Source code for deepmd.utils.data_system

#!/usr/bin/env python3

import logging
import os
import collections
import warnings
import numpy as np
from typing import Tuple, List

from deepmd.utils import random as dp_random
from deepmd.utils.data import DataSets
from deepmd.utils.data import DeepmdData

log = logging.getLogger(__name__)


[docs]class DeepmdDataSystem() : """ Class for manipulating many data systems. It is implemented with the help of DeepmdData """ def __init__ (self, systems : List[str], batch_size : int, test_size : int, rcut : float, set_prefix : str = 'set', shuffle_test : bool = True, type_map : List[str] = None, modifier = None, trn_all_set = False, sys_probs = None, auto_prob_style ="prob_sys_size") : """ Constructor Parameters ---------- systems Specifying the paths to systems batch_size The batch size test_size The size of test data rcut The cut-off radius set_prefix Prefix for the directories of different sets shuffle_test If the test data are shuffled type_map Gives the name of different atom types modifier Data modifier that has the method `modify_data` trn_all_set Use all sets as training dataset. Otherwise, if the number of sets is more than 1, the last set is left for test. sys_probs: list of float The probabilitis of systems to get the batch. Summation of positive elements of this list should be no greater than 1. Element of this list can be negative, the probability of the corresponding system is determined automatically by the number of batches in the system. auto_prob_style: str Determine the probability of systems automatically. The method is assigned by this key and can be - "prob_uniform" : the probability all the systems are equal, namely 1.0/self.get_nsystems() - "prob_sys_size" : the probability of a system is proportional to the number of batches in the system - "prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;..." : the list of systems is devided into blocks. A block is specified by `stt_idx:end_idx:weight`, where `stt_idx` is the starting index of the system, `end_idx` is then ending (not including) index of the system, the probabilities of the systems in this block sums up to `weight`, and the relatively probabilities within this block is proportional to the number of batches in the system.""" # init data self.rcut = rcut self.system_dirs = systems self.nsystems = len(self.system_dirs) self.data_systems = [] for ii in self.system_dirs : self.data_systems.append( DeepmdData( ii, set_prefix=set_prefix, shuffle_test=shuffle_test, type_map = type_map, modifier = modifier, trn_all_set = trn_all_set )) # batch size self.batch_size = batch_size if isinstance(self.batch_size, int): self.batch_size = self.batch_size * np.ones(self.nsystems, dtype=int) elif isinstance(self.batch_size, str): words = self.batch_size.split(':') if 'auto' == words[0] : rule = 32 if len(words) == 2 : rule = int(words[1]) else: raise RuntimeError('unknown batch_size rule ' + words[0]) self.batch_size = self._make_auto_bs(rule) elif isinstance(self.batch_size, list): pass else : raise RuntimeError('invalid batch_size') assert(isinstance(self.batch_size, (list,np.ndarray))) assert(len(self.batch_size) == self.nsystems) # natoms, nbatches ntypes = [] for ii in self.data_systems : ntypes.append(ii.get_ntypes()) self.sys_ntypes = max(ntypes) self.natoms = [] self.natoms_vec = [] self.nbatches = [] type_map_list = [] for ii in range(self.nsystems) : self.natoms.append(self.data_systems[ii].get_natoms()) self.natoms_vec.append(self.data_systems[ii].get_natoms_vec(self.sys_ntypes).astype(int)) self.nbatches.append(self.data_systems[ii].get_sys_numb_batch(self.batch_size[ii])) type_map_list.append(self.data_systems[ii].get_type_map()) self.type_map = self._check_type_map_consistency(type_map_list) # ! altered by Marián Rynik # test size # now test size can be set as a percentage of systems data or test size # can be set for each system individualy in the same manner as batch # size. This enables one to use systems with diverse number of # structures and different number of atoms. self.test_size = test_size if isinstance(self.test_size, int): self.test_size = self.test_size * np.ones(self.nsystems, dtype=int) elif isinstance(self.test_size, str): words = self.test_size.split('%') try: percent = int(words[0]) except ValueError: raise RuntimeError('unknown test_size rule ' + words[0]) self.test_size = self._make_auto_ts(percent) elif isinstance(self.test_size, list): pass else : raise RuntimeError('invalid test_size') assert(isinstance(self.test_size, (list,np.ndarray))) assert(len(self.test_size) == self.nsystems) # prob of batch, init pick idx self.prob_nbatches = [ float(i) for i in self.nbatches] / np.sum(self.nbatches) self.pick_idx = 0 # derive system probabilities self.sys_probs = None self.set_sys_probs(sys_probs, auto_prob_style) # check batch and test size for ii in range(self.nsystems) : chk_ret = self.data_systems[ii].check_batch_size(self.batch_size[ii]) if chk_ret is not None : warnings.warn("system %s required batch size is larger than the size of the dataset %s (%d > %d)" % \ (self.system_dirs[ii], chk_ret[0], self.batch_size[ii], chk_ret[1])) chk_ret = self.data_systems[ii].check_test_size(self.test_size[ii]) if chk_ret is not None : warnings.warn("system %s required test size is larger than the size of the dataset %s (%d > %d)" % \ (self.system_dirs[ii], chk_ret[0], self.test_size[ii], chk_ret[1])) def _load_test(self, ntests = -1): self.test_data = collections.defaultdict(list) for ii in range(self.nsystems) : test_system_data = self.data_systems[ii].get_test(ntests = ntests) for nn in test_system_data: self.test_data[nn].append(test_system_data[nn]) def _make_default_mesh(self): self.default_mesh = [] cell_size = np.max (self.rcut) for ii in range(self.nsystems) : if self.data_systems[ii].pbc : test_system_data = self.data_systems[ii].get_batch(self.batch_size[ii]) self.data_systems[ii].reset_get_batch() # test_system_data = self.data_systems[ii].get_test() avg_box = np.average (test_system_data["box"], axis = 0) avg_box = np.reshape (avg_box, [3,3]) ncell = (np.linalg.norm(avg_box, axis=1)/ cell_size).astype(np.int32) ncell[ncell < 2] = 2 default_mesh = np.zeros (6, dtype = np.int32) default_mesh[3:6] = ncell self.default_mesh.append(default_mesh) else: self.default_mesh.append(np.array([], dtype = np.int32))
[docs] def compute_energy_shift(self, rcond = 1e-3, key = 'energy') : sys_ener = np.array([]) for ss in self.data_systems : sys_ener = np.append(sys_ener, ss.avg(key)) sys_tynatom = np.array(self.natoms_vec, dtype = float) sys_tynatom = np.reshape(sys_tynatom, [self.nsystems,-1]) sys_tynatom = sys_tynatom[:,2:] energy_shift,resd,rank,s_value \ = np.linalg.lstsq(sys_tynatom, sys_ener, rcond = rcond) return energy_shift
[docs] def add_dict(self, adict: dict) -> None: """ Add items to the data system by a `dict`. `adict` should have items like adict[key] = { 'ndof': ndof, 'atomic': atomic, 'must': must, 'high_prec': high_prec, 'type_sel': type_sel, 'repeat': repeat, } For the explaination of the keys see `add` """ for kk in adict : self.add(kk, adict[kk]['ndof'], atomic=adict[kk]['atomic'], must=adict[kk]['must'], high_prec=adict[kk]['high_prec'], type_sel=adict[kk]['type_sel'], repeat=adict[kk]['repeat'])
