import glob
import os
import re
from shutil import copyfile
from monty.serialization import dumpfn, loadfn
import dpgen.auto_test.lib.abacus as abacus
import dpgen.auto_test.lib.vasp as vasp
import dpgen.generator.lib.abacus_scf as abacus_scf
from dpgen import dlog
from dpgen.auto_test.Property import Property
from dpgen.auto_test.refine import make_refine
from dpgen.generator.lib.vasp import incar_upper
[docs]
class Elastic(Property):
def __init__(self, parameter, inter_param=None):
if not ("init_from_suffix" in parameter and "output_suffix" in parameter):
default_norm_def = 1e-2
default_shear_def = 1e-2
parameter["norm_deform"] = parameter.get("norm_deform", default_norm_def)
self.norm_deform = parameter["norm_deform"]
parameter["shear_deform"] = parameter.get("shear_deform", default_shear_def)
self.shear_deform = parameter["shear_deform"]
parameter["cal_type"] = parameter.get("cal_type", "relaxation")
self.cal_type = parameter["cal_type"]
default_cal_setting = {
"relax_pos": True,
"relax_shape": False,
"relax_vol": False,
}
if "cal_setting" not in parameter:
parameter["cal_setting"] = default_cal_setting
else:
if "relax_pos" not in parameter["cal_setting"]:
parameter["cal_setting"]["relax_pos"] = default_cal_setting["relax_pos"]
if "relax_shape" not in parameter["cal_setting"]:
parameter["cal_setting"]["relax_shape"] = default_cal_setting[
"relax_shape"
]
if "relax_vol" not in parameter["cal_setting"]:
parameter["cal_setting"]["relax_vol"] = default_cal_setting["relax_vol"]
self.cal_setting = parameter["cal_setting"]
# parameter['reproduce'] = False
# self.reprod = parameter['reproduce']
self.parameter = parameter
self.inter_param = inter_param if inter_param is not None else {"type": "vasp"}
[docs]
def make_confs(self, path_to_work, path_to_equi, refine=False):
from pymatgen.analysis.elasticity.strain import DeformedStructureSet, Strain
from pymatgen.core.structure import Structure
path_to_work = os.path.abspath(path_to_work)
if os.path.exists(path_to_work):
dlog.warning(f"{path_to_work} already exists")
else:
os.makedirs(path_to_work)
path_to_equi = os.path.abspath(path_to_equi)
if "start_confs_path" in self.parameter and os.path.exists(
self.parameter["start_confs_path"]
):
init_path_list = glob.glob(
os.path.join(self.parameter["start_confs_path"], "*")
)
struct_init_name_list = []
for ii in init_path_list:
struct_init_name_list.append(ii.split("/")[-1])
struct_output_name = path_to_work.split("/")[-2]
assert struct_output_name in struct_init_name_list
path_to_equi = os.path.abspath(
os.path.join(
self.parameter["start_confs_path"],
struct_output_name,
"relaxation",
"relax_task",
)
)
task_list = []
cwd = os.getcwd()
if self.inter_param["type"] == "abacus":
CONTCAR = abacus.final_stru(path_to_equi)
POSCAR = "STRU"
else:
CONTCAR = "CONTCAR"
POSCAR = "POSCAR"
equi_contcar = os.path.join(path_to_equi, CONTCAR)
os.chdir(path_to_work)
if os.path.isfile(POSCAR):
os.remove(POSCAR)
if os.path.islink(POSCAR):
os.remove(POSCAR)
os.symlink(os.path.relpath(equi_contcar), POSCAR)
# task_poscar = os.path.join(output, 'POSCAR')
# stress, deal with unsupported stress in dpdata
# with open(os.path.join(path_to_equi, 'result.json')) as fin:
# equi_result = json.load(fin)
# equi_stress = np.array(equi_result['stress']['data'])[-1]
equi_result = loadfn(os.path.join(path_to_equi, "result.json"))
equi_stress = equi_result["stress"][-1]
dumpfn(equi_stress, "equi.stress.json", indent=4)
os.chdir(cwd)
if refine:
print("elastic refine starts")
task_list = make_refine(
self.parameter["init_from_suffix"],
self.parameter["output_suffix"],
path_to_work,
)
# record strain
# df = Strain.from_deformation(dfm_ss.deformations[idid])
# dumpfn(df.as_dict(), 'strain.json', indent=4)
init_from_path = re.sub(
self.parameter["output_suffix"][::-1],
self.parameter["init_from_suffix"][::-1],
path_to_work[::-1],
count=1,
)[::-1]
task_list_basename = list(map(os.path.basename, task_list))
for ii in task_list_basename:
init_from_task = os.path.join(init_from_path, ii)
output_task = os.path.join(path_to_work, ii)
os.chdir(output_task)
if os.path.isfile("strain.json"):
os.remove("strain.json")
copyfile(os.path.join(init_from_task, "strain.json"), "strain.json")
# os.symlink(os.path.relpath(
# os.path.join((re.sub(self.parameter['output_suffix'], self.parameter['init_from_suffix'], ii)),
# 'strain.json')),
# 'strain.json')
os.chdir(cwd)
else:
norm_def = self.norm_deform
shear_def = self.shear_deform
norm_strains = [-norm_def, -0.5 * norm_def, 0.5 * norm_def, norm_def]
shear_strains = [-shear_def, -0.5 * shear_def, 0.5 * shear_def, shear_def]
if not os.path.exists(equi_contcar):
raise RuntimeError("please do relaxation first")
if self.inter_param["type"] == "abacus":
ss = abacus.stru2Structure(equi_contcar)
else:
ss = Structure.from_file(equi_contcar)
dfm_ss = DeformedStructureSet(
ss,
symmetry=False,
norm_strains=norm_strains,
shear_strains=shear_strains,
)
n_dfm = len(dfm_ss)
print("gen with norm " + str(norm_strains))
print("gen with shear " + str(shear_strains))
for ii in range(n_dfm):
output_task = os.path.join(path_to_work, "task.%06d" % ii)
os.makedirs(output_task, exist_ok=True)
os.chdir(output_task)
for jj in [
"INCAR",
"POTCAR",
"POSCAR",
"conf.lmp",
"in.lammps",
"STRU",
]:
if os.path.exists(jj):
os.remove(jj)
task_list.append(output_task)
dfm_ss.deformed_structures[ii].to("POSCAR", "POSCAR")
if self.inter_param["type"] == "abacus":
abacus.poscar2stru("POSCAR", self.inter_param, "STRU")
os.remove("POSCAR")
# record strain
df = Strain.from_deformation(dfm_ss.deformations[ii])
dumpfn(df.as_dict(), "strain.json", indent=4)
os.chdir(cwd)
return task_list
[docs]
def post_process(self, task_list):
from pymatgen.io.vasp import Incar, Kpoints
if self.inter_param["type"] == "abacus":
POSCAR = "STRU"
INCAR = "INPUT"
KPOINTS = "KPT"
else:
POSCAR = "POSCAR"
INCAR = "INCAR"
KPOINTS = "KPOINTS"
cwd = os.getcwd()
poscar_start = os.path.abspath(os.path.join(task_list[0], "..", POSCAR))
os.chdir(os.path.join(task_list[0], ".."))
