deepmd.pt.model.task.ener

Module Contents

Classes

EnergyFittingNet

Construct a fitting net for energy.

EnergyFittingNetDirect

Base class for all neural network modules.

Attributes

dtype

device

log

deepmd.pt.model.task.ener.dtype[source]
deepmd.pt.model.task.ener.device[source]
deepmd.pt.model.task.ener.log[source]
class deepmd.pt.model.task.ener.EnergyFittingNet(ntypes: int, dim_descrpt: int, neuron: List[int] = [128, 128, 128], bias_atom_e: torch.Tensor | None = None, resnet_dt: bool = True, numb_fparam: int = 0, numb_aparam: int = 0, activation_function: str = 'tanh', precision: str = DEFAULT_PRECISION, mixed_types: bool = True, **kwargs)[source]

Bases: deepmd.pt.model.task.invar_fitting.InvarFitting

Construct a fitting net for energy.

Parameters:
var_namestr

The atomic property to fit, ‘energy’, ‘dipole’, and ‘polar’.

ntypesint

Element count.

dim_descrptint

Embedding width per atom.

dim_outint

The output dimension of the fitting net.

neuronList[int]

Number of neurons in each hidden layers of the fitting net.

bias_atom_etorch.Tensor, optional

Average enery per atom for each element.

resnet_dtbool

Using time-step in the ResNet construction.

numb_fparamint

Number of frame parameters.

numb_aparamint

Number of atomic parameters.

activation_functionstr

Activation function.

precisionstr

Numerical precision.

mixed_typesbool

If true, use a uniform fitting net for all atom types, otherwise use different fitting nets for different atom types.

rcondfloat, optional

The condition number for the regression of atomic energy.

seedint, optional

Random seed.

exclude_types: List[int]

Atomic contributions of the excluded atom types are set zero.

atom_ener: List[Optional[torch.Tensor]], optional

Specifying atomic energy contribution in vacuum. The value is a list specifying the bias. the elements can be None or np.array of output shape. For example: [None, [2.]] means type 0 is not set, type 1 is set to [2.] The set_davg_zero key in the descrptor should be set.

exclude_types: List[int][source]
classmethod deserialize(data: dict) deepmd.pt.model.task.fitting.GeneralFitting[source]

Deserialize the fitting.

Parameters:
datadict

The serialized data

Returns:
BF

The deserialized fitting

serialize() dict[source]

Serialize the fitting to dict.

class deepmd.pt.model.task.ener.EnergyFittingNetDirect(ntypes, dim_descrpt, neuron, bias_atom_e=None, out_dim=1, resnet_dt=True, use_tebd=True, return_energy=False, **kwargs)[source]

Bases: deepmd.pt.model.task.fitting.Fitting

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

output_def()[source]

Returns the output def of the fitting net.

abstract serialize() dict[source]

Serialize the obj to dict.

abstract deserialize() EnergyFittingNetDirect[source]

Deserialize the fitting.

Parameters:
datadict

The serialized data

Returns:
BF

The deserialized fitting

forward(inputs: torch.Tensor, atype: torch.Tensor, gr: torch.Tensor | None = None, g2: torch.Tensor | None = None, h2: torch.Tensor | None = None, fparam: torch.Tensor | None = None, aparam: torch.Tensor | None = None) Tuple[torch.Tensor, None][source]

Based on embedding net output, alculate total energy.

Args: - inputs: Embedding matrix. Its shape is [nframes, natoms[0], self.dim_descrpt]. - natoms: Tell atom count and element count. Its shape is [2+self.ntypes].

Returns:
  • torch.Tensor: Total energy with shape [nframes, natoms[0]].