[docs] def add(self, key : str, ndof : int, atomic : bool = False, must : bool = False, high_prec : bool = False, type_sel : List[int] = None, repeat : int = 1 ) : """ Add a data item that to be loaded Parameters ---------- key The key of the item. The corresponding data is stored in `sys_path/set.*/key.npy` ndof The number of dof atomic The item is an atomic property. If False, the size of the data should be nframes x ndof If True, the size of data should be nframes x natoms x ndof must The data file `sys_path/set.*/key.npy` must exist. If must is False and the data file does not exist, the `data_dict[find_key]` is set to 0.0 high_prec Load the data and store in float64, otherwise in float32 type_sel Select certain type of atoms repeat The data will be repeated `repeat` times. """ for ii in self.data_systems: ii.add(key, ndof, atomic=atomic, must=must, high_prec=high_prec, repeat=repeat, type_sel=type_sel)
[docs] def reduce(self, key_out, key_in): """ Generate a new item from the reduction of another atom Parameters ---------- key_out The name of the reduced item key_in The name of the data item to be reduced """ for ii in self.data_systems: ii.reduce(key_out, key_in)
[docs] def get_data_dict(self, ii: int = 0) -> dict: return self.data_systems[ii].get_data_dict()
[docs] def set_sys_probs(self, sys_probs=None, auto_prob_style: str = "prob_sys_size"): if sys_probs is None : if auto_prob_style == "prob_uniform": prob_v = 1./float(self.nsystems) probs = [prob_v for ii in range(self.nsystems)] elif auto_prob_style == "prob_sys_size": probs = self.prob_nbatches elif auto_prob_style[:14] == "prob_sys_size;": probs = self._prob_sys_size_ext(auto_prob_style) else: raise RuntimeError("Unknown auto prob style: " + auto_prob_style) else: probs = self._process_sys_probs(sys_probs) self.sys_probs = probs
def _get_sys_probs(self, sys_probs, auto_prob_style) : # depreciated if sys_probs is None : if auto_prob_style == "prob_uniform" : prob_v = 1./float(self.nsystems) prob = [prob_v for ii in range(self.nsystems)] elif auto_prob_style == "prob_sys_size" : prob = self.prob_nbatches elif auto_prob_style[:14] == "prob_sys_size;" : prob = self._prob_sys_size_ext(auto_prob_style) else : raise RuntimeError("unkown style " + auto_prob_style ) else : prob = self._process_sys_probs(sys_probs) return prob
[docs] def get_batch(self, sys_idx : int = None): # batch generation style altered by Ziyao Li: # one should specify the "sys_prob" and "auto_prob_style" params # via set_sys_prob() function. The sys_probs this function uses is # defined as a private variable, self.sys_probs, initialized in __init__(). # This is to optimize the (vain) efforts in evaluating sys_probs every batch. """ Get a batch of data from the data systems Parameters ---------- sys_idx: int The index of system from which the batch is get. If sys_idx is not None, `sys_probs` and `auto_prob_style` are ignored If sys_idx is None, automatically determine the system according to `sys_probs` or `auto_prob_style`, see the following. """ if not hasattr(self, 'default_mesh') : self._make_default_mesh() if sys_idx is not None : self.pick_idx = sys_idx else : # prob = self._get_sys_probs(sys_probs, auto_prob_style) self.pick_idx = dp_random.choice(np.arange(self.nsystems), p=self.sys_probs) b_data = self.data_systems[self.pick_idx].get_batch(self.batch_size[self.pick_idx]) b_data["natoms_vec"] = self.natoms_vec[self.pick_idx] b_data["default_mesh"] = self.default_mesh[self.pick_idx] return b_data