if os.path.isfile(os.path.join(task_list[0], INCAR)):
if self.inter_param["type"] == "abacus":
input_aba = abacus_scf.get_abacus_input_parameters("INPUT")
if "kspacing" in input_aba:
kspacing = [float(i) for i in input_aba["kspacing"].split()]
kpt = abacus.make_kspacing_kpt(poscar_start, kspacing)
kpt += [0, 0, 0]
abacus.write_kpt("KPT", kpt)
del input_aba["kspacing"]
os.remove("INPUT")
abacus.write_input("INPUT", input_aba)
else:
os.rename(os.path.join(task_list[0], "KPT"), "./KPT")
else:
incar = incar_upper(
Incar.from_file(os.path.join(task_list[0], "INCAR"))
)
kspacing = incar.get("KSPACING")
kgamma = incar.get("KGAMMA", False)
ret = vasp.make_kspacing_kpoints(poscar_start, kspacing, kgamma)
try:
kp = Kpoints.from_string(ret)
except AttributeError:
kp = Kpoints.from_str(ret)
if os.path.isfile("KPOINTS"):
os.remove("KPOINTS")
kp.write_file("KPOINTS")
os.chdir(cwd)
kpoints_universal = os.path.abspath(
os.path.join(task_list[0], "..", KPOINTS)
)
for ii in task_list:
if os.path.isfile(os.path.join(ii, KPOINTS)):
os.remove(os.path.join(ii, KPOINTS))
if os.path.islink(os.path.join(ii, KPOINTS)):
os.remove(os.path.join(ii, KPOINTS))
os.chdir(ii)
os.symlink(os.path.relpath(kpoints_universal), KPOINTS)
os.chdir(cwd)
[docs]
def task_type(self):
return self.parameter["type"]
[docs]
def task_param(self):
return self.parameter
def _compute_lower(self, output_file, all_tasks, all_res):
from pymatgen.analysis.elasticity.elastic import ElasticTensor
from pymatgen.analysis.elasticity.stress import Stress
output_file = os.path.abspath(output_file)
res_data = {}
ptr_data = os.path.dirname(output_file) + "\n"
equi_stress = Stress(
loadfn(os.path.join(os.path.dirname(output_file), "equi.stress.json"))
)
equi_stress *= -1000
lst_strain = []
lst_stress = []
for ii in all_tasks:
strain = loadfn(os.path.join(ii, "strain.json"))
# stress, deal with unsupported stress in dpdata
# with open(os.path.join(ii, 'result_task.json')) as fin:
# task_result = json.load(fin)
# stress = np.array(task_result['stress']['data'])[-1]
stress = loadfn(os.path.join(ii, "result_task.json"))["stress"][-1]
lst_strain.append(strain)
lst_stress.append(Stress(stress * -1000))
et = ElasticTensor.from_independent_strains(
lst_strain, lst_stress, eq_stress=equi_stress, vasp=False
)
res_data["elastic_tensor"] = []
for ii in range(6):
for jj in range(6):
res_data["elastic_tensor"].append(et.voigt[ii][jj] / 1e4)
ptr_data += "%7.2f " % (et.voigt[ii][jj] / 1e4)
ptr_data += "\n"
BV = et.k_voigt / 1e4
GV = et.g_voigt / 1e4
EV = 9 * BV * GV / (3 * BV + GV)
uV = 0.5 * (3 * BV - 2 * GV) / (3 * BV + GV)
res_data["BV"] = BV
res_data["GV"] = GV
res_data["EV"] = EV
res_data["uV"] = uV
ptr_data += f"# Bulk Modulus BV = {BV:.2f} GPa\n"
ptr_data += f"# Shear Modulus GV = {GV:.2f} GPa\n"
ptr_data += f"# Youngs Modulus EV = {EV:.2f} GPa\n"
ptr_data += f"# Poission Ratio uV = {uV:.2f}\n "
dumpfn(res_data, output_file, indent=4)
return res_data, ptr_data