deepmd.infer package
Submodule containing all the implemented potentials.
- class deepmd.infer.DeepDOS(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True, input_map: Optional[dict] = None)[source]
Bases:
DeepEval
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- auto_batch_sizebool or
int
orAutomaticBatchSize
, default:True
If True, automatic batch size will be used. If int, it will be used as the initial batch size.
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the dos, atom_dos by using this model.
eval_descriptor
(coords, cells, atom_types[, ...])Evaluate descriptors by using this DP.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Get the number (dimension) of atomic parameters of this DP.
Get the number (dimension) of frame parameters of this DP.
Get the number of atom types of this model.
Get the length of DOS output of this DP model.
get_rcut
()Get the cut-off radius of this model.
Unsupported in this model.
Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...] [source]
Evaluate the dos, atom_dos by using this model.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
Calculate the atomic energy and virial
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
dos
The electron density of state.
atom_dos
The atom-sited density of state. Only returned when atomic == True
- eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array [source]
Evaluate descriptors by using this DP.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- efield
The external field on atoms. The array should be of size nframes x natoms x 3
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
descriptor
Descriptors.
- class deepmd.infer.DeepDipole(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- class deepmd.infer.DeepEval(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = False, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
object
Common methods for DeepPot, DeepWFC, DeepPolar, …
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- auto_batch_sizebool or
int
orAutomaticBatchSize
, default:False
If True, automatic batch size will be used. If int, it will be used as the initial batch size.
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NewPrimitiveNeighborList
,optional
The ASE neighbor list class to produce the neighbor list. If None, the neighbor list will be built natively in the model.
- model_file
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
Evaluate output of type embedding network by using this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- build_neighbor_list(coords: ndarray, cell: Optional[ndarray], atype: ndarray, imap: ndarray, neighbor_list)[source]
Make the mesh with neighbor list for a single frame.
- Parameters
- coords
np.ndarray
The coordinates of atoms. Should be of shape [natoms, 3]
- cell
Optional
[np.ndarray
] The cell of the system. Should be of shape [3, 3]
- atype
np.ndarray
The type of atoms. Should be of shape [natoms]
- imap
np.ndarray
The index map of atoms. Should be of shape [natoms]
- neighbor_list
ase.neighborlist.NewPrimitiveNeighborList
ASE neighbor list. The following method or attribute will be used/set: bothways, self_interaction, update, build, first_neigh, pair_second, offset_vec.
- coords
- Returns
- natoms_vec
np.ndarray
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: nloc natoms[1]: nall natoms[i]: 2 <= i < Ntypes+2, number of type i atoms for nloc
- coords
np.ndarray
The coordinates of atoms, including ghost atoms. Should be of shape [nframes, nall, 3]
- atype
np.ndarray
The type of atoms, including ghost atoms. Should be of shape [nall]
- mesh
np.ndarray
The mesh in nei_mode=4.
- imap
np.ndarray
The index map of atoms. Should be of shape [nall]
- ghost_map
np.ndarray
The index map of ghost atoms. Should be of shape [nghost]
- natoms_vec
- eval_typeebd() ndarray [source]
Evaluate output of type embedding network by using this model.
- Returns
np.ndarray
The output of type embedding network. The shape is [ntypes, o_size], where ntypes is the number of types, and o_size is the number of nodes in the output layer.
- Raises
KeyError
If the model does not enable type embedding.
See also
deepmd.utils.type_embed.TypeEmbedNet
The type embedding network.
Examples
Get the output of type embedding network of graph.pb:
>>> from deepmd.infer import DeepPotential >>> dp = DeepPotential('graph.pb') >>> dp.eval_typeebd()
- make_natoms_vec(atom_types: ndarray, mixed_type: bool = False) ndarray [source]
Make the natom vector used by deepmd-kit.
- Parameters
- atom_types
The type of atoms
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
- static reverse_map(vec: ndarray, imap: List[int]) ndarray [source]
Reverse mapping of a vector according to the index map.
