Simplify
When you have a dataset containing lots of repeated data, this step will help you simplify your dataset. The workflow contains three stages: train, model_devi, and fp. The train stage and the fp stage are as the same as the run step, and the model_devi stage will calculate model deviations of the rest data that has not been confirmed accurate. Data with small model deviations will be confirmed accurate, while the program will pick data from those with large model deviations to the new dataset.
Use the following script to start the workflow:
dpgen simplify param.json machine.json
Here is an example of param.json
for QM7 dataset:
{
"type_map": [
"C",
"H",
"N",
"O",
"S"
],
"mass_map": [
12.011,
1.008,
14.007,
15.999,
32.065
],
"pick_data": "/scratch/jz748/simplify/qm7",
"init_data_prefix": "",
"init_data_sys": [],
"sys_batch_size": [
"auto"
],
"numb_models": 4,
"default_training_param": {
"model": {
"type_map": [
"C",
"H",
"N",
"O",
"S"
],
"descriptor": {
"type": "se_a",
"sel": [
7,
16,
3,
3,
1
],
"rcut_smth": 1.00,
"rcut": 6.00,
"neuron": [
25,
50,
100
],
"resnet_dt": false,
"axis_neuron": 12
},
"fitting_net": {
"neuron": [
240,
240,
240
],
"resnet_dt": true
}
},
"learning_rate": {
"type": "exp",
"start_lr": 0.001,
"decay_steps": 10,
"decay_rate": 0.99
},
"loss": {
"start_pref_e": 0.02,
"limit_pref_e": 1,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0,
"limit_pref_v": 0,
"start_pref_pf": 0,
"limit_pref_pf": 0
},
"training": {
"set_prefix": "set",
"stop_batch": 10000,
"disp_file": "lcurve.out",
"disp_freq": 1000,
"numb_test": 1,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"disp_training": true,
"time_training": true,
"profiling": false,
"profiling_file": "timeline.json"
},
"_comment": "that's all"
},
"fp_style": "gaussian",
"shuffle_poscar": false,
"fp_task_max": 1000,
"fp_task_min": 10,
"fp_pp_path": "/home/jzzeng/",
"fp_pp_files": [],
"fp_params": {
"keywords": "mn15/6-31g** force nosymm scf(maxcyc=512)",
"nproc": 28,
"multiplicity": 1,
"_comment": " that's all "
},
"init_pick_number":100,
"iter_pick_number":100,
"model_devi_f_trust_lo":0.25,
"model_devi_f_trust_hi":0.45,
"_comment": " that's all "
}
Here pick_data
is the directory to data to simplify where the program recursively detects systems System
with deepmd/npy
format. init_pick_number
and iter_pick_number
are the numbers of picked frames. model_devi_f_trust_lo
and model_devi_f_trust_hi
mean the range of the max deviation of atomic forces in a frame. fp_style
can be either gaussian
or vasp
currently. Other parameters are as the same as those of generator.