# ! altered by Marián Rynik
[docs] def get_test (self, sys_idx : int = None, n_test : int = -1) : # depreciated """ Get test data from the the data systems. Parameters ---------- sys_idx The test dat of system with index `sys_idx` will be returned. If is None, the currently selected system will be returned. n_test Number of test data. If set to -1 all test data will be get. """ if not hasattr(self, 'default_mesh') : self._make_default_mesh() if not hasattr(self, 'test_data') : self._load_test(ntests = n_test) if sys_idx is not None : idx = sys_idx else : idx = self.pick_idx test_system_data = {} for nn in self.test_data: test_system_data[nn] = self.test_data[nn][idx] test_system_data["natoms_vec"] = self.natoms_vec[idx] test_system_data["default_mesh"] = self.default_mesh[idx] return test_system_data
[docs] def get_sys_ntest(self, sys_idx=None): """ Get number of tests for the currently selected system, or one defined by sys_idx. """ if sys_idx is not None : return self.test_size[sys_idx] else : return self.test_size[self.pick_idx]
[docs] def get_type_map(self) -> List[str]: """ Get the type map """ return self.type_map
[docs] def get_nbatches (self) -> int: """ Get the total number of batches """ return self.nbatches
[docs] def get_ntypes (self) -> int: """ Get the number of types """ return self.sys_ntypes
[docs] def get_nsystems (self) -> int: """ Get the number of data systems """ return self.nsystems
[docs] def get_sys (self, idx : int) -> DeepmdData: """ Get a certain data system """ return self.data_systems[idx]
[docs] def get_batch_size(self) -> int: """ Get the batch size """ return self.batch_size
def _format_name_length(self, name, width) : if len(name) <= width: return '{: >{}}'.format(name, width) else : name = name[-(width-3):] name = '-- ' + name return name
[docs] def print_summary(self, name) : # width 65 sys_width = 42 log.info(f"---Summary of DataSystem: {name:13s}-----------------------------------------------") log.info("found %d system(s):" % self.nsystems) log.info(("%s " % self._format_name_length('system', sys_width)) + ("%6s %6s %6s %5s %3s" % ('natoms', 'bch_sz', 'n_bch', 'prob', 'pbc'))) for ii in range(self.nsystems) : log.info("%s %6d %6d %6d %5.3f %3s" % (self._format_name_length(self.system_dirs[ii], sys_width), self.natoms[ii], # TODO batch size * nbatches = number of structures self.batch_size[ii], self.nbatches[ii], self.sys_probs[ii], "T" if self.data_systems[ii].pbc else "F" ) ) log.info("--------------------------------------------------------------------------------------")
def _make_auto_bs(self, rule) : bs = [] for ii in self.data_systems: ni = ii.get_natoms() bsi = rule // ni if bsi * ni < rule: bsi += 1 bs.append(bsi) return bs # ! added by Marián Rynik def _make_auto_ts(self, percent): ts = [] for ii in range(self.nsystems): ni = self.batch_size[ii] * self.nbatches[ii] tsi = int(ni * percent / 100) ts.append(tsi) return ts def _check_type_map_consistency(self, type_map_list): ret = [] for ii in type_map_list: if ii is not None: min_len = min([len(ii), len(ret)]) for idx in range(min_len) : if ii[idx] != ret[idx] : raise RuntimeError('inconsistent type map: %s %s' % (str(ret), str(ii))) if len(ii) > len(ret) : ret = ii return ret def _process_sys_probs(self, sys_probs) : sys_probs = np.array(sys_probs) type_filter = sys_probs >= 0 assigned_sum_prob = np.sum(type_filter * sys_probs) assert assigned_sum_prob <= 1, "the sum of assigned probability should be less than 1" rest_sum_prob = 1. - assigned_sum_prob if rest_sum_prob != 0 : rest_nbatch = (1 - type_filter) * self.nbatches rest_prob = rest_sum_prob * rest_nbatch / np.sum(rest_nbatch) ret_prob = rest_prob + type_filter * sys_probs else : ret_prob = sys_probs assert np.sum(ret_prob) == 1, "sum of probs should be 1" return ret_prob def _prob_sys_size_ext(self, keywords): block_str = keywords.split(';')[1:] block_stt = [] block_end = [] block_weights = [] for ii in block_str: stt = int(ii.split(':')[0]) end = int(ii.split(':')[1]) weight = float(ii.split(':')[2]) assert(weight >= 0), "the weight of a block should be no less than 0" block_stt.append(stt) block_end.append(end) block_weights.append(weight) nblocks = len(block_str) block_probs = np.array(block_weights) / np.sum(block_weights) sys_probs = np.zeros([self.get_nsystems()]) for ii in range(nblocks): nbatch_block = self.nbatches[block_stt[ii]:block_end[ii]] tmp_prob = [float(i) for i in nbatch_block] / np.sum(nbatch_block) sys_probs[block_stt[ii]:block_end[ii]] = tmp_prob * block_probs[ii] return sys_probs
[docs]class DataSystem (object) : """ Outdated class for the data systems. .. deprecated:: 2.0.0 This class is not maintained any more. """ def __init__ (self, systems, set_prefix, batch_size, test_size, rcut, run_opt = None) : self.system_dirs = systems self.nsystems = len(self.system_dirs) self.batch_size = batch_size if isinstance(self.batch_size, int) : self.batch_size = self.batch_size * np.ones(self.nsystems, dtype=int) assert(isinstance(self.batch_size, (list,np.ndarray))) assert(len(self.batch_size) == self.nsystems) self.data_systems = [] self.ntypes = [] self.natoms = [] self.natoms_vec = [] self.nbatches = [] for ii in self.system_dirs : self.data_systems.append(DataSets(ii, set_prefix)) sys_all_types = np.loadtxt(os.path.join(ii, "type.raw")).astype(int) self.ntypes.append(np.max(sys_all_types) + 1) self.sys_ntypes = max(self.ntypes) type_map = [] for ii in range(self.nsystems) : self.natoms.append(self.data_systems[ii].get_natoms()) self.natoms_vec.append(self.data_systems[ii].get_natoms_vec(self.sys_ntypes).astype(int)) self.nbatches.append(self.data_systems[ii].get_sys_numb_batch(self.batch_size[ii])) type_map.append(self.data_systems[ii].get_type_map()) self.type_map = self.check_type_map_consistency(type_map) # check frame parameters has_fparam = [ii.numb_fparam() for ii in self.data_systems] for ii in has_fparam : if ii != has_fparam[0] : raise RuntimeError("if any system has frame parameter, then all systems should have the same number of frame parameter") self.has_fparam = has_fparam[0] # check the size of data if they satisfy the requirement of batch and test for ii in range(self.nsystems) : chk_ret = self.data_systems[ii].check_batch_size(self.batch_size[ii]) if chk_ret is not None : raise RuntimeError ("system %s required batch size %d is larger than the size %d of the dataset %s" % \ (self.system_dirs[ii], self.batch_size[ii], chk_ret[1], chk_ret[0])) chk_ret = self.data_systems[ii].check_test_size(test_size) if chk_ret is not None : print("WARNNING: system %s required test size %d is larger than the size %d of the dataset %s" % \ (self.system_dirs[ii], test_size, chk_ret[1], chk_ret[0])) if run_opt is not None: self.print_summary(run_opt) self.prob_nbatches = [ float(i) for i in self.nbatches] / np.sum(self.nbatches) self.test_data = collections.defaultdict(list) self.default_mesh = [] for ii in range(self.nsystems) : test_system_data = self.data_systems[ii].get_test () for nn in test_system_data: self.test_data[nn].append(test_system_data[nn]) cell_size = np.max (rcut) avg_box = np.average (test_system_data["box"], axis = 0) avg_box = np.reshape (avg_box, [3,3]) ncell = (np.linalg.norm(avg_box, axis=1)/ cell_size).astype(np.int32) ncell[ncell < 2] = 2 default_mesh = np.zeros (6, dtype = np.int32) default_mesh[3:6] = ncell self.default_mesh.append(default_mesh) self.pick_idx = 0
[docs] def check_type_map_consistency(self, type_map_list): ret = [] for ii in type_map_list: if ii is not None: min_len = min([len(ii), len(ret)]) for idx in range(min_len) : if ii[idx] != ret[idx] : raise RuntimeError('inconsistent type map: %s %s' % (str(ret), str(ii))) if len(ii) > len(ret) : ret = ii return ret