- Parameters
- vec
Input vector. Be of shape [nframes, natoms, -1]
- imap
Index map. Be of shape [natoms]
- Returns
vec_out
Reverse mapped vector.
- property sess: Session
Get TF session.
- static sort_input(coord: ndarray, atom_type: ndarray, sel_atoms: Optional[List[int]] = None, mixed_type: bool = False)[source]
Sort atoms in the system according their types.
- Parameters
- coord
The coordinates of atoms. Should be of shape [nframes, natoms, 3]
- atom_type
The type of atoms Should be of shape [natoms]
- sel_atoms
The selected atoms by type
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
coord_out
The coordinates after sorting
atom_type_out
The atom types after sorting
idx_map
The index mapping from the input to the output. For example coord_out = coord[:,idx_map,:]
sel_atom_type
Only output if sel_atoms is not None The sorted selected atom types
sel_idx_map
Only output if sel_atoms is not None The index mapping from the selected atoms to sorted selected atoms.
- class deepmd.infer.DeepGlobalPolar(model_file: str, load_prefix: str = 'load', default_tf_graph: bool = False, neighbor_list=None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
- model_file
str
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- model_file
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None) ndarray [source]
Evaluate the model.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
Not used in this model
- fparam
Not used in this model
- aparam
Not used in this model
- efield
Not used in this model
- Returns
tensor
The returned tensor If atomic == False then of size nframes x variable_dof else of size nframes x natoms x variable_dof
- class deepmd.infer.DeepPolar(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- class deepmd.infer.DeepPot(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
DeepEval
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- auto_batch_sizebool or
int
orAutomaticBatchSize
, default:True
If True, automatic batch size will be used. If int, it will be used as the initial batch size.
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NewPrimitiveNeighborList
,optional
The ASE neighbor list class to produce the neighbor list. If None, the neighbor list will be built natively in the model.
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
Examples
>>> from deepmd.infer import DeepPot >>> import numpy as np >>> dp = DeepPot('graph.pb') >>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1]) >>> cell = np.diag(10 * np.ones(3)).reshape([1, -1]) >>> atype = [1,0,1] >>> e, f, v = dp.eval(coord, cell, atype)
where e, f and v are predicted energy, force and virial of the system, respectively.
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the energy, force and virial by using this DP.
eval_descriptor
(coords, cells, atom_types[, ...])Evaluate descriptors by using this DP.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Get the descriptor type of this model.
Get the number (dimension) of atomic parameters of this DP.
Get the number (dimension) of frame parameters of this DP.
Get the number of atom types of this model.
Get the number of spin atom types of this model.
get_rcut
()Get the cut-off radius of this model.
Unsupported in this model.
Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...] [source]
Evaluate the energy, force and virial by using this DP.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
Calculate the atomic energy and virial
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- efield
The external field on atoms. The array should be of size nframes x natoms x 3
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
energy
The system energy.
force
The force on each atom
virial
The virial
atom_energy
The atomic energy. Only returned when atomic == True
atom_virial
The atomic virial. Only returned when atomic == True
- eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array [source]
Evaluate descriptors by using this DP.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- efield
The external field on atoms. The array should be of size nframes x natoms x 3
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
descriptor
Descriptors.
- deepmd.infer.DeepPotential(model_file: Union[str, Path], load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None, neighbor_list=None) Union[DeepDipole, DeepGlobalPolar, DeepPolar, DeepPot, DeepDOS, DeepWFC] [source]
Factory function that will inialize appropriate potential read from model_file.
- Parameters
- model_file
str
The name of the frozen model file.
- load_prefix
str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- model_file
- Returns
Union
[DeepDipole
,DeepGlobalPolar
,DeepPolar
,DeepPot
,DeepWFC
]one of the available potentials
- Raises
RuntimeError
if model file does not correspond to any implementd potential
- class deepmd.infer.DeepWFC(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- class deepmd.infer.DipoleChargeModifier(model_name: str, model_charge_map: List[float], sys_charge_map: List[float], ewald_h: float = 1, ewald_beta: float = 1)[source]
Bases:
DeepDipole
- Parameters
- model_name
The model file for the DeepDipole model
- model_charge_map
Gives the amount of charge for the wfcc
- sys_charge_map
Gives the amount of charge for the real atoms
- ewald_h
Grid spacing of the reciprocal part of Ewald sum. Unit: A
- ewald_beta
Splitting parameter of the Ewald sum. Unit: A^{-1}
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
Build the computational graph for the force and virial inference.
