deepmd.tf.nvnmd.utils.network#
Attributes#
Functions#
| |
| Quantized matmul operation for 2d tensor. |
| Quantized matmul operation for 3d tensor. |
| Quantize and floor tensor x with quantification precision nbit. |
| Quantize and round tensor x with quantification precision nbit. |
| |
| |
| |
| Build one layer with continuous or quantized value. |
Module Contents#
- deepmd.tf.nvnmd.utils.network.matmul2_qq(a, b, nbit)[source]#
Quantized matmul operation for 2d tensor. a and b is input tensor, nbit represent quantification precision.
- deepmd.tf.nvnmd.utils.network.matmul3_qq(a, b, nbit)[source]#
Quantized matmul operation for 3d tensor. a and b is input tensor, nbit represent quantification precision.
- deepmd.tf.nvnmd.utils.network.qf(x, nbit)[source]#
Quantize and floor tensor x with quantification precision nbit.
- deepmd.tf.nvnmd.utils.network.qr(x, nbit)[source]#
Quantize and round tensor x with quantification precision nbit.
- deepmd.tf.nvnmd.utils.network.one_layer_wb(shape, outputs_size, bavg, stddev, precision, trainable, initial_variables, seed, uniform_seed, name)[source]#
- deepmd.tf.nvnmd.utils.network.one_layer_t(shape, outputs_size, bavg, stddev, precision, trainable, initial_variables, seed, uniform_seed, name)[source]#
- deepmd.tf.nvnmd.utils.network.one_layer(inputs, outputs_size, activation_fn=tf.nn.tanh, precision=GLOBAL_TF_FLOAT_PRECISION, stddev=1.0, bavg=0.0, name='linear', reuse=None, seed=None, use_timestep=False, trainable=True, useBN=False, uniform_seed=False, initial_variables=None, mixed_prec=None, final_layer=False)[source]#
Build one layer with continuous or quantized value. Its weight and bias can be initialed with random or constant value.