deepmd.tf.model.dos#
Classes#
DOS model. |
Module Contents#
- class deepmd.tf.model.dos.DOSModel(descriptor: dict, fitting_net: dict, type_embedding: dict | deepmd.tf.utils.type_embed.TypeEmbedNet | None = None, type_map: list[str] | None = None, data_stat_nbatch: int = 10, data_stat_protect: float = 0.01, **kwargs)[source]#
Bases:
deepmd.tf.model.model.StandardModel
DOS model.
- Parameters:
- descriptor
Descriptor
- fitting_net
Fitting net
- type_embedding
Type embedding net
- type_map
Mapping atom type to the name (str) of the type. For example type_map[1] gives the name of the type 1.
- data_stat_nbatch
Number of frames used for data statistic
- data_stat_protect
Protect parameter for atomic energy regression
- build(coord_, atype_, natoms, box, mesh, input_dict, frz_model=None, ckpt_meta: str | None = None, suffix='', reuse=None)[source]#
Build the model.
- Parameters:
- coord_
tf.Tensor
The coordinates of atoms
- atype_
tf.Tensor
The atom types of atoms
- natoms
tf.Tensor
The number of atoms
- box
tf.Tensor
The box vectors
- mesh
tf.Tensor
The mesh vectors
- input_dict
dict
The input dict
- frz_model
str
,optional
The path to the frozen model
- ckpt_meta
str
,optional
The path prefix of the checkpoint and meta files
- suffix
str
,optional
The suffix of the scope
- reusebool or
tf.AUTO_REUSE
,optional
Whether to reuse the variables
- coord_
- Returns:
dict
The output dict