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coord, box, atype[, eval_fv])Evaluate the modification.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
get_dim_aparam
()Unsupported in this model.
get_dim_fparam
()Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
modify_data
(data, data_sys)Modify data.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coord: ndarray, box: ndarray, atype: ndarray, eval_fv: bool = True) Tuple[ndarray, ndarray, ndarray] [source]
Evaluate the modification.
- Parameters
- coord
The coordinates of atoms
- box
The simulation region. PBC is assumed
- atype
The atom types
- eval_fv
Evaluate force and virial
- Returns
tot_e
The energy modification
tot_f
The force modification
tot_v
The virial modification
- modify_data(data: dict, data_sys: DeepmdData) None [source]
Modify data.
- Parameters
- data
Internal data of DeepmdData. Be a dict, has the following keys - coord coordinates - box simulation box - type atom types - find_energy tells if data has energy - find_force tells if data has force - find_virial tells if data has virial - energy energy - force force - virial virial
- data_sys
DeepmdData
The data system.
- class deepmd.infer.EwaldRecp(hh, beta)[source]
Bases:
object
Evaluate the reciprocal part of the Ewald sum.
Methods
eval
(coord, charge, box)Evaluate.
- deepmd.infer.calc_model_devi(coord, box, atype, models, fname=None, frequency=1, mixed_type=False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, real_data: Optional[dict] = None, atomic: bool = False, relative: Optional[float] = None, relative_v: Optional[float] = None)[source]
Python interface to calculate model deviation.
- Parameters
- coord
numpy.ndarray
, n_frames x n_atoms x 3 Coordinates of system to calculate
- box
numpy.ndarray
orNone
, n_frames x 3 x 3 Box to specify periodic boundary condition. If None, no pbc will be used
- atype
numpy.ndarray
, n_atoms x 1 Atom types
- models
list
of
DeepPot
models
Models used to evaluate deviation
- fname
str
orNone
File to dump results, default None
- frequency
int
Steps between frames (if the system is given by molecular dynamics engine), default 1
- mixed_typebool
Whether the input atype is in mixed_type format or not
- fparam
numpy.ndarray
frame specific parameters
- aparam
numpy.ndarray
atomic specific parameters
- real_data
dict
,optional
real data to calculate RMS real error
- atomicbool, default:
False
If True, calculate the force model deviation of each atom.
- relative
float
, default:None
If given, calculate the relative model deviation of force. The value is the level parameter for computing the relative model deviation of the force.
- relative_v
float
, default:None
If given, calculate the relative model deviation of virial. The value is the level parameter for computing the relative model deviation of the virial.
- coord
- Returns
- model_devi
numpy.ndarray
, n_frames x 8 Model deviation results. The first column is index of steps, the other 7 columns are max_devi_v, min_devi_v, avg_devi_v, max_devi_f, min_devi_f, avg_devi_f, devi_e.
- model_devi
Examples
>>> from deepmd.infer import calc_model_devi >>> from deepmd.infer import DeepPot as DP >>> import numpy as np >>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1]) >>> cell = np.diag(10 * np.ones(3)).reshape([1, -1]) >>> atype = [1,0,1] >>> graphs = [DP("graph.000.pb"), DP("graph.001.pb")] >>> model_devi = calc_model_devi(coord, cell, atype, graphs)
Submodules
deepmd.infer.data_modifier module
- class deepmd.infer.data_modifier.DipoleChargeModifier(model_name: str, model_charge_map: List[float], sys_charge_map: List[float], ewald_h: float = 1, ewald_beta: float = 1)[source]
Bases:
DeepDipole
- Parameters
- model_name
The model file for the DeepDipole model
- model_charge_map
Gives the amount of charge for the wfcc
- sys_charge_map
Gives the amount of charge for the real atoms
- ewald_h
Grid spacing of the reciprocal part of Ewald sum. Unit: A
- ewald_beta
Splitting parameter of the Ewald sum. Unit: A^{-1}
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
Build the computational graph for the force and virial inference.
