Source code for deepmd.descriptor.se_atten_v2

# SPDX-License-Identifier: LGPL-3.0-or-later
import logging
from typing import (
    List,
    Optional,
)

from .descriptor import (
    Descriptor,
)
from .se_atten import (
    DescrptSeAtten,
)

log = logging.getLogger(__name__)


[docs]@Descriptor.register("se_atten_v2") class DescrptSeAttenV2(DescrptSeAtten): r"""Smooth version 2.0 descriptor with attention. Parameters ---------- rcut The cut-off radius :math:`r_c` rcut_smth From where the environment matrix should be smoothed :math:`r_s` sel : int sel[i] specifies the maxmum number of type i atoms in the cut-off radius neuron : list[int] Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}` axis_neuron Number of the axis neuron :math:`M_2` (number of columns of the sub-matrix of the embedding matrix) resnet_dt Time-step `dt` in the resnet construction: y = x + dt * \phi (Wx + b) trainable If the weights of embedding net are trainable. seed Random seed for initializing the network parameters. type_one_side Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets exclude_types : List[List[int]] The excluded pairs of types which have no interaction with each other. For example, `[[0, 1]]` means no interaction between type 0 and type 1. set_davg_zero Set the shift of embedding net input to zero. activation_function The activation function in the embedding net. Supported options are |ACTIVATION_FN| precision The precision of the embedding net parameters. Supported options are |PRECISION| uniform_seed Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed attn The length of hidden vector during scale-dot attention computation. attn_layer The number of layers in attention mechanism. attn_dotr Whether to dot the relative coordinates on the attention weights as a gated scheme. attn_mask Whether to mask the diagonal in the attention weights. multi_task If the model has multi fitting nets to train. """ def __init__( self, rcut: float, rcut_smth: float, sel: int, ntypes: int, neuron: List[int] = [24, 48, 96], axis_neuron: int = 8, resnet_dt: bool = False, trainable: bool = True, seed: Optional[int] = None, type_one_side: bool = True, set_davg_zero: bool = False, exclude_types: List[List[int]] = [], activation_function: str = "tanh", precision: str = "default", uniform_seed: bool = False, attn: int = 128, attn_layer: int = 2, attn_dotr: bool = True, attn_mask: bool = False, multi_task: bool = False, **kwargs, ) -> None: DescrptSeAtten.__init__( self, rcut, rcut_smth, sel, ntypes, neuron=neuron, axis_neuron=axis_neuron, resnet_dt=resnet_dt, trainable=trainable, seed=seed, type_one_side=type_one_side, set_davg_zero=set_davg_zero, exclude_types=exclude_types, activation_function=activation_function, precision=precision, uniform_seed=uniform_seed, attn=attn, attn_layer=attn_layer, attn_dotr=attn_dotr, attn_mask=attn_mask, multi_task=multi_task, stripped_type_embedding=True, smooth_type_embedding=True, **kwargs, )