptionException, default=Exception
The exception to catch.
- Returns:
- decorator: Callable
The decorator.
Examples
>>> @retry(max_retry=3, sleep=60, catch_exception=RetrySignal) ... def func(): ... raise RetrySignal("Failed")
- dpdispatcher.utils.rsync(from_file: str, to_file: str, port: int = 22, key_filename: Optional[str] = None, timeout: Union[int, float] = 10)[source]
Call rsync to transfer files.
- Parameters:
- from_filestr
SRC
- to_filestr
DEST
- portint, default=22
port for ssh
- key_filenamestr, optional
identity file name
- timeoutint, default=10
timeout for ssh
- Raises:
- RuntimeError
when return code is not 0
Running the DeePMD-kit on the Expanse cluster
Expanse is a cluster operated by the San Diego Supercomputer Center. Here we provide an example to run jobs on the expanse.
The machine parameters are provided below. Expanse uses the SLURM workload manager for job scheduling. remote_root has been created in advance. It’s worth metioned that we do not recommend to use the password, so SSH keys are used instead to improve security.
1{
2 "batch_type": "Slurm",
3 "local_root": "./",
4 "remote_root": "/expanse/lustre/scratch/njzjz/temp_project/dpgen_workdir",
5 "clean_asynchronously": true,
6 "context_type": "SSHContext",
7 "remote_profile": {
8 "hostname": "login.expanse.sdsc.edu",
9 "username": "njzjz",
10 "port": 22
11 }
12}
Expanse’s standard compute nodes are each powered by two 64-core AMD EPYC 7742 processors and contain 256 GB of DDR4 memory. Here, we request one node with 32 cores and 16 GB memory from the shared
partition. Expanse does not support --gres=gpu:0
command, so we use custom_gpu_line to customize the statement.
1{
2 "number_node": 1,
3 "cpu_per_node": 1,
4 "gpu_per_node": 0,
5 "queue_name": "shared",
6 "group_size": 1,
7 "custom_flags": [
8 "#SBATCH -c 32",
9 "#SBATCH --mem=16G",
10 "#SBATCH --time=48:00:00",
11 "#SBATCH --account=rut149",
12 "#SBATCH --requeue"
13 ],
14 "source_list": [
15 "activate /home/njzjz/deepmd-kit"
16 ],
17 "envs": {
18 "OMP_NUM_THREADS": 4,
19 "TF_INTRA_OP_PARALLELISM_THREADS": 4,
20 "TF_INTER_OP_PARALLELISM_THREADS": 8,
21 "DP_AUTO_PARALLELIZATION": 1
22 },
23 "batch_type": "Slurm",
24 "kwargs": {
25 "custom_gpu_line": "#SBATCH --gpus=0"
26 }
27}
The following task parameter runs a DeePMD-kit task, forwarding an input file and backwarding graph files. Here, the data set will be used among all the tasks, so it is not included in the forward_files. Instead, it should be included in the submission’s forward_common_files.
1{
2 "command": "dp train input.json && dp freeze && dp compress",
3 "task_work_path": "model1/",
4 "forward_files": [
5 "input.json"
6 ],
7 "backward_files": [
8 "frozen_model.pb",
9 "frozen_model_compressed.pb"
10 ],
11 "outlog": "log",
12 "errlog": "err"
13}
Running Gaussian 16 with failure allowed
Typically, a task will retry three times if the exit code is not zero. Sometimes, one may allow non-zero code. For example, when running large amounts of Gaussian 16 single-point calculation tasks, some of the Gaussian 16 tasks may throw SCF errors and return a non-zero code. One can append ||:
to the command:
1{
2 "command": "g16 < input > output ||:",
3 "task_work_path": "p1/",
4 "forward_files": [
5 "input"
6 ],
7 "backward_files": [
8 "output"
9 ]
10}
This command ensures the task will always provide zero code.
Running multiple MD tasks on a GPU workstation
In this example, we are going to show how to run multiple MD tasks on a GPU workstation. This workstation does not install any job scheduling packages installed, so we will use Shell
as batch_type.
1{
2 "batch_type": "Shell",
3 "local_root": "./",
4 "remote_root": "/data2/jinzhe/dpgen_workdir",
5 "clean_asynchronously": true,
6 "context_type": "SSHContext",
7 "remote_profile": {
8 "hostname": "mandu.iqb.rutgers.edu",
9 "username": "jz748",
10 "port": 22
11 }
12}
The workstation has 48 cores of CPUs and 8 RTX3090 cards. Here we hope each card runs 6 tasks at the same time, as each task does not consume too many GPU resources. Thus, strategy/if_cuda_multi_devices is set to true
and para_deg is set to 6.
1{
2 "number_node": 1,
3 "cpu_per_node": 48,
4 "gpu_per_node": 8,
5 "queue_name": "shell",
6 "group_size": 0,
7 "strategy": {
8 "if_cuda_multi_devices": true
9 },
10 "source_list": [
11 "activate /home/jz748/deepmd-kit"
12 ],
13 "envs": {
14 "OMP_NUM_THREADS": 1,
15 "TF_INTRA_OP_PARALLELISM_THREADS": 1,
16 "TF_INTER_OP_PARALLELISM_THREADS": 1
17 },
18 "para_deg": 6
19}
Note that group_size should be set to 0
(means infinity) to ensure there is only one job and avoid running multiple jobs at the same time.