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coord, box, atype[, eval_fv])Evaluate the modification.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
get_dim_aparam
()Unsupported in this model.
get_dim_fparam
()Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
modify_data
(data, data_sys)Modify data.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coord: ndarray, box: ndarray, atype: ndarray, eval_fv: bool = True) Tuple[ndarray, ndarray, ndarray] [source]
Evaluate the modification.
- Parameters
- coord
The coordinates of atoms
- box
The simulation region. PBC is assumed
- atype
The atom types
- eval_fv
Evaluate force and virial
- Returns
tot_e
The energy modification
tot_f
The force modification
tot_v
The virial modification
- modify_data(data: dict, data_sys: DeepmdData) None [source]
Modify data.
- Parameters
- data
Internal data of DeepmdData. Be a dict, has the following keys - coord coordinates - box simulation box - type atom types - find_energy tells if data has energy - find_force tells if data has force - find_virial tells if data has virial - energy energy - force force - virial virial
- data_sys
DeepmdData
The data system.
deepmd.infer.deep_dipole module
- class deepmd.infer.deep_dipole.DeepDipole(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
deepmd.infer.deep_dos module
- class deepmd.infer.deep_dos.DeepDOS(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True, input_map: Optional[dict] = None)[source]
Bases:
DeepEval
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- auto_batch_sizebool or
int
orAutomaticBatchSize
, default:True
If True, automatic batch size will be used. If int, it will be used as the initial batch size.
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the dos, atom_dos by using this model.
eval_descriptor
(coords, cells, atom_types[, ...])Evaluate descriptors by using this DP.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Get the number (dimension) of atomic parameters of this DP.
Get the number (dimension) of frame parameters of this DP.
Get the number of atom types of this model.
Get the length of DOS output of this DP model.
get_rcut
()Get the cut-off radius of this model.
Unsupported in this model.
Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...] [source]
Evaluate the dos, atom_dos by using this model.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
Calculate the atomic energy and virial
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
dos
The electron density of state.
atom_dos
The atom-sited density of state. Only returned when atomic == True
- eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array [source]
Evaluate descriptors by using this DP.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- efield
The external field on atoms. The array should be of size nframes x natoms x 3
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
descriptor
Descriptors.
deepmd.infer.deep_eval module
- class deepmd.infer.deep_eval.DeepEval(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = False, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
object
Common methods for DeepPot, DeepWFC, DeepPolar, …
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- auto_batch_sizebool or
int
orAutomaticBatchSize
, default:False
If True, automatic batch size will be used. If int, it will be used as the initial batch size.
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NewPrimitiveNeighborList
,optional
The ASE neighbor list class to produce the neighbor list. If None, the neighbor list will be built natively in the model.
- model_file
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
Evaluate output of type embedding network by using this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- build_neighbor_list(coords: ndarray, cell: Optional[ndarray], atype: ndarray, imap: ndarray, neighbor_list)[source]
Make the mesh with neighbor list for a single frame.
- Parameters
- coords
np.ndarray
The coordinates of atoms. Should be of shape [natoms, 3]
- cell
Optional
[np.ndarray
] The cell of the system. Should be of shape [3, 3]
- atype
np.ndarray
The type of atoms. Should be of shape [natoms]
- imap
np.ndarray
The index map of atoms. Should be of shape [natoms]
- neighbor_list
ase.neighborlist.NewPrimitiveNeighborList
ASE neighbor list. The following method or attribute will be used/set: bothways, self_interaction, update, build, first_neigh, pair_second, offset_vec.