[docs] def get_type_map(self): return self.type_map
[docs] def format_name_length(self, name, width) : if len(name) <= width: return '{: >{}}'.format(name, width) else : name = name[-(width-3):] name = '-- ' + name return name
[docs] def print_summary(self) : tmp_msg = "" # width 65 sys_width = 42 tmp_msg += "---Summary of DataSystem-----------------------------------------\n" tmp_msg += "find %d system(s):\n" % self.nsystems tmp_msg += "%s " % self.format_name_length('system', sys_width) tmp_msg += "%s %s %s\n" % ('natoms', 'bch_sz', 'n_bch') for ii in range(self.nsystems) : tmp_msg += ("%s %6d %6d %5d\n" % (self.format_name_length(self.system_dirs[ii], sys_width), self.natoms[ii], self.batch_size[ii], self.nbatches[ii]) ) tmp_msg += "-----------------------------------------------------------------\n" log.info(tmp_msg)
[docs] def compute_energy_shift(self) : sys_ener = np.array([]) for ss in self.data_systems : sys_ener = np.append(sys_ener, ss.get_ener()) sys_tynatom = np.array(self.natoms_vec, dtype = float) sys_tynatom = np.reshape(sys_tynatom, [self.nsystems,-1]) sys_tynatom = sys_tynatom[:,2:] energy_shift,resd,rank,s_value \ = np.linalg.lstsq(sys_tynatom, sys_ener, rcond = 1e-3) return energy_shift
[docs] def process_sys_weights(self, sys_weights) : sys_weights = np.array(sys_weights) type_filter = sys_weights >= 0 assigned_sum_prob = np.sum(type_filter * sys_weights) assert assigned_sum_prob <= 1, "the sum of assigned probability should be less than 1" rest_sum_prob = 1. - assigned_sum_prob rest_nbatch = (1 - type_filter) * self.nbatches rest_prob = rest_sum_prob * rest_nbatch / np.sum(rest_nbatch) ret_prob = rest_prob + type_filter * sys_weights assert np.sum(ret_prob) == 1, "sum of probs should be 1" return ret_prob
[docs] def get_batch (self, sys_idx = None, sys_weights = None, style = "prob_sys_size") : if sys_idx is not None : self.pick_idx = sys_idx else : if sys_weights is None : if style == "prob_sys_size" : prob = self.prob_nbatches elif style == "prob_uniform" : prob = None else : raise RuntimeError("unkown get_batch style") else : prob = self.process_sys_weights(sys_weights) self.pick_idx = dp_random.choice(np.arange(self.nsystems), p=prob) b_data = self.data_systems[self.pick_idx].get_batch(self.batch_size[self.pick_idx]) b_data["natoms_vec"] = self.natoms_vec[self.pick_idx] b_data["default_mesh"] = self.default_mesh[self.pick_idx] return b_data
[docs] def get_test (self, sys_idx = None) : if sys_idx is not None : idx = sys_idx else : idx = self.pick_idx test_system_data = {} for nn in self.test_data: test_system_data[nn] = self.test_data[nn][idx] test_system_data["natoms_vec"] = self.natoms_vec[idx] test_system_data["default_mesh"] = self.default_mesh[idx] return test_system_data
[docs] def get_nbatches (self) : return self.nbatches
[docs] def get_ntypes (self) : return self.sys_ntypes
[docs] def get_nsystems (self) : return self.nsystems
[docs] def get_sys (self, sys_idx) : return self.data_systems[sys_idx]
[docs] def get_batch_size(self) : return self.batch_size
[docs] def numb_fparam(self) : return self.has_fparam
def _main () : sys = ['/home/wanghan/study/deep.md/results.01/data/mos2/only_raws/20', '/home/wanghan/study/deep.md/results.01/data/mos2/only_raws/30', '/home/wanghan/study/deep.md/results.01/data/mos2/only_raws/38', '/home/wanghan/study/deep.md/results.01/data/mos2/only_raws/MoS2', '/home/wanghan/study/deep.md/results.01/data/mos2/only_raws/Pt_cluster'] set_prefix = 'set' ds = DataSystem (sys, set_prefix, 4, 6) r = ds.get_batch() print(r[1][0]) if __name__ == '__main__': _main()