deepmd.dpmodel.fitting.dos_fitting#
Classes#
Fitting the energy (or a rotationally invariant property of dim_out) of the system. The force and the virial can also be trained. |
Module Contents#
- class deepmd.dpmodel.fitting.dos_fitting.DOSFittingNet(ntypes: int, dim_descrpt: int, numb_dos: int = 300, neuron: list[int] = [120, 120, 120], resnet_dt: bool = True, numb_fparam: int = 0, numb_aparam: int = 0, bias_dos: numpy.ndarray | None = None, rcond: float | None = None, trainable: bool | list[bool] = True, activation_function: str = 'tanh', precision: str = DEFAULT_PRECISION, mixed_types: bool = False, exclude_types: list[int] = [], type_map: list[str] | None = None, seed: int | list[int] | None = None)[source]#
Bases:
deepmd.dpmodel.fitting.invar_fitting.InvarFitting
Fitting the energy (or a rotationally invariant property of dim_out) of the system. The force and the virial can also be trained.
Lets take the energy fitting task as an example. The potential energy \(E\) is a fitting network function of the descriptor \(\mathcal{D}\):
\[E(\mathcal{D}) = \mathcal{L}^{(n)} \circ \mathcal{L}^{(n-1)} \circ \cdots \circ \mathcal{L}^{(1)} \circ \mathcal{L}^{(0)}\]The first \(n\) hidden layers \(\mathcal{L}^{(0)}, \cdots, \mathcal{L}^{(n-1)}\) are given by
\[\mathbf{y}=\mathcal{L}(\mathbf{x};\mathbf{w},\mathbf{b})= \boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b})\]where \(\mathbf{x} \in \mathbb{R}^{N_1}\) is the input vector and \(\mathbf{y} \in \mathbb{R}^{N_2}\) is the output vector. \(\mathbf{w} \in \mathbb{R}^{N_1 \times N_2}\) and \(\mathbf{b} \in \mathbb{R}^{N_2}\) are weights and biases, respectively, both of which are trainable if trainable[i] is True. \(\boldsymbol{\phi}\) is the activation function.
The output layer \(\mathcal{L}^{(n)}\) is given by
\[\mathbf{y}=\mathcal{L}^{(n)}(\mathbf{x};\mathbf{w},\mathbf{b})= \mathbf{x}^T\mathbf{w}+\mathbf{b}\]where \(\mathbf{x} \in \mathbb{R}^{N_{n-1}}\) is the input vector and \(\mathbf{y} \in \mathbb{R}\) is the output scalar. \(\mathbf{w} \in \mathbb{R}^{N_{n-1}}\) and \(\mathbf{b} \in \mathbb{R}\) are weights and bias, respectively, both of which are trainable if trainable[n] is True.
- Parameters:
- var_name
The name of the output variable.
- ntypes
The number of atom types.
- dim_descrpt
The dimension of the input descriptor.
- dim_out
The dimension of the output fit property.
- neuron
Number of neurons \(N\) in each hidden layer of the fitting net
- resnet_dt
Time-step dt in the resnet construction: \(y = x + dt * \phi (Wx + b)\)
- numb_fparam
Number of frame parameter
- numb_aparam
Number of atomic parameter
- rcond
The condition number for the regression of atomic energy.
- bias_atom
Bias for each element.
- tot_ener_zero
Force the total energy to zero. Useful for the charge fitting.
- trainable
If the weights of fitting net are trainable. Suppose that we have \(N_l\) hidden layers in the fitting net, this list is of length \(N_l + 1\), specifying if the hidden layers and the output layer are trainable.
- atom_ener
Specifying atomic energy contribution in vacuum. The set_davg_zero key in the descriptor should be set.
- activation_function
The activation function \(\boldsymbol{\phi}\) in the embedding net. Supported options are “none”, “gelu_tf”, “linear”, “relu6”, “sigmoid”, “tanh”, “gelu”, “relu”, “softplus”.
- precision
The precision of the embedding net parameters. Supported options are “float16”, “float64”, “default”, “float32”.
- layer_name
list
[Optional
[str
]],optional
The name of the each layer. If two layers, either in the same fitting or different fittings, have the same name, they will share the same neural network parameters.
- use_aparam_as_mask: bool, optional
If True, the atomic parameters will be used as a mask that determines the atom is real/virtual. And the aparam will not be used as the atomic parameters for embedding.
- mixed_types
If false, different atomic types uses different fitting net, otherwise different atom types share the same fitting net.
- exclude_types: list[int]
Atomic contributions of the excluded atom types are set zero.
- type_map: list[str], Optional
A list of strings. Give the name to each type of atoms.
- classmethod deserialize(data: dict) deepmd.dpmodel.fitting.general_fitting.GeneralFitting [source]#
Deserialize the fitting.
- Parameters:
- data
dict
The serialized data
- data
- Returns:
BF
The deserialized fitting