- coords
- Returns
- natoms_vec
np.ndarray
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: nloc natoms[1]: nall natoms[i]: 2 <= i < Ntypes+2, number of type i atoms for nloc
- coords
np.ndarray
The coordinates of atoms, including ghost atoms. Should be of shape [nframes, nall, 3]
- atype
np.ndarray
The type of atoms, including ghost atoms. Should be of shape [nall]
- mesh
np.ndarray
The mesh in nei_mode=4.
- imap
np.ndarray
The index map of atoms. Should be of shape [nall]
- ghost_map
np.ndarray
The index map of ghost atoms. Should be of shape [nghost]
- natoms_vec
- eval_typeebd() ndarray [source]
Evaluate output of type embedding network by using this model.
- Returns
np.ndarray
The output of type embedding network. The shape is [ntypes, o_size], where ntypes is the number of types, and o_size is the number of nodes in the output layer.
- Raises
KeyError
If the model does not enable type embedding.
See also
deepmd.utils.type_embed.TypeEmbedNet
The type embedding network.
Examples
Get the output of type embedding network of graph.pb:
>>> from deepmd.infer import DeepPotential >>> dp = DeepPotential('graph.pb') >>> dp.eval_typeebd()
- make_natoms_vec(atom_types: ndarray, mixed_type: bool = False) ndarray [source]
Make the natom vector used by deepmd-kit.
- Parameters
- atom_types
The type of atoms
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
- static reverse_map(vec: ndarray, imap: List[int]) ndarray [source]
Reverse mapping of a vector according to the index map.
- Parameters
- vec
Input vector. Be of shape [nframes, natoms, -1]
- imap
Index map. Be of shape [natoms]
- Returns
vec_out
Reverse mapped vector.
- property sess: Session
Get TF session.
- static sort_input(coord: ndarray, atom_type: ndarray, sel_atoms: Optional[List[int]] = None, mixed_type: bool = False)[source]
Sort atoms in the system according their types.
- Parameters
- coord
The coordinates of atoms. Should be of shape [nframes, natoms, 3]
- atom_type
The type of atoms Should be of shape [natoms]
- sel_atoms
The selected atoms by type
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
coord_out
The coordinates after sorting
atom_type_out
The atom types after sorting
idx_map
The index mapping from the input to the output. For example coord_out = coord[:,idx_map,:]
sel_atom_type
Only output if sel_atoms is not None The sorted selected atom types
sel_idx_map
Only output if sel_atoms is not None The index mapping from the selected atoms to sorted selected atoms.
deepmd.infer.deep_polar module
- class deepmd.infer.deep_polar.DeepGlobalPolar(model_file: str, load_prefix: str = 'load', default_tf_graph: bool = False, neighbor_list=None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
- model_file
str
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- model_file
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None) ndarray [source]
Evaluate the model.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
Not used in this model
- fparam
Not used in this model
- aparam
Not used in this model
- efield
Not used in this model
- Returns
tensor
The returned tensor If atomic == False then of size nframes x variable_dof else of size nframes x natoms x variable_dof
- class deepmd.infer.deep_polar.DeepPolar(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
deepmd.infer.deep_pot module
- class deepmd.infer.deep_pot.DeepPot(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, auto_batch_size: Union[bool, int, AutoBatchSize] = True, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
DeepEval
Constructor.
- Parameters
- model_file
Path
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- auto_batch_sizebool or
int
orAutomaticBatchSize
, default:True
If True, automatic batch size will be used. If int, it will be used as the initial batch size.
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NewPrimitiveNeighborList
,optional
The ASE neighbor list class to produce the neighbor list. If None, the neighbor list will be built natively in the model.
- model_file
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
Examples
>>> from deepmd.infer import DeepPot >>> import numpy as np >>> dp = DeepPot('graph.pb') >>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1]) >>> cell = np.diag(10 * np.ones(3)).reshape([1, -1]) >>> atype = [1,0,1] >>> e, f, v = dp.eval(coord, cell, atype)
where e, f and v are predicted energy, force and virial of the system, respectively.
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the energy, force and virial by using this DP.
eval_descriptor
(coords, cells, atom_types[, ...])Evaluate descriptors by using this DP.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Get the descriptor type of this model.
