deepmd.pt.loss.tensor#

Classes#

TensorLoss

Helper class that provides a standard way to create an ABC using

Module Contents#

class deepmd.pt.loss.tensor.TensorLoss(tensor_name: str, tensor_size: int, label_name: str, pref_atomic: float = 0.0, pref: float = 0.0, inference=False, **kwargs)[source]#

Bases: deepmd.pt.loss.loss.TaskLoss

Helper class that provides a standard way to create an ABC using inheritance.

tensor_name[source]#
tensor_size[source]#
label_name[source]#
local_weight[source]#
global_weight[source]#
inference[source]#
has_local_weight[source]#
has_global_weight[source]#
forward(input_dict, model, label, natoms, learning_rate=0.0, mae=False)[source]#

Return loss on local and global tensors.

Parameters:
input_dictdict[str, torch.Tensor]

Model inputs.

modeltorch.nn.Module

Model to be used to output the predictions.

labeldict[str, torch.Tensor]

Labels.

natomsint

The local atom number.

Returns:
model_pred: dict[str, torch.Tensor]

Model predictions.

loss: torch.Tensor

Loss for model to minimize.

more_loss: dict[str, torch.Tensor]

Other losses for display.

property label_requirement: list[deepmd.utils.data.DataRequirementItem][source]#

Return data label requirements needed for this loss calculation.