deepmd.train package
Submodules
deepmd.train.run_options module
Module taking care of important package constants.
- class deepmd.train.run_options.RunOptions(init_model: Optional[str] = None, init_frz_model: Optional[str] = None, finetune: Optional[str] = None, restart: Optional[str] = None, log_path: Optional[str] = None, log_level: int = 0, mpi_log: str = 'master')[source]
Bases:
object
Class with info on how to run training (cluster, MPI and GPU config).
- Attributes
- gpus: Optional[List[int]]
list of GPUs if any are present else None
- is_chief: bool
in distribured training it is true for tha main MPI process in serail it is always true
- world_size: int
total worker count
- my_rank: int
index of the MPI task
- nodename: str
name of the node
- node_list_
List
[str
] the list of nodes of the current mpirun
- my_device: str
deviice type - gpu or cpu
Methods
Print build and current running cluster configuration summary.
- property is_chief
Whether my rank is 0.
deepmd.train.trainer module
- class deepmd.train.trainer.DPTrainer(jdata, run_opt, is_compress=False)[source]
Bases:
object
Methods
Save the compressed graph.
build
eval_single_list
get_evaluation_results
get_feed_dict
get_global_step
print_header
print_on_training
save_checkpoint
train
valid_on_the_fly
- class deepmd.train.trainer.DatasetLoader(train_data: DeepmdDataSystem)[source]
Bases:
object
Generate an OP that loads the training data from the given DeepmdDataSystem.
It can be used to load the training data in the training process, so there is no waiting time between training steps.
- Parameters
- train_data
DeepmdDataSystem
The training data.
- train_data
Examples
>>> loader = DatasetLoader(train_data) >>> data_op = loader.build() >>> with tf.Session() as sess: >>> data_list = sess.run(data_op) >>> data_dict = loader.get_data_dict(data_list)
Methods
build
()Build the OP that loads the training data.
get_data_dict
(batch_list)Generate a dict of the loaded data.