Get the number (dimension) of atomic parameters of this DP.
Get the number (dimension) of frame parameters of this DP.
Get the number of atom types of this model.
Get the number of spin atom types of this model.
get_rcut
()Get the cut-off radius of this model.
Unsupported in this model.
Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) Tuple[ndarray, ...] [source]
Evaluate the energy, force and virial by using this DP.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
Calculate the atomic energy and virial
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- efield
The external field on atoms. The array should be of size nframes x natoms x 3
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
energy
The system energy.
force
The force on each atom
virial
The virial
atom_energy
The atomic energy. Only returned when atomic == True
atom_virial
The atomic virial. Only returned when atomic == True
- eval_descriptor(coords: ndarray, cells: ndarray, atom_types: List[int], fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) array [source]
Evaluate descriptors by using this DP.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. - dim_fparam. Then all frames are assumed to be provided with the same fparam.
- aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam. - natoms x dim_aparam. Then all frames are assumed to be provided with the same aparam. - dim_aparam. Then all frames and atoms are provided with the same aparam.
- efield
The external field on atoms. The array should be of size nframes x natoms x 3
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
descriptor
Descriptors.
deepmd.infer.deep_tensor module
- class deepmd.infer.deep_tensor.DeepTensor(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None, neighbor_list=None)[source]
Bases:
DeepEval
Evaluates a tensor model.
- Parameters
- model_file: str
The name of the frozen model file.
- load_prefix: str
The prefix in the load computational graph
- default_tf_graphbool
If uses the default tf graph, otherwise build a new tf graph for evaluation
- input_map
dict
,optional
The input map for tf.import_graph_def. Only work with default tf graph
- neighbor_list
ase.neighborlist.NeighborList
,optional
The neighbor list object. If None, then build the native neighbor list.
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Get the number (dimension) of atomic parameters of this DP.
Get the number (dimension) of frame parameters of this DP.
Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
Get the selected atom types of this model.
Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
- eval(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = True, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, efield: Optional[ndarray] = None, mixed_type: bool = False) ndarray [source]
Evaluate the model.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
If True (default), return the atomic tensor Otherwise return the global tensor
- fparam
Not used in this model
- aparam
Not used in this model
- efield
Not used in this model
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
tensor
The returned tensor If atomic == False then of size nframes x output_dim else of size nframes x natoms x output_dim
- eval_full(coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: Optional[array] = None, aparam: Optional[array] = None, efield: Optional[array] = None, mixed_type: bool = False) Tuple[ndarray, ...] [source]
Evaluate the model with interface similar to the energy model. Will return global tensor, component-wise force and virial and optionally atomic tensor and atomic virial.
- Parameters
- coords
The coordinates of atoms. The array should be of size nframes x natoms x 3
- cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The array should be of size nframes x 9
- atom_types
The atom types The list should contain natoms ints
- atomic
Whether to calculate atomic tensor and virial
- fparam
Not used in this model
- aparam
Not used in this model
- efield
Not used in this model
- mixed_type
Whether to perform the mixed_type mode. If True, the input data has the mixed_type format (see doc/model/train_se_atten.md), in which frames in a system may have different natoms_vec(s), with the same nloc.
- Returns
tensor
The global tensor. shape: [nframes x nout]
force
The component-wise force (negative derivative) on each atom. shape: [nframes x nout x natoms x 3]
virial
The component-wise virial of the tensor. shape: [nframes x nout x 9]
atom_tensor
The atomic tensor. Only returned when atomic == True shape: [nframes x natoms x nout]
atom_virial
The atomic virial. Only returned when atomic == True shape: [nframes x nout x natoms x 9]
- tensors: ClassVar[Dict[str, str]] = {'t_box': 't_box:0', 't_coord': 't_coord:0', 't_mesh': 't_mesh:0', 't_natoms': 't_natoms:0', 't_ntypes': 'descrpt_attr/ntypes:0', 't_ouput_dim': 'model_attr/output_dim:0', 't_rcut': 'descrpt_attr/rcut:0', 't_sel_type': 'model_attr/sel_type:0', 't_tmap': 'model_attr/tmap:0', 't_type': 't_type:0'}
deepmd.infer.deep_wfc module
- class deepmd.infer.deep_wfc.DeepWFC(model_file: Path, load_prefix: str = 'load', default_tf_graph: bool = False, input_map: Optional[dict] = None)[source]
Bases:
DeepTensor
Constructor.
