deepmd.dpmodel.fitting.property_fitting#
Classes#
Fitting the rotationally invariant properties of task_dim of the system. |
Module Contents#
- class deepmd.dpmodel.fitting.property_fitting.PropertyFittingNet(ntypes: int, dim_descrpt: int, task_dim: int = 1, neuron: list[int] = [128, 128, 128], bias_atom_p: numpy.ndarray | None = None, rcond: float | None = None, trainable: bool | list[bool] = True, intensive: bool = False, bias_method: str = 'normal', resnet_dt: bool = True, numb_fparam: int = 0, numb_aparam: int = 0, activation_function: str = 'tanh', precision: str = DEFAULT_PRECISION, mixed_types: bool = True, exclude_types: list[int] = [], type_map: list[str] | None = None, seed: int | None = None)[source]#
Bases:
deepmd.dpmodel.fitting.invar_fitting.InvarFitting
Fitting the rotationally invariant properties of task_dim of the system.
- Parameters:
- ntypes
The number of atom types.
- dim_descrpt
The dimension of the input descriptor.
- task_dim
The dimension of outputs of fitting net.
- neuron
Number of neurons \(N\) in each hidden layer of the fitting net
- bias_atom_p
Average property per atom for each element.
- rcond
The condition number for the regression of atomic energy.
- trainable
If the weights of fitting net are trainable. Suppose that we have \(N_l\) hidden layers in the fitting net, this list is of length \(N_l + 1\), specifying if the hidden layers and the output layer are trainable.
- intensive
Whether the fitting property is intensive.
- bias_method
The method of applying the bias to each atomic output, user can select ‘normal’ or ‘no_bias’. If ‘normal’ is used, the computed bias will be added to the atomic output. If ‘no_bias’ is used, no bias will be added to the atomic output.
- resnet_dt
Time-step dt in the resnet construction: \(y = x + dt * \phi (Wx + b)\)
- numb_fparam
Number of frame parameter
- numb_aparam
Number of atomic parameter
- activation_function
The activation function \(\boldsymbol{\phi}\) in the embedding net. Supported options are “none”, “gelu_tf”, “linear”, “relu6”, “sigmoid”, “tanh”, “gelu”, “relu”, “softplus”.
- precision
The precision of the embedding net parameters. Supported options are “float16”, “float64”, “default”, “float32”.
- mixed_types
If false, different atomic types uses different fitting net, otherwise different atom types share the same fitting net.
- exclude_types: list[int]
Atomic contributions of the excluded atom types are set zero.
- type_map: list[str], Optional
A list of strings. Give the name to each type of atoms.
- classmethod deserialize(data: dict) PropertyFittingNet [source]#
Deserialize the fitting.
- Parameters:
- data
dict
The serialized data
- data
- Returns:
BF
The deserialized fitting