- Parameters
Warning
For developers: DeepTensor initializer must be called at the end after self.tensors are modified because it uses the data in self.tensors dict. Do not chanage the order!
- Attributes
model_type
Get type of model.
model_version
Get version of model.
sess
Get TF session.
Methods
build_neighbor_list
(coords, cell, atype, ...)Make the mesh with neighbor list for a single frame.
eval
(coords, cells, atom_types[, atomic, ...])Evaluate the model.
eval_full
(coords, cells, atom_types[, ...])Evaluate the model with interface similar to the energy model.
eval_typeebd
()Evaluate output of type embedding network by using this model.
Unsupported in this model.
Unsupported in this model.
get_ntypes
()Get the number of atom types of this model.
get_rcut
()Get the cut-off radius of this model.
get_sel_type
()Get the selected atom types of this model.
get_type_map
()Get the type map (element name of the atom types) of this model.
make_natoms_vec
(atom_types[, mixed_type])Make the natom vector used by deepmd-kit.
reverse_map
(vec, imap)Reverse mapping of a vector according to the index map.
sort_input
(coord, atom_type[, sel_atoms, ...])Sort atoms in the system according their types.
deepmd.infer.ewald_recp module
deepmd.infer.model_devi module
- deepmd.infer.model_devi.calc_model_devi(coord, box, atype, models, fname=None, frequency=1, mixed_type=False, fparam: Optional[ndarray] = None, aparam: Optional[ndarray] = None, real_data: Optional[dict] = None, atomic: bool = False, relative: Optional[float] = None, relative_v: Optional[float] = None)[source]
Python interface to calculate model deviation.
- Parameters
- coord
numpy.ndarray
, n_frames x n_atoms x 3 Coordinates of system to calculate
- box
numpy.ndarray
orNone
, n_frames x 3 x 3 Box to specify periodic boundary condition. If None, no pbc will be used
- atype
numpy.ndarray
, n_atoms x 1 Atom types
- models
list
of
DeepPot
models
Models used to evaluate deviation
- fname
str
orNone
File to dump results, default None
- frequency
int
Steps between frames (if the system is given by molecular dynamics engine), default 1
- mixed_typebool
Whether the input atype is in mixed_type format or not
- fparam
numpy.ndarray
frame specific parameters
- aparam
numpy.ndarray
atomic specific parameters
- real_data
dict
,optional
real data to calculate RMS real error
- atomicbool, default:
False
If True, calculate the force model deviation of each atom.
- relative
float
, default:None
If given, calculate the relative model deviation of force. The value is the level parameter for computing the relative model deviation of the force.
- relative_v
float
, default:None
If given, calculate the relative model deviation of virial. The value is the level parameter for computing the relative model deviation of the virial.
- coord
- Returns
- model_devi
numpy.ndarray
, n_frames x 8 Model deviation results. The first column is index of steps, the other 7 columns are max_devi_v, min_devi_v, avg_devi_v, max_devi_f, min_devi_f, avg_devi_f, devi_e.
- model_devi
Examples
>>> from deepmd.infer import calc_model_devi >>> from deepmd.infer import DeepPot as DP >>> import numpy as np >>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1]) >>> cell = np.diag(10 * np.ones(3)).reshape([1, -1]) >>> atype = [1,0,1] >>> graphs = [DP("graph.000.pb"), DP("graph.001.pb")] >>> model_devi = calc_model_devi(coord, cell, atype, graphs)
- deepmd.infer.model_devi.calc_model_devi_e(es: ndarray, real_e: Optional[ndarray] = None) ndarray [source]
Calculate model deviation of total energy per atom.
Here we don’t use the atomic energy, as the decomposition of energy is arbitrary and not unique. There is no fitting target for atomic energy.
- Parameters
- es
numpy.ndarray
size of `n_models x n_frames x 1
- real_e
numpy.ndarray
real energy, size of n_frames x 1. If given, the RMS real error is calculated instead.
- es
- Returns
- max_devi_e
numpy.ndarray
maximum deviation of energy
- max_devi_e
- deepmd.infer.model_devi.calc_model_devi_f(fs: ndarray, real_f: Optional[ndarray] = None, relative: Optional[float] = None, atomic: Literal[False] = False) Tuple[ndarray, ndarray, ndarray] [source]
- deepmd.infer.model_devi.calc_model_devi_f(fs: ndarray, real_f: Optional[ndarray] = None, relative: Optional[float] = None, *, atomic: Literal[True]) Tuple[ndarray, ndarray, ndarray, ndarray]
Calculate model deviation of force.
- Parameters
- fs
numpy.ndarray
size of n_models x n_frames x n_atoms x 3
- real_f
numpy.ndarray
orNone
real force, size of n_frames x n_atoms x 3. If given, the RMS real error is calculated instead.
- relative
float
, default:None
If given, calculate the relative model deviation of force. The value is the level parameter for computing the relative model deviation of the force.
- atomicbool, default:
False
Whether return deviation of force in all atoms
- fs
- Returns
- max_devi_f
numpy.ndarray
maximum deviation of force in all atoms
- min_devi_f
numpy.ndarray
minimum deviation of force in all atoms
- avg_devi_f
numpy.ndarray
average deviation of force in all atoms
- fs_devi
numpy.ndarray
deviation of force in all atoms, returned if atomic=True
- max_devi_f
- deepmd.infer.model_devi.calc_model_devi_v(vs: ndarray, real_v: Optional[ndarray] = None, relative: Optional[float] = None) Tuple[ndarray, ndarray, ndarray] [source]
Calculate model deviation of virial.
- Parameters
- vs
numpy.ndarray
size of n_models x n_frames x 9
- real_v
numpy.ndarray
real virial, size of n_frames x 9. If given, the RMS real error is calculated instead.
- relative
float
, default:None
If given, calculate the relative model deviation of virial. The value is the level parameter for computing the relative model deviation of the virial.
- vs
- Returns
- max_devi_v
numpy.ndarray
maximum deviation of virial in 9 elements
- min_devi_v
numpy.ndarray
minimum deviation of virial in 9 elements
- avg_devi_v
numpy.ndarray
average deviation of virial in 9 elements
- max_devi_v
- deepmd.infer.model_devi.make_model_devi(*, models: list, system: str, set_prefix: str, output: str, frequency: int, real_error: bool = False, atomic: bool = False, relative: Optional[float] = None, relative_v: Optional[float] = None, **kwargs)[source]
Make model deviation calculation.
- Parameters
- models
list
A list of paths of models to use for making model deviation
- system
str
The path of system to make model deviation calculation
- set_prefix
str
The set prefix of the system
- output
str
The output file for model deviation results
- frequency
int
The number of steps that elapse between writing coordinates in a trajectory by a MD engine (such as Gromacs / Lammps). This paramter is used to determine the index in the output file.
- real_errorbool, default:
False
If True, calculate the RMS real error instead of model deviation.
- atomicbool, default:
False
If True, calculate the force model deviation of each atom.
- relative
float
, default:None
If given, calculate the relative model deviation of force. The value is the level parameter for computing the relative model deviation of the force.
- relative_v
float
, default:None
If given, calculate the relative model deviation of virial. The value is the level parameter for computing the relative model deviation of the virial.
- **kwargs
Arbitrary keyword arguments.
- models
- deepmd.infer.model_devi.write_model_devi_out(devi: ndarray, fname: str, header: str = '', atomic: bool = False)[source]
Write output of model deviation.
- Parameters
- devi
numpy.ndarray
the first column is the steps index
- fname
str
the file name to dump
- header
str
, default=”” the header to dump
- atomicbool, default:
False
whether atomic model deviation